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Background and method: Successfully automated sigmoidal curve fitting is highly challenging when applied to
large data sets. In this paper, we describe a robust algorithm for fitting sigmoid dose-response curves by estimating
four parameters (floor, window, shift, and slope), together with the detection of outliers. We propose two
improvements over current methods for curve fitting. The first one is the detection of outliers which is performed
during the initialization step with correspondent adjustments of the derivative and error estimation functions. The
second aspect is the enhancement of the weighting quality of data points using mean calculation in TukeyH®s biweight

Results and conclusion: Automatic curve fitting of 19,236 dose-response experiments shows that our proposed
method outperforms the current fitting methods provided by MATLABXXn11infit function and GraphPadis Prism
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Introduction

In recent years, the need for automatic data analysis has
been amplified by the use of high content screening (HCS)
[1] techniques. HCS (also known as phenotypic screening)
is a great tool to identify small molecules that alter the dis-
ease state of a cell based on measuring cellular phenotype.
However, HCS always comes with an important caveat:
there is little or no a priori information on the com-
poundXs target. At the Institut Pasteur Korea (IP-K), we
have applied high content screening using small interfer-
ing RNA (siRNA) [2,3] at the genome scale. More recently,
we applied the siRNA knockdown strategy for each gene
from the genome and studied their effect on a given
molecule producing a clear response on a cellular assay,
to look for synergestic effects of a drug and target. Per-
forming large-scale curve fitting for the biological activity
of a large compound library can lead to a great number of
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dose-response curves (DRCs) that require proper fitting.
The overall process of fitting, rejecting outliers, and data
point weighting of thousands to millions of curves can
be a significant challenge. The quality of a dose-response
curve fitting algorithm is a key element that should help in
reducing false positive hits and increasing real compound
hits.

Several solutions [4-9] have been proposed to perform
curve fitting. One of the widely used nonlinear curve fit-
ting algorithms was introduced by Levenberg-Marquardt
(LM) [5,6]. This method belongs to the gradient-descent
family. However, due to the sensitivity of the method, the
data quality and the initial guess, the curve fitting algo-
rithm is unfortunately susceptible to becoming trapped in
local minimums. To obtain proper curve fitting results,
there is a need for automatic outlier handling, usage of
predefined initial curves, and adaptive weighting for data
points [10,11]. All of these demands can, without doubt,
be applicable to large sets of data. Nonlinear and non-
iterative least square regression analysis was presented
in [7] for robust logistic curve fitting with detection of
possible outliers. This non-iterative algorithm was imple-
mented in a microcomputer and assessed using different
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biological and medical data. A review of popular fitting
models using linear and nonlinear regression is given
in [4]. The study serves as a practical guide to help
researchers who are not statisticians understand statistical
tools more clearly, especially dose-response curve fitting
using nonlinear regression. This book also describes the
robust fitting algorithm and the outlier detection mecha-
nism used in the commercial software GraphPad PrismX.
In [8], an automatic best-of-fit estimation procedure is
introduced based on the Akaike information criterion.
This best-of-fit model guarantees not only the estimation
of the parameters with smallest sum-of-squares errors but
also good prediction of the model.

Simulated data for DRC estimation was used in [9] to
examine the performance of the proposed Grid algorithm.
The peculiarity of the Grid algorithm is that it visits all
the points in a grid of four curve parameters and searches
for the point with the optimum sum-of-squares error. A
coarse-to-fine grid model and a threshold-based outlier
detection mechanism were used to make the algorithm
more efficient. This paper also provided Java-based soft-
ware together with a sample dataset for academic use.
However, the software is applicable only when the mea-
surements are taken without replicates (one data point at
each concentration). Furthermore, various popular com-
puter software and code packages have been presented
for DRC fitting such as the DRC package in R [12], the
nlinfit function in MATLABX [13], and the XLfit add-
in for MicrosoftX ExcelX [14].

In this paper, robust fitting and automatic outlier detec-

tion based on TukeyH®s biweight function are introduced.

This method was developed to automate nonlinear fit-
ting of thousands of DRCs performed in replicates, detect
the outliers automatically, and initialize the fitting curves
robustly.

Background and method

Background

In drug discovery, analysis of the dose-response curve
(DRC) is one of the most important tools for evaluat-
ing the effect of a drug on a disease. The DRC can be
used to plot the results of many types of assays; its X-
axis corresponds to the concentrations of a drug (in log
scale), and its Y-axis corresponds to the drug responses.
The function of DRC can be varied with different number
of parameters, but the four parameter model is the most
common:

B2

—1+exp( 5y (1)

f(xrﬁ) =,BI+

where x is the dose or concentration of a data point;
represents the four parameters 81, B2, B3, and Ba; B1 is
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the floor - the efficacy - which shows the biological activ-
ity without a chemical compound; S, is the window - the
efficacy - which shows the maximum saturated activity at
high concentration; B3 is the shift - the potency - of the
DRC; and By is the slope - the kinetics. Figure 1 shows an
illustration of a response curve and its four parameters.

Basic computation of curve fitting
The goal of a curve fitting algorithm is to solve a statisti-
cally optimized model that best fits the data set. Because
the DRC function is nonlinear, an iterative method is con-
sidered to optimize parameters. In this section, a basic
viewpoint is presented to approach the proposed ideas
in our method. First, let x be the function of the fit-
ting parameter § which will be determined via function
minimization:

N

x® =30 (“;(’”3)) , )

i

where p(z) is an error estimation function of a single vari-
able z; o is a normalization value; and N is the number of
data points. To minimize (2), the Newton method is used
to search for zero crossing of the gradient:

Bi1=B,+D [V x(B)]. (3)

Hence, we need to find the gradient and the Hessian
matrix D of x. The gradient of x with respect to f =
{B1, B2, B3, Ba} is computed as

dx

N1 of i B)
9 = Xij;iw)—, (4)
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Figure 1 A four-parameter dose-response curve. 81, 8>, 83, and B4

are the floor, the window, the shift, and the slope, respectively.
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where ¥ (z) is the derivative function of p (z) withz = (y;
f(xi, B))/oi. The Hessian matrix is calculated using

92 Noq af (xi, B) Of (xs, 1 9%F (x;,
L _ Ly LD Yorh) i, B)

oBcpy o8 op o P opap

(5)
where the second derivative term is negligible compared
to the first derivative. Let

3 3
X and by = -2, (©)
dprop;

where ay; and by are elements of matrices A and B,
respectively; then instead of directly inverting the Hessian
matrix, (3) can be rewritten as a set of linear equations:

akl =

4
> anspr = by, 7)
I=1

where 88, is changed at every iteration. Afterwards, to
solve our fitting problem, we define

p(z) = %z2 and ¥ (z) = z (8)

and obtain ay; and by using least squares. The Levenberg-
Marquardt (LM) method [5,6,15] solves (7) by defining a
positive value A to control the diagonal of the matrix A:

ay = ape(1+ 1) and ay;, = ay (k #1). 9)

The iteration steps of the LM method can be summa-
rized as follows:

1. Evaluate x (B) and define a modest value for 1, i.e.,
A = 0.001;

2. Solve (7) with A substituted by A” in (9), and evaluate
x(B+38B);

3. If x(B+38B) = x(B), increase A by a factor of 10; else,
decrease A by a factor of 10 and update B < B + 48;

4. Repeat steps 2 and 3 until x (B) converges, and the
return .

Outlier detection

In most cases, it is difficult to estimate the parameters,
either due to noise in the observations or because the
experimental design might give rise to ambiguities in the
parameters of the DRC. There is a need for an outlier
detection mechanism to cope with noise before fitting
curves. Figure 2 shows the effect of outliers in the data.
There are eight different concentrations, five replicates at
the first concentration, and three replicates at the remain-
ing concentrations. It is likely to become noisy when the
number of data points increases. Seven outliers (the solid
arrows show these outliers in the figure) can change the
fit of the curve dramatically. These seven points in the left
figure have lower weights (outliers detected) than those in
the right figure.
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In our problem, we initialize the fitting parameters g,
(disregarding outliers) by finding the best fitted curve
using

p(z) = |z| and ¥ (2) = sign(z) (10)

instead of (8) which is used without outlier detection.
Herein, we proposed (10) to reduce the impact of out-
liers on the fitting results by considering absolute errors
and sign-only derivatives. The key difference between (10)
and (8) is that the derivative function: ¥ (z) = sign(z)
resultsin 1 (negative) or 1 (positive), which controls the
gradient in the direction of having a higher number of
negatives/positives, whereas ¥ (z) = z judges the gradient
based on the distance between the estimated and actual
values. Therefore, (10) is able to disregard the points hav-
ing a lower number of negatives/positives (see Figure 2,
on the left), and (8) considers the points at far distances
although these points are given low impact (see Figure 2,
on the right). Levenberg-Marquardt and other conven-
tional nonlinear curve fitting algorithms are based on
derivative calculation, and the quality of their solutions
notably depends on data quality (i.e., outliers) and the ini-
tial guess. To have good fitting, outliers and the initial
guess have to be manually detected and defined. Accord-
ingly, these conventional algorithms are very difficult to
automate and be made to yield good solutions in thou-
sands of DRCs. Based on (10), outliers can be effectively
weighted and a robust initial guess is automatically deter-
mined at the beginning of the fitting process. The method
of weighting data points is described in the next section.

Curve fitting with weighting function
Because all fitting parameters of the DRC are very impor-
tant in understanding and assessing the effect of a chem-
ical compound, it is essential to have a method that can
estimate the curve in a robust way, i.e., coping with out-
liers and assigning weights to data points. Initially all data
points are supposed to have equal weights. However, this
idea does not hold in many practical occasions. Therefore,
a least squares method tends to give unequal weighting to
data points, e.g., points that are closer to the fitted curve
would have higher weighting values. In standard weight-
ing, minimizing the fitting error (sum-of-squares) of the
absolute vertical distances is not appropriate: points hav-
ing high response values tend to have large deviations
from the curve and so they contribute more to the sum-
of-squares value. This weighting makes sense when the
scattering of data is Gaussian and the standard devia-
tion among replicates is approximately the same at each
concentration.

To overcome the situation in which data spreads differ-
ently at concentrations, various weighting techniques are
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Figure 2 Influence of noise (the arrows show the outliers). Fitting on the left assigns low weights to the outliers to disregard them. Fitting on
the right considers the outliers as useful data points and gives higher weights to these points.

considered, including relative weighting, Poisson weight-
ing, and observed variability-based weighting [4]. Rela-
tive weighting extends the idea of standard weighting by
dividing the squared distance by the square of the corre-
sponding response value Y; hence, the relative variability
is consistent. Similarly, Poisson weighting and weighting
by observed variability use different forms of dividing the
response value Y. Indeed, minimizing the sum-of-squares
might yield the best possible curve when all variations
obey a Gaussian distribution (without considering how
different the standard deviations at concentrations are).
However, it is common for one data point to be far from
the rest (caused by experimental mistakes); then, this
point does not belong to the same Gaussian distribution as
the remaining points and it contributes erroneous impact
to the fitting. The Tukey biweight function [10] was intro-
duced to reduce the effect of outliers. This weighting
function considers large residuals and treats them with
low weights, or even zero weights, so that they do not sway
the fitting much. In this section, we present a modification
of the Tukey function and apply it to our fitting.

Let w(r) be the weight of a data point that has a distance
to the curve (residual) of r; then, the biweight function is
defined as

o [[ 0T e

0, Irl > ¢

(11)

where ¢ = 6  median ({r,«}f\il), 6 is a constant defined
by Tukey, and N is the number of data points. This func-
tion totally ignores or gives zero weighting to the points
having residuals larger than six times the median resid-
ual. Nevertheless, when the experimental data contains
a great deal of noise (which usually occurs in biological

and medical assays), it can fall on a normal distribution
easier than when they contain little noise. When our data
approaches a normal distribution, the mean of residu-
als is a better choice than the median of residuals (the
median is useful if the data has extreme scores). In our
case, based on experimental situations, we decided to
use ¢ = 6 mean ({ri}?il) = 6r. Figure 3 shows the
fitting results of using the median and mean. The sum-of-
squares error produced by using the mean is significantly
better than by using the median. Additionally, the curve fit
by using the mean looks more satisfactory than by using
the median. Hence, the curve fitting algorithm with the
modified Tukey biweight function can be summarized as
follows:

1. Determine the distance from each data point to the
curve, called the residual, r;

2. Calculate the weight of each point using (11) with r
applied;

3. Assign new values to data points based on their
weights.

In addition, other robust weighting functions can be
considered such as Andrews, bisquare, Cauchy, Fair,
Huber, logistic, Talwar, and Welsch [16]; however, the
Tukey biweight function is known for its reliability, and
it is generally recommended for robust optimization [17].
As we show further, the use of the Tukey biweight allows
for improved DRC fitting results (see the Results section).

Robust univariate DRC estimation algorithm

The proposed algorithm is conceptually easy to imple-
ment and robust to outliers. Combining ideas from the
previous sections, the algorithm consists of the following
steps:
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Figure 3 Results of using the median (left) and mean (right) calculations in the Tukey biweight function.

1. Find the initial curve with outlier detection by 3. Based on the obtained weights, execute the LM
executing the LM algorithm and applying (10) algorithm in the basic computation section and
instead of (8); consider the weights of the data points.

2. Based on the curve obtained, calculate the Tukey 4. Repeat steps 2 and 3 for a predefined number of
biweights of data points using (11); iterations or until convergence.
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Figure 4 Two results of no outliers and good fitting.
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Results

We have previously shown the ability to use the high
content genome-wide silencing RNA (siRNA) screening
approach on various cellular models [2,3]. The recent
combination of drugs (at different concentrations) and
siRNA (approximately 20,000) lead us to look for an
automatic method to characterize a large number of dose-
response curves obtained in those experimental condi-
tions. Using MATLABY, a curve fitting algorithm was
implemented. We compared the fitting performance of
our method to that of the nlinfit function in MAT-
LABX 2013a and the robust DRC fitting in GraphPad
Prismi 6.0.

In our experiments, we used eight different concen-
trations 0, 0.005, 0.01, 0.1, 0.4, 1, 5, and 20 M with
five replicates at concentration 0 and three replicates at
the other concentrations (26 data points in total). In this
manuscript, the concentrations were plotted over the X-
axis in Jog unit. The Y-axis shows the drug response,
which was normalized in the range of 0 to 100. The ini-
tial values of the parameters floor, window, shift, and slope
used in the MATLABXYnlinfit function were defined
based on values of data points as min(Y), max(Y)
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min(Y), average(X), and X0.6, respectively. By default,
the algorithm uses bisquare (also known as Tukey
biweight) as the robust weighting function. Indeed, MAT-
LABNK applied the Levenberg-Marquardt (LM) algorithm
and iterative reweighted least squares [16] for robust esti-
mation. Accordingly, the n1infit represents the case of
using the traditional LM algorithm and Tukey biweight
function where (8) and the median function are utilized.
For our algorithm, we defined the initial DRC parameters
in the first step (outlier detection) as in nlinfit, and
then those parameters were corrected using the outlier
detection step and used for the consequent fitting steps.
According to step 4 of our DRC estimation algorithm, the
number of iterations was predefined as 50, and the error
tolerance for convergence was 0.0001.

Figure 4 shows two examples of fitting when data points
do not include outliers and the results of three fitting algo-
rithms are acceptable. Curve fitting results were presented
together with sum-of-squares errors (on the top-left cor-
ner) which are calculated by taking the sum-of-squares
of differences between the actual Y and the estimated Y.
Smaller errors indicate better results. The plotting results
are shown from left to right: MATLABXnlinfit, PrismX
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Figure 5 Two results of outliers.
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robust fitting, and our method, respectively. Figure 5 illus-
trates the cases of the presence of outliers. For points
inside the interval from 6.5 to 5 (log unit), the varia-
tion of measurements is high. In this figure, the first result
of MATLABXnlinfit demonstrate an ambiguity of the
shift parameter: the log of IC50 should be shifted to the
right to cross the mean point in the middle of the plot.
The first plot of PrismX presents a poor DRC due to the
high steep slope. Figure 6 displays the cases where out-
liers appear and lead to bad fitting. Prism¥ was completely

unable to fit the first curve, but our method handled
the data points very well. Additionally, the second plot
of MATLABXnlinfit shows an ambiguity of the shift
parameter and a high steep slope.

In drug discovery and genome-wide data analysis, curve
parameters, especially the shift, act as a crucial factor in
determining the target candidates. Therefore, poor out-
comes of the DRC fitting algorithm might greatly affect
the analysis of the whole genome, which leads to dif-
ficulty finding the targets. To evaluate the performance

Table 1 Averages and standard deviations of the normalized sum-of-squares errors calculated based on the fitting

results of 19,236 curves

Slide Number of curves Matlab Prism Ours (median) Ours (mean)

o o o o
1 3885 0.920 0.134 0.777 0213 0.855 0210 0.777 0217
2 3887 0.907 0.117 0.852 0.154 0.943 0.134 0.817 0.165
3 3865 0916 0.112 0.844 0.161 0.922 0.155 0.820 0.170
4 3875 0.946 0.105 0.793 0.198 0.841 0.202 0.777 0.207
5 3724 0.908 0.144 0.722 0.234 0.820 0.246 0.755 0.239
Average 0.919 0.122 0.798 0.192 0.876 0.189 0.789 0.200

Boldface numbers indicate the best errors.
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of different DRC fitting algorithms on a large-scale, we
assessed 19,236 curves which were obtained from five
microarray slides. Table 1 shows fitting errors for the five
slides with the corresponding number of curves 3885,
3887, 3865, 3875, and 3724 from each slide. Averages and
standard deviations of the normalized sum-of-squares
errors (the normalized error is calculated by dividing the
actual error by the maximum one) were also included
in this table with the comparison of the four methods.
Herein, in addition to comparing our method (using mean
calculation in the Tukey biweight function) to MATLABKX
and Prism, we also compared to our method, which uses
the median for calculation of (11) to prove that the modi-
fied Tukey biweight function can significantly improve the
fitting. Our method mostly yielded the best average errors
in all slides whereas MATLABRnlinfit was the worst.
PrismX gave better results than the method using median
calculation.

In summary, experimental comparisons show that our
method (namely XOurs (mean)X in the figure), which pro-
poses automatic initialization of DRC parameters and
modification of the Tukey biweight function (mean calcu-
lation), yields a satisfactory fitting of curves. It provides
more accurate fitting than MATLABYnlinfit, where
automatic initialization is not available and the default
Tukey biweight function (median calculation) is used,
by more than 14% in processing 19,236 curves. We also
demonstrated that the method applying the automatic ini-
tialization and the default Tukey function (namely MOurs
(median)X) did not yield results as good as those of
KMOurs (mean)X. Moreover, the better performance of KOurs
(median)X than that of MATLABE1linfit implies that
the automatic initialization of DRC parameters meaning-
fully improves the fitting process. Our method is supe-
rior to GraphPad PrismX 6.0 by more than 1%. Although
the error is slightly improved; we believe that, with the
MATLABK implementation provided, our approach is eas-
ily automated and scalable to thousands of curves. It is
able to process the entire genome data in less than two
hours X approximately 360 milliseconds for a curve (with
a computer configuration using an Intel Core i7 3.47 GHz
CPU).

Conclusion

We provide two improvements for the problem of DRC
fitting: 1) increasing the accuracy of the initialization of
DRC parameters with the use of outlier detection, and 2)
improving the method of weighting for noisy data in the
Tukey biweight function. Our method is adapted to the
analysis of thousands of DRCs or more with the use of
automatic outlier detection and initialization of curves. By
experimentally comparing the results of our method to
those calculated by the nlinfit function in MATLABK
2013a and the robust DRC fitting in GraphPad PrismX 6.0,
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we found that the proposed approach yielded a superior
estimation of curves to that of MATLABX and PrismiX.
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