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Abstract

Background: Sequencing and genotyping technology advancements have led to massive, growing repositories of
spatially explicit genetic data and increasing quantities of temporal data (i.e., ancient DNA). These data will allow
more complex and fine-scale inferences about population history than ever before; however, new methods are
needed to test complex hypotheses.

Results: This article presents popRange, a forward genetic simulator, which incorporates large-scale genetic data
with stochastic spatially and temporally explicit demographic and selective models. Features such as spatially and
temporally variable selection coefficients and demography are incorporated in a highly flexible manner. popRange
is implemented as an R package and presented with an example simulation exploring a selected allele’s trajectory
in multiple subpopulations.

Conclusions: popRange allows researchers to evaluate and test complex scenarios by simulating large-scale data
with complicated demographic and selective features. popRange is available for download at http://cran.r-project.
org/web/packages/popRange/index.html.
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Background
Recent advances in sequencing and genotyping technol-
ogy have led to dramatic reduction in cost and increased
accuracy of DNA sequencing. This advance has led to
the creation of large repositories of spatially explicit gen-
etic data and increasing quantities of temporal data (i.e.,
ancient DNA). Furthermore, data continue to be gener-
ated at an unprecedented rate; 10X more sequences are
generated every year [1-3].
Simulators are ubiquitous in population genetics and

current simulators tend to focus on either large-scale data
or demographic and environmental stochasticity (Table 1).
Software such as sfs_code [4] and SLiM [5] allow simu-

lation of large segments of DNA and integrate a wide
range of parameters, such as recombination, migration
and selection. These simulators allow extraction of haplo-
types at various time points to explore time-series genetic
trends. However, they require specification of divergence
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times, founder population sizes and deterministically set
migration rates, which limit their ability to model stochas-
tic demographic events. For example, modeling range ex-
pansions are difficult to simulate, as populations cannot
stochastically populate the world.
Other simulators allow populations to form and di-

verge in a more stochastic manner than those described
above. However these simulators focus on a small num-
ber of independently segregating loci. One of the most
flexible simulators, SimAdapt [6], allows, among many
features, temporally variable gene flow barriers, differences
in fitness between populations, and different carrying cap-
acities. Another simulator, quantiNemo [7], allows the
simulation of spatially and temporally explicit selection
coefficients, but requires the user to set starting allele fre-
quencies and runs very slowly on even mid-sized data [8].
Simulators in this category are typically unable to generate
the large quantity of single nucleotide polymorphisms
(SNPs) and still lack flexibility with respect to spatially and
temporally variable parameters.
A main use of a new generation of simulators is to

allow researchers to evaluate and test hypotheses gener-
ated from the data, with flexible scenarios [9]. Most
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Table 1 Comparison of population genetic simulators

Feature SPLATCHE2 [16] SimAdapt [6] quantiNEMO [7] SFS_CODE [4] SLiM [5] popRange

Simulation method Coalescent Forward-Time Forward-Time Forward-Time Forward-Time Forward-Time

Data type SNPs, STRs, DNA
sequences, RFLPs

SNPs, STRs SNPs, STRs SNPs, DNA sequences SNPs, DNA sequences SNPs

Interface Command-line, GUI Command-line, GUI,
accessed via R
package RNetlogo

GUI Command-line Command-line R package

Many SNPs (>100) No No Allowed, but very slow [6] Yes Yes Yes

Population structure Friction, migration rates
(one rate per population)

Dispersal distance
(one rate per population)

Migration rates, stochastic
founding/extinction
of populations

Migration rates, speciation,
domestication & admixture
events

Migration rates Population grid based, migration
rates, stochastic founding/
extinction of populations

Population dynamics Logistic growth Logistic growth Logistic growth Logistic & exp. growth,
step size changes

Step size changes Logistic growth, Allee effect,
step size changes

Natural selection No Fixed values Many models, spatially &
temporally varying

Fixed values, gamma,
normal & 3-point
mass models

Fixed values, gamma &
exponential distributions

Fixed values, gamma distribution,
spatially & temporally varying

Linkage Yes No Yes Yes Yes No

This table presents a brief comparison of population genetic simulators. For more in-depth comparisons, see [8,9,17].
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modern population genetic analyses, including princi-
pal component analysis (PCA), large-scale inference of
demography (i.e. ∂a∂i [10]) and ancestry analyses (i.e.
ADMIXTURE [11]) require the generation of a large
number of independently segregating SNPs.
popRange bridges this gap by simulating complex demo-

graphic scenarios with large-scale genetic data. These sim-
ulators are necessary to interpret current genetic data in
more realistic demographic scenarios. Though popRange
does not simulate linkage, independently segregating loci
are sufficient for many large-scale analyses.
This software provides a simulation framework for

modeling highly probabilistic spatial and temporal popu-
lation dynamics. To date, no existing simulator incorpo-
rates both stochastic spatially and temporally explicit
scenarios and chromosome-scale data. This grid-based
population structure model allows spatial and migration
flexibility, such as in simulations of arbitrary landscape
barriers. However, information from both types of data
in simulations is essential to gain insight to realistic
dynamic processes on the genome.

Implementation
Technical details
popRange is implemented as an R package and requires
R [12], Python 2.7.× or Python 3.2.×-3.4.× [13], the
Python package NumPy [14], and the R package findpy-
thon [15]. As an R package, it can run on any operating
system.

Simulation overview
popRange is a highly probabilistic Wright-Fisher forward
population genetic simulator. Specifically, it incorporates
1) large scale data (many SNPs, populations, and individ-
uals), 2) a grid-based population structure, 3) a wide variety
of spatially and temporally explicit stochastic demographic
parameters, and 4) a variety of output file formats.
Simulations are based on a user defined population

grid, starting population sizes, and starting SNP model.
Alternatively, users can use the output of a previous
simulation to set up the initial populations. Thus multiple
runs can be set so most parameters can be temporally
variable, as well as spatially variable. Each generation goes
through a set of phases (in this order):

1. Extinction: Each generation, each population can
become extinct with probability set by the user.

2. Migration: Migration rates are spatially and
temporally explicit, allowing the simulation of a wide
range of landscapes. Note that migration is highly
probabilistic; rates are the probability each individual
migrates in each generation. The number of
migrants from each population is determined by a
binomial distribution and migration probability.
These probabilities may allow a random adjacent
destination population to be chosen or they may be
specific with respect to initial and final populations.

3. Mutation: Mutations are based on the infinitely
many sites model. The number of mutations
introduced into each population in each generation is
drawn from a Poisson distribution parameterized by:

λ ¼ μ � g � N

where μ is the mutation rate parameter, g is the

number of base pairs in the genome, and N is the
population size.

4. Selection: When a mutation is introduced, a
selection coefficient may be placed on the new allele.
Selection coefficients may be fixed values or may be
drawn from a gamma distribution.

5. Population growth: Populations may grow logistically
or may experience instantaneous population size
changes. For logistic growth, the growth rate, r, is
drawn from a normal distribution with a mean and
variance provided by the user. This r is used in the
logistic growth equation:

Nt ¼ r � Nt−1 � 1−Nt−1

K
� Nt−1−A

K
;

where N is the population size, K is the carry

capacity and A is the Allee effect.

6. Drift/Reproduction: Populations may be haploid or
diploid and random mating is assumed within each
hermaphroditic population.

7. Output results: When all generations are complete,
output may be written to a variety of file formats,
including Geneland, PLINK, and GENEPOP
(Additional file 1: Section 5).

Results and discussion
This framework combines simulators commonly used in
ecology, which incorporate stochastic demographic sce-
narios, such as population growth and contraction, and
stochastic founding and extinction of populations, with
simulators more commonly used in population genetics,
which include many SNPs. It also incorporates more ad-
vanced features such as spatially and temporally explicit
selection.

Runtime
Runtime scales linearly with the number of base pairs
and the number of individuals (see Additional file 1).
For reference, simulating a 100 kb sequence in a 4 × 4
population grid (16 populations) with 100 diploids per
population, 0.01 migration rate between adjacent popu-
lations, 1.1E-8 mutation rate per generation and 1000
generations completes in a bit under 4 minutes.



Figure 1 Allele frequencies and trajectories over time in an example simulation. A) Grid of simulated populations. B) Trajectory of an allele
that originated in population (1,2) in generation 8. Limits of each y-axis are 0 (new allele not present) and 1 (new allele fixed). The x-axis limits are
0 to 1000 generations. C) Heat maps of the allele frequency in each population at six time points.
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Accuracy
This software was evaluated for accuracy through compar-
isons with theoretical expectations of heterozygosity, fix-
ation probabilities of new mutations, and Fst (Additional
file 1: Section 6).

Example simulation
Figure 1 shows an example simulation. In this simula-
tion, a 4x4 grid of populations was simulated. Each
population started with 100 diploid individuals. The mi-
gration rate is set to 0.01, meaning that on average one in-
dividual migrates from each population during each
generation. Individuals can migrate to any adjacent popu-
lation. The mutation rate was set to 1.1E − 8 per site per
generation and the genome size is 5,000,000 base pairs.
This figure follows the evolution of a neutral allele that
originated in population (1,2) at generation 8 and eventu-
ally fixes in all populations in generation 950. It is interest-
ing to note that the population it originates in is not the
population in which the frequency initially rises. In (4,4)
the allele is introduced and has a characteristic fixation
trajectory; it is initially at low frequency, but rapidly fixes
after an initial frequency increase. However, in (1,4) the al-
lele almost reaches fixation before a dramatic decrease
and recovery. It would be interesting to explore these dy-
namics in greater depth and understand the role they may
play in real populations. Furthermore, popRange allows
simulation of complex features, such as temporally and
spatially varying selection and landscape barriers. Results
from comparisons of models incorporating these features
can inform expectations of patterns in real data and add
to our understanding of evolutionary dynamics.

Conclusion
popRange allows users to simulate spatially and tempor-
ally explicit scenarios with chromosome-scale data effi-
ciently for the first time. Features such as spatially and
temporally variable selection coefficients are incorpo-
rated in a flexible manner. This software allows for
large-scale analyses and comparisons of these complex,
stochastic models and is implemented in R, facilitating
ease-of-use. I expect that this software will fill a gap and
help researchers better make use of the increasing geo-
graphically explicit genomic data that is being accumu-
lated for diverse group of organisms.

Availability and requirements
Project name: popRange
Project homepage: http://cran.r-project.org/web/packages/
popRange/index.html
Direct Download link: http://cran.r-project.org/src/con-
trib/popRange_1.1.2.tar.gz
Operating systems: Linux, Mac OS X, Windows
Programming languages: R, Python 2.7.× or Python
3.2.×-3.4.×
Other requirements: NumPy (python package), findPy-
thon (R package)
License: MIT
Any restrictions to use by non-academic users: no
licenses required.
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Additional file

Additional file 1: Supplementary Manual. Supplementary manual for
the program that provides in-depth details on running the program.
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