Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Table 2 Computed parameters and their accuracy

From: Computing and graphing probability values of pearson distributions: a SAS/IML macro

  Value fromValue from EldertonAbsolute DifferencebRelative Differencec
TypeaParameterSAS/IML Macroand Johnson (1969)  
Iβ1.507296.507296<.0001<.01%
 β22.9351112.935110<.0001<.01%
 κ-.264690-.264500.0002.07%
 r5.1868215.186811<.0001<.01%
 α11.9775431.996380.0188.94%
 α213.50842813.527280.0189.14%
 m1.406954.409833.0029.70%
 m12.7798672.776878.0030.12%
IVβ1.005366.005366<.0001<.01%
 β23.1729123.172912<.0001<.01%
 κ.012230.012800.00064.46%
 r39.44256239.442540<.0001<.01%
 v4.3887964.388794<.0001<.01%
 α13.11198813.111980<.0001<.01%
 m20.72128020.721270<.0001<.01%
VIβ1.995360.995361<.0001<.01%
 β24.7393494.739349<.0001<.01%
 κ1.8944371.895000.0006.03%
 r-33.421430-33.421290.0001<.01%
 q142.03052042.030800.0003<.01%
 q26.6090956.609500.0004<.01%
 α10.37983210.379470.0004<.01%
  1. aElderton and Johnson (1969) does not have the other types of Pearson distributions
  2. bAbsolute Difference = |Value from Elderton and Johnson (1969) − Value from SAS/IML Macro |
  3. cRelative Difference = |(Value from Elderton and Johnson (1969) − Value from SAS/IML Macro)/Value from Elderton and Johnson (1969) |×100%