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Identifying large sets of unrelated individuals
and unrelated markers
Kuruvilla Joseph Abraham1,3* and Clara Diaz2

Abstract

Background: Genetic Analyses in large sample populations are important for a better understanding of the variation
between populations, for designing conservation programs, for detecting rare mutations which may be risk factors for
a variety of diseases, among other reasons. However these analyses frequently assume that the participating
individuals or animals are mutually unrelated which may not be the case in large samples, leading to erroneous
conclusions. In order to retain as much data as possible while minimizing the risk of false positives it is useful to
identify a large subset of relatively unrelated individuals in the population. This can be done using a heuristic for
finding a large set of independent of nodes in an undirected graph. We describe a fast randomized heuristic for this
purpose. The same methodology can also be used for identifying a suitable set of markers for analyzing population
stratification, and other instances where a rapid heuristic for maximal independent sets in large graphs is needed.

Results: We present FastIndep, a fast random heuristic algorithm for finding a maximal independent set of nodes in
an arbitrary undirected graph along with an efficient implementation in C++. On a 64 bit Linux or MacOS platform the
execution time is a few minutes, even with a graph of several thousand nodes. The algorithm can discover multiple
solutions of the same cardinality. FastIndep can be used to discover unlinked markers, and unrelated individuals in
populations.

Conclusions: The methods presented here provide a quick and efficient method for identifying sets of
unrelated individuals in large populations and unlinked markers in marker panels. The C++ source code and
instructions along with utilities for generating the input files in the appropriate format are available at
http://taurus.ansci.iastate.edu/wiki/people/jabr/Joseph_Abraham.html

Background
The analysis of genotypes collected from large numbers
of individuals is necessary for Genome Wide Asociation
Studies (GWAS), conservation biology, and population
genetics among other purposes. Most statistical analyses
in these areas assume the individuals are unrelated, which
may not always be the case in large sample populations.
One way to avoid false positives due to the presence of
related individuals is to identify the largest subset of unre-
lated individuals in the study population and retain only
those individuals. A similar computational issue arises
when identifying sets of unrelated markers for use in
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analyzing population stratification. Analyzing population
stratification with the dense marker maps which are now
currently available can be very time consuming due to the
large number of markers being used, however due to link-
age disequilibrium between the markers in dense maps
not all the information provided by the markers can be
considered independent. In this situation it makes sense to
select a subset of markers which aremutually independent
and which can provide sufficient information to analyze
population stratification; this strategy reduces the com-
putational burden arising from using all available markers
while attempting to retain as many markers as possible.
Indeed, certain well established approaches to analyzing
population stratification assume that the input markers
are unrelated [1], thus there are both conceptual and com-
putational reasons for using a subset of weakly correlated
markers. However, in populations with a complex his-
tory, identifying this set of markers may not be possible
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using just genetic map information, but may also require
a more detailed analysis which takes into account the pat-
terns of linkage disequilibrium between markers. In this
manuscript we show how these two problems are related
and present methods which address both problems.
In order to proceed with identifying a large subset of

unrelated individuals it is important to quantify related-
ness between individuals; one way to do this is to use
genotype information to assess Identity by State (IBS)
which in turn can be used to estimate pairwise Iden-
tity by Descent (IBD), for example by using a Hidden
Markov Model as is done in PLINK [2]. This is not the
only possibility, in [3] genotype information is used to
find an estimator for the coefficient of kinship between
individuals which is used as a measure of relatedness.
Other possibilities for relating allele sharing to similari-
ties between individuals are discussed in [4] and [5]. Once
the pairwise IBD (or some other similarity measure) is
known for all pairs of individuals in the population, we can
assemble a symmetric matrix of distances between indi-
viduals. As has been pointed out in [6], once a suitable
threshold for defining unrelatedness has been specified
it becomes possible to define an undirected graph whose
nodes correspond to individuals with edges connecting
unrelated individuals. This is not the only possibility, it is
also possible to define a graph where edges are present
between individuals who are related. Both definitions lead
to graphs whose structure can be analyzed to extract sub-
sets of mutually unrelated individuals. FastIndep makes
use of a graph in which related individuals are connected
by edges. Regardless of how the graph is specified a
threshold must be defined, and the value of this threshold
will depend on the similarity measure used. For exam-
ple in [3], it is shown how the estimate for the coefficient
of kinship along with the information on the number of
markers can be used to fix this threshold and thus the
edge structure of the graph. The graph, in addition to
being undirected is also unweighted, i.e. the actual extent
of similarity between the individuals is not as important
as whether or not the similarity falls above or below a cer-
tain user defined threshold. For addressing the problem
of finding a large number of unlinked markers, the undi-
rected graph arises from assigning a node to each marker
and an edge between two nodes if the linkage disequilib-
rium between the corresponding markers is above some
threshold for statistical significance as defined by the user.
Finding a large number of mutually unrelated individu-

als or mutually unrelated markers corresponds to finding
a large subset of the nodes in the graph such that no two
nodes in the subset are connected by one of the edges in
the graph. Such subsets of nodes constitute independent
sets, and for our purposes we seek maximal indepen-
dent sets i.e. independent sets with the property that
there exists no other node in the graph which can be

added to the independent set while retaining the prop-
erty that all nodes remain mutually unrelated. In graphs
with sizes corresponding to real data there may be many
maximal independent sets and the question which arises
is, which one of these to choose. Frequently, we wish to
maximize the number of markers or unrelated individu-
als. This requires finding the largest maximal independent
set present in the graph. The maximal independent set
of largest size is the maximum independent set, and in
many graphs there may be more than one maximum inde-
pendent set. Finding the maximum independent set is
NP-hard, i.e. there is no known efficient algorithm for
finding the maximum independent set for an arbitrary
graph. That is why exact algorithms, such as the Bron
Kerbosch algorithm [7] which can be used to find all
maximal independent sets (including maximum indepen-
dent sets) on an arbitrary graph, are prohibitively slow
for graphs beyond a certain size. This necessitates the
use of heuristics for problems with realistic sizes, for rea-
sons which will be clear later FastIndep uses a stochastic
heuristic. The need for heuristics has been recognized
in earlier work [6] where the use of the Bron Kerbosch
algorithm is restricted to small graphs with upto a few
hundred nodes at most, and for larger graphs a determin-
istic heuristic algorithm which outputs a single maximal
independent set is used.
The FastIndep algorithm was first introduced for select-

ing unlinked markers for analyzing population stratifica-
tion and was first discussed in [8]. FastIndep differs from
the Primus software of [6] in a number of respects most
notably in that the FastIndep algorithm is a stochastic
greedy heuristic regardless of the size of the problem. The
use of a stochastic heuristic is motivated by [9] where
it is demonstrated that randomization may improve on
deterministic heuristics for graph triangulations arising in
genetic linkage analysis. Furthermore as pointed out in
[6], when analyzing a population containing both healthy
individuals and those affected with some disease it may be
useful to consider maximal independent sets containing a
large number of affected individuals; such sets may or may
not be maximum independent sets. If the graph is suffi-
ciently large, then it may not be possible to use the Bron
Kerbosch algorithm to enumerate all maximal indepen-
dent sets and pick the most suitable one. In this situation,
it may be useful to work with a stochastic heuristic which
outputs a number of different maximal independent sets,
one or more of which can be choosen. A deterministic
heuristic by contrast may not offer the possibility of easily
checking for alternatives.
Another advantage to using a stochastic heuristic arises

when selecting a subset of markers for analyzing pop-
ulation stratification. If the original set of markers is
sufficiently large it is not feasible to use the exact
Bron Kerbosch algorithm to select the largest subset of
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unrelated markers, necessitating the use of some approx-
imate algorithm. This raises the question of the depen-
dence of the final results on the choice of markers. One
way to check the extent to which the final results are
dependent on the choice of markers is to repeat the anal-
ysis of population stratification using alternative sets of
markers generated by running the algorithm repeatedly. If
the results from using different sets of markers are consis-
tent then the variation of the final results with the choice
of markers should be quite small. This consistency check
is unique to FastIndep and is not available in other pub-
licly available codes for findingmaximal independent sets.
The FastIndep code is sufficiently general that it is not
restricted to a particular choice of correlation measure, all
that matters is that the larger the entry in the matrix, the
stronger the correlation between the corresponding indi-
viduals (or markers). Any correlation measure that satis-
fies this criterion may be used so long as the entries of the
matrix are larger than or equal to zero. With different cor-
relation measures different thresholds for independence
may be required; it is the responsibility of the user to
define these thresholds depending on the correlationmea-
sure used. For example analysing a marker panel using the
Linkage Disequilibrium measure r2 the threshold could
be choosen based on the relation between the r2 and the
Pearson Correlation coefficient and thus the χ2 distribu-
tion. For finding unrelated individuals using the method
of [3] the threshold would be fixed based on the sampling
distributions for the coancestry described in [3].

Methods
The current C++ implementation of FastIndep is closely
related to the one described in [8] for the purpose of
selecting a large subset of unlinked markers for analyz-
ing population stratification and will be briefly described
below. The key idea behind the algorithm is to start with
a deterministic greedy heuristic (which typically finds a
reasonably large maximal independent set), and then ran-
domize the heuristic in order to explore solutions close to
the one found by the deterministic algorithm. The algo-
rithm is run many times, and due to the stochastic nature
of the algorithm the output from the different runs will
contain a variety of different maximal independent sets.
Some of these maximal independent sets may be larger
than the one uncovered by the deterministic algorithm
and may not be easy to discover without the random-
ization, which is the motivation behind introducing a
stochastic element to the algorithm. Furthermore, if the
algorithm is efficiently implemented, the additional time
needed for the multiple runs is not excessive. We empha-
size that the algorithm does not make use of map informa-
tion, this lack of dependence on map information allows
the application of the algorithm to genetic data with very
complex patterns of Linkage Disequilbrium, as well as to

problems where there is no analogue of map information,
such as identifying large numbers of unrelated individu-
als in populations. A description of the algorithm follows,
although the same algorithm can be used for identify-
ing both unlinked markers and unrelated invididuals, the
description will be in terms of finding unlinked markers.
The rest of the section can safely be skipped without any
loss of continuity by readers not interested in technical
details of the FastIndep algorithm.
As before we assume we have an undirected graph G in

which V is the set of nodes, V = {Vi} for i ≤ i ≤ n,
and E is the set of edges. G is not assumed related to any
genetic marker map so the algorithm is at this stage per-
fectly general. In the most general case, the algorithm also
requires as input a positive parameter γ which is a mea-
sure of how far the algorithm deviates from a determin-
istic greedy heuristic. The larger the value of γ the closer
the algorithm resembles a deterministic heuristic. In the
implementation presented here γ is set equal to one. We
define Di the set of non neighbors of Vi and ni size of Di,
and consider only nodes for which ni > 0, i.e. we ignore
in the discussion nodes connected to all other nodes. This
corresponds to ignoringmarkers in tight Linkage Disequi-
librium with all other markers in the panel. We define sets
of nodes CandSet, TempSet as well as ReturnSet, which is
the output from the program. ReturnSet is initialized by
the set of all nodes not connected to any other nodes. The
algorithm is initialized by selecting a node disconnected
to many others, with a probability which depends on how
few neighbors it has.

• Initialization

1. Evaluate normalized pi = (nγ
i /norm) ∀ i where

norm = ∑

i=1
nγ
i

2. Pick some Vj with probability pj and insert in
ReturnSet.

3. CandSet ← Dj.
4. TempSet ← ∅.

• Main Loop
while CandSet �= ∅ do

1. Select some Vk ∈ CandSet with probability pk
normalized over CandSet to insert in ReturnSet

2. TempSet ← {Vm ∈ Dk :Vm /∈
ReturnSetwhere 1 ≤ m ≤ N}

3. CandSet ← (CandSet ∩ TempSet)

If CandSet ≡ ∅ return ReturnSet.

In step 1 of the initialization, the normalized pi are com-
puted for all nodes except nodes which are connected to
all others or disconnected to all others. Nodes disconected
to all others are automatically included in the final output,
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while nodes connected to all others do not contribute
to maximal independent sets of any interest for our pur-
poses. This leads to a substantial speed up of the program
with little loss of information.
It is also possible to define a deterministic greedy

heuristic in which the nodes selected in step 2 of the ini-
tialization and step 1 of the main loop are just those with
the largest associated probability.

Results and discussions
The input to FastIndep consists of a carefully formatted
symmetric matrix of positive correlation values (which
may exceed one in value), a threshold value taking values
between 0 and 1, and an integer specifying the number of
times the algorithm is to be run. The input has a struc-
ture similar to a dataframe in the R programing language
[10], where the column names are the names of the indi-
viduals or markers and the row names are the same as
the column names. An undirected graph is constructed by
assigning a node to each individual and then declaring that
edges exist between nodes provided that the correlation
between the individuals is greater than the user specified
threshold value. As the algorithm is stochastic in nature
running the algorithm repeatedly may occasionally yield
the same maximal independent set more than once, thus
the output of the algorithm is written to a text file which
lists only the unique independent sets found. Included
in the output of FastIndep is the result from the deter-
ministic greedy heuristic discussed earlier. In all results
presented, the random numbers used by FastIndep are
generated using the methods of [11].

Results on simulated data
In order to to check the size distribution of the maxi-
mal independent sets found by FastIndep, we generated
a total of 6 graphs, 2 of size 500, 2 of size 1000, and 2
of size 2000, by using a U(0, 1) random number genera-
tor to generate symmetric random matrices which were
then transformed into graphs using two given thresholds
to define edges. The size distribution of the maximal inde-
pendent sets found by FastIndep on these graphs is shown
in Table 1.

Table 1 Quantile distributionof set sizes for artificial
data set

Graph size Threshold Minimum 25% Median 75% Maximum

500 0.15 3 3 4 4 6

500 0.95 53 63 65 67 77

1000 0.15 3 4 4 5 7

1000 0.95 66 75 78 80 91

2000 0.15 3 4 5 5 7

2000 0.95 78 89 91 93 104

Edges generated by thresholding values generated at random (U(0, 1)).

In order to test the capacity of FastIndep to find mul-
tiple maximum independent sets in graphs of smaller
sizes we generated a total of 3111 graphs of sizes ranging
from 10 to 60 using a U(0, 1) random number genera-
tor to generate symmetric random matrices which were
then transformed into graphs using a threshold to define
edges, 61 thresholds were used for each graph size. The
number of runs in FastIndep was choosen to be 1000
times the number of nodes for each graph. In all cases
the largest maximal independent sets found by FastIn-
dep are the same size as those found using a branch and
bound algorithm, [12,13], and in 2597 cases FastIndep
found multiple largest cardinality sets. This indicates the
capacity of FastIndep to discover multiple maximal inde-
pendent sets, a feature which is valuable when considering
real data.
We next use simulated data to compare FastIndep with

three other algorithms used in statistical genetics Primus,
KING [14] and PLINK [2]. Both KING and PLINK are
implemented in the Primus software, and it is these impl-
mentations we will use. To make the comparison with
KING we note that the algorithm in KING is simply the
deterministic greedy heuristic which is the starting point
for FastIndep. Since the output of FastIndep includes the
result from the deterministic greedy heuristic as well as
all results from the stochastic heuristic, some of which
whichmay be larger than the result of the greedy heuristic,
FastIndep either performs as well as KING or outperforms
KING on any input dataset.
In order to compare FastIndep with Primus and PLINK

a total 50 graphs were generated with sizes ranging from
900 to 1300 and thresholds ranging from 0.05 to 0.95 using
the same procedure as before. These sizes were choosen
to be comparable with those of modern genetic analyses
which may involve thouands of individuals. The number
of runs of FastIndep was choosen to be 50 times the num-
ber of nodes in the graph. The total running time for all
fifty graphs for FastIndep was 3142 seconds running on a
Linux workstation with 36 GB of ram on a 3.2 GHz pro-
cessor running GCC 4.7.2. On the same platformwith perl
5 version 14, Primus required 20561 seconds. Nonethe-
less in only three cases themaximal independent set found
by FastIndep was smaller than that found by Primus. In
35 of other trials the maximal independent set found by
FastIndep was larger that that found by Primus. In 12
of the random graphs, FastIndep found multiple maxi-
mal independent sets with the same cardinality as those
found by Primus. The results of this comparison are sum-
marized in Table 2, where the maximal independent set
sizes found by FastIndep and Primus are shown, with the
Primus results in brackets. Based on the results of Table 2
FastIndep appears to perform as well as or better than
Primus except for a few graphs with a large threshold;
such graphs tend to be sparse. The difference in sizes
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Table 2 Comparing FastIndepwith Primus

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

900 4(4) 7(7) 8(8) 10(9 ) 12(11) 15(14) 19(17) 25(24) 39(36) 94(96)

1000 4(4) 6(6) 8(8) 10(9) 12(12) 15(14) 19(17) 26(23) 39(34) 93(87)

1100 5(4 ) 7(6 ) 8(8) 10(9) 13(11) 15(14) 20(16) 27(25) 39(37) 93(94)

1200 5(4) 6(6) 8(8) 10(9) 12(11) 15 (14) 20(16) 26(23) 40(39 ) 95(98)

1300 5(4) 7(6) 8(8) 10(10) 12(11) 16(14) 21(18) 26(24) 41(38 ) 97(96)

Set sizes from FastIndep and (Primus). Graph Sizes along Rows & Thresholds along columns.

between the maximal independent sets found by FastIn-
dep and Primus are sumarized in Table 3. Positive values
indicate larger maximal independent set sizes found by
FastIndep. The same set of graphs were used to compare
FastIndep and PLINK, based on the results of [6] where it
was shown that Primus outperforms PLINK, it would be
expected that FastIndep would considerably outperform
PLINK. This was indeed the case.
Recently, a new algorithm LEAF [15] was introduced

to find maximal independent sets on graphs which arise
from protein sequence comparison; as pointed out in [15]
such graphs are typically sparse. In the context of finding
unrelated individuals in a study population whose mem-
bers are choosen to be distantly related or unrelated, the
sparsity assumption may be valid; however in the con-
text of finding subsets of unrelated markers a sparse graph
would correspond to relatively little Linkage Disequilib-
rium between markers, which is a needlessly restrictive
assumption. More particularly, the capacity of of a hand-
full of haplotype tagging SNPs in genetic marker maps to
tag a large fraction of the markers present [16] suggests
that the corresponding undirected graphs may have a very
different structure from the sparse graphs arising from
the analysis of protein sequences. As mentioned in [15]
the authors use several BHOSLIB benchmarks to compare
LEAF with other methods; we have used the four largest
datsets which have 1272 nodes (frb53-24), 1400 nodes
(frb56-25), 1534 nodes (frb59-26) and 4000 nodes (frb100-
40). With 1000 iterations, FastIndep outperforms LEAF
on all of these benchmarks based on the results shown in
Figure six of [15]. On the the largest dataset used running
FastIndep 1000 times yields 850 maximal independent
sets larger than the one found by LEAF, and on this data
set outperforms three of the five methods discussed in
[15]. However none of the methods discussed in [15] per-
mit the generation of multiple maximal independent sets,

Table 3 Distribution of differences between Primus and
FastIndep

Minimum 25% Median 75% Maximum

-3 0 1 2 6

Difference in Maximal Independent Set Sizes found by FastIndep and Primus.

which as we have argued earlier is a desirable feature when
analyzing population stratification. These considerations
suggest that FastIndep has some distinct advantages for
creating multiple maximal independent subsets from pan-
els of thousands of markers for cross-checking the analysis
of population stratification.
As a final study with artificial data we check how closely

the results of FastIndep match exact results on a set of
graphs of size 150. We generate a number of random
graphs with varying thresholds and check the size of the
largest maximal independent set found by 1500 runs of
FastIndep compared with the true sizes as obtained from
the branch and bound methods of [12,13]. The results are
shown in Table 4, the discrepancy between the size of
the largest maximal independent set found by FastIndep
and the true size appears to be largest for low connectiv-
ities and decreases with connectivity. In Table 4 (and in
the rest of this paper) connectivity is defined to be the
ratio of the number of edges actually present in the graph
to the total number of edges that would be present if all
nodes were connected. Thus connectivity is zero for a
graph with no edges and 1 for a graph in which all possible
edges are present. Sparse graphs have low connectivities,
and for the random graphs generated by thresholding dis-
cussed earlier, the sum of the threshold value and the

Table 4 Comparisonwith truemaximum independent
set size

Connectivity Largest set found True size of maximum

by FastIndep independent set

0.0976 33 37

0.203 22 23

0.304 15 17

0.398 12 14

0.503 10 10

0.596 9 9

0.700 7 7

0.798 6 6

0.899 4 4

Set sizes found by FastIndep for a graph of size 150 with varying connectivities.
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connectivity is approximately one. Thus the thresholds in
Table 2 for which Primus outperforms FastIndep corre-
spond to low connectivities, which is consistent with the
results in Table 4 where the discrepancy between FastIn-
dep and the branch and bound results is largest for small
connectivities.

Results on real data
FastIndep has been used for finding unlinked markers
in data sets with very complex Linkage Disequilibrium
patterns such as [17] where the extent of Linkage Disequi-
lbrium in the ancestral populations varies so much that
there is no easy way to use map information alone to select
a set of independent markers. Retaining all the markers in
[17] for analyzing population stratification along the lines
of STRUCTURE [18] leads to poor convergence, however
the use of a maximal independent set of markers selected
along the lines of [8] leads to much better results because
the algorithm in [8] ignores map information in selecting
markers. As an added feature, the randomized nature of
the algorithm permits the generation of multiple differ-
ent sets of markers which can be successively used in the
analysis of population stratification to ensure that the final
results are independent of the choice of the set of markers;
this procedure has been followed in [17].
FastIndep was applied on a genetic coancestry matrix

estimated in a real cattle population. Molecular coancesty
was obtained using the methods of [19] utilizing geno-
types of 4057 animals with information available for 17
microsatellites that are normally used for parentage ver-
ification and parental assignment. These animals are the
offspring of 2605 and 108 distinct dams and sires, respec-
tively. Therefore, there are two dominant types of struc-
tures, full-sib and half-sib families are present in the data
set. The distribution of coancestry values (Table 5 and
Figure 1) ranged from 0.0147 to 0.7353 which is to be
expected because as realized by [20] there are variations
in the molecular relationship between pairs of individual
having the same pedigree relationship. The other aspect
that could be observed in this data was that the distribu-
tion ofmolecular coancestry values did not show a smooth
pattern which is also in agreement with the presence of a
structure in the population.
The algorithm was run 1000 times using 7 thresholds

corresponding to graphs with 4057 nodes and connectivi-
ties ranging from 7.29× 10−7 to 0.999. On a laptop with a
2.3GHz processor, 4GB of RAM running MacOS and gcc

Table 5 Quantiles of data set 1

Minimum 25% Median 75% Maximum

0.0147 0.2353 0.2794 0.3235 0.7353

Quantile Distribution of coancestry values of the cattle data set.

Coancestry Values
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Figure 1 Histogram of Coancestry Values. Histogram of
Coancestry Values of the Cattle Population.

version 4.2.1 the total running time was 533.836 seconds,
307.413 seconds were needed for one graph with connec-
tivity 0.00142 and 1600 singletons, animals unrelated to
all others. The distribution of maximal independent set
sizes is shown in Table 6 for those thresholds for which
there was substantial variation in the size of the maximal
independent sets found.
As an additional test on real data we have selected 5000

markers at random from the snps.10 dataset of the Bio-
conductor [21] snpStats package [22]. Thesemarkers have
been selected after weakly filtering all markers present for
a threshold in Minor Allele frequency (> 0.05) and Hardy
Weinberg Disequilibrium (z2HWE < 200) . The linkage dis-
equilibrium matrix between these markers was obtained
using the methods in snpStats and FastIndep was used to
find independent markers. A threshold value of r2 of 0.01
was used and the distribution in sizes of maximal inde-
pendent sets is shown in Table 7. The choice of threshold
was motivated by the fact that r2 is given by χ2

(2n)
, where

the number of individuals n is 1000, leading to a signifi-
cance threshold of 7.7×10−6. The test statistic is choosen
to be higher than those usually considered for χ2 tests on

Table 6 Maximal independent set size distribution

Connectivity Minimum 25% Median 75% Maximum

0.899 3 5 5 6 8

0.346 40 48 50 52 76

0.0328 611 654 664 672 846

0.00142 2697 2740 2751 2762 2907

0.0000679 3854 3870 3874 3878 3895

Quantile Distribution of Maximal Independent Set Sizes of the cattle data set.
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Table 7 Maximal independent set size distribution

Minimum 25% Median 75% Maximum

184 198 202 206 234

Quantile Distribution of Maximal Independent Set Sizes from LDmatrix.

account of the large number of tests performed. The con-
nectivity of the graph with this threshold is 0.27, which
is much larger than the largest value of 0.03 reported in
[15]. A less stringent significance threshold would lead to
an even lower threshold value for r2 and a larger connec-
tivity. Thus some of the applications for which FastIndep
is designed give rise to graphs which have a very different
structure from those discussed in [15]. However as men-
tioned earlier, identifying unrelated individuals among
the subjects in a genetic association analysis study may
require analyzing very much sparser graphs.
It is interesting to note that the connectivity of the graph

arising from the LD matrix is in the regime where the
discrepancy between the size of the largest maximal inde-
pendent set found by FastIndep and exact answer may be
small judging by the results in Table 4. This is consistent
with the results in [17] where the LDmatrix of a small sub-
set of markers was used to check the discrepancy between
the largest independent set found by FastIndep and the
exact answer; the discrepancy was found to be small.

Conclusions
We have introduced FastIndep, a stochastic heuristic for
finding maximal independent sets on large undirected
graphs. The results presented in this paper indicate that
FastIndep provides an efficient and competitive heuris-
tic for generating maximal independent sets even for
graphs with thousands of nodes, sizes which can eas-
ily arise in modern genetic analyses. This is a valuable
feature when selecting unrelated individuals or unrelated
markers for analyzing population stratification. Indeed,
modern biobanks may contain many tens of thousands
of samples, so efficiently identifying unrelated samples
in such datasets is crucial. Furthermore the capability of
FastIndep to find multiple solutions with the same cardi-
nality may shed light on the existence of multiple maximal
independent sets which deterministic heuristics may fail
to uncover. We have also argued that this capability of
finding multiple maximal independent subsets provides a
means for cross checking results obtained in the analysis
of population stratification. Since the algorithm in FastIn-
dep is heuristic, there is no guarentee that the set of largest
cardinality found is themaximum independent set, or that
the algorithm has discovered all distinct maximum inde-
pendent sets. If there is some doubt, the program can
be allowed to run more times in order to better explore
the graph structure. Comparison with exact algorithms on

smaller data sets suggest the discrepancy between the size
of the largest maximal independent set found by FastIn-
dep and size of the maximum independent set is largest
when connectivities are small, i.e. for sparse graphs.
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