Musayeva et al. Source Code for Biology and Medicine 2014, 9:5
http://www.scfbm.org/content/9/1/5

SOURCE CODE FOR
BIOLOGY AND MEDICINE

BRIEF REPORTS Open Access

PFClust: an optimised implementation of a
parameter-free clustering algorithm

Khadija Musayeva', Tristan Henderson', John BO Mitchell* and Lazaros Mavridis®”

Abstract

considerably faster than the original.

Keywords: Clustering, Cluster analysis, Number of clusters

Background: A well-known problem in cluster analysis is finding an optimal number of clusters reflecting the inherent
structure of the data. PFClust is a partitioning-based clustering algorithm capable, unlike many widely-used clustering
algorithms, of automatically proposing an optimal number of clusters for the data.

Results: The results of tests on various types of data showed that PFClust can discover clusters of arbitrary shapes, sizes
and densities. The previous implementation of the algorithm had already been successfully used to cluster large
macromolecular structures and small druglike compounds. We have greatly improved the algorithm by a more efficient
implementation, which enables PFClust to process large data sets acceptably fast.

Conclusions: In this paper we present a new optimized implementation of the PFClust algorithm that runs

Introduction

Cluster analysis [1] comprises methods designed to find
structure in a dataset. Data can be divided into clusters
that help us understand the problem domain, inform on-
going investigation, or form input for other data analysis
techniques. Clustering methods [2-7] attempt to find such
clusters based only on the known relationships between
the data objects. This distinguishes them from supervised
data analysis approaches, such as classification methods
[8] that are provided with right and wrong answers to
guide their data analysis. One of the main challenges in-
troduced by the lack of class labels is determining an opti-
mal number of clusters that reflect the inherent structure
present in the data. Exhaustive cluster enumeration be-
comes impractical as the size and dimensionality of the
data grow. We have developed a novel clustering tech-
nique called PFClust [9] that automatically discovers an
optimum partitioning of the data without requiring prior
knowledge of the number of clusters. PFClust is also im-
mune to the enumeration problem introduced by high-
dimensional data, since it relies on a similarity matrix.

* Correspondence: lazaros.mavridis.m@gmail.com

EaStCHEM School of Chemistry and Biomedical Sciences Research Complex,
University of St Andrews, North Haugh, St Andrews, Scotland KY16 9ST, UK
Full list of author information is available at the end of the article

(BioMVed Central

Here we give a brief overview of the algorithm and its ap-
plications, and present a new efficient implementation.

PFClust

PFClust is based on the idea that each cluster can be repre-
sented as a non-predetermined distribution of the intra-
cluster similarities of its members. The algorithm partitions
a dataset into clusters that share some common attributes,
such as their minimum expectation value and variance of
intra-cluster similarity. It is an agglomerative algorithm,
starting with separated objects and progressively joining
them together to form clusters. The algorithm attempts
clustering using 20 threshold values, chosen using a ran-
dom sampling technique, and then uses the Silhouette
width to select which of the clusterings best describes the
input dataset.

Method

PEClust consists of two steps: threshold estimation and
clustering. The threshold estimation procedure randomly
splits the given dataset into clusters 1000 times and re-
cords the expectation value of the intra-cluster similarities
between members of the same cluster. Twenty threshold
values from the top 5% of the distribution of mean intra-
cluster similarities are selected as a representative range of
possible thresholds, and are fed into the subsequent

© 2014 Musayeva et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.

mailto:lazaros.mavridis.lm@gmail.com
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Musayeva et al. Source Code for Biology and Medicine 2014, 9:5
http://www.scfbm.org/content/9/1/5

clustering procedure. The clustering step of the algorithm
is computationally more intensive than the threshold esti-
mation step, and its complexity is O(ki’), where k is the
number of clusters and # is the number of elements in the
dataset. This is also the overall complexity of the PFClust
algorithm.

Without changing the computational complexity of
the algorithm we have re-implemented it in the same
programming language as the original (Java) with a care-
ful selection of data types and appropriate bookkeeping,
as the majority of operations are performed inside loops
and involve intensive data structure manipulation. We
have also taken advantage of the independence of the 20
iterations of the clustering procedure and executed them
in parallel.

Page 2 of 4

Performance evaluation

We compare the performance of the original [9] and
new PFClust implementations by measuring execution
time on the following configuration:

e Hardware: 2.2 GHz Intel(R) Core(TM) i5-3470S
CPU @ 2.90 GHz, 8.00 GB RAM

e Operating system: Scientific Linux release 6.3
(Carbon)

e JVM: 1.6.0_45-b06

The running times of each step of the PFClust algo-
rithm (threshold estimation, clustering, and the main it-
eration that combines these steps) have been evaluated
separately. Each step and the main iteration were

Old - Randomization Old - Clustering Old - Total
o
S o
2 O o 8] q
@ 8
4 = &
o
e o 8
o Q] Q
red S 3
g° ? o 3
(%)) T n 8 i s 38
S = 2 ~ o |
o S) 2 S
£ 37 € o E e
- F 8-
4 < ° S .
o (=3
2 ¢ g - 3
S - &
Vo)
cwe® cme® om0
T T T T T T T T T T T T T T T
1000 3000 5000 1000 3000 5000 1000 3000 5000
Size (Data Points) Size (Data Points) Size (Data Points)
New - Randomization New - Clustering New - Total
=
o
3 4
© - - 8 |
o
9 = —~
é] g 8- g s
® Py 9o ¥
£ <« E E
'_
2 g
(s}
o A
o o o 1
T T T T T T T T T T T T T T T
1000 3000 5000 1000 3000 5000 1000 3000 5000
Size (Data Points) Size (Data Points) Size (Data Points)
Figure 1 Execution times. Comparison of the execution times between the original (black, top row) and new (grey, bottom row)
implementations, averaged over the seven datasets from [9]. The different steps of the algorithm (Randomization, Clustering and Total Execution
time) are shown from left to right. The combined process of randomization and clustering has to be run four times (or occasionally more [9]), the
totals given here include these repetitions.

Musayeva et al. Source Code for Biology and Medicine 2014, 9:5
http://www.scfbm.org/content/9/1/5

executed 10 times, and average run times were obtained.
The first step of the algorithm, involving random number
generation, was initialized with the same seed in both
implementations to keep the number of calculations ap-
proximately constant. The clustering was executed with the
same set of threshold values for each dataset in both pro-
grams. The main iteration carried out the randomization
step with the same seed and the clustering procedure with
the same thresholds.

The performance improvement of the new implementa-
tion is primarily due to the representation of the similarity
matrix and cluster objects. The old implementation used
string objects as row and column names and looked up
values in the similarity matrix based on these names. The
names were stored in a vector, and searching for an elem-
ent in a vector data type is O(n) where n is the number of
elements. Many operations involved two nested loops to
search for the corresponding row and column names,
which resulted in O(#%) behaviour. The cluster objects in
the old implementation were also backed by vectors of
strings and involved intensive computations. There was an
additional performance overhead related to synchronization
of vectors, producing an overall performance bottleneck.
The new implementation utilizes a two dimensional array
of primitives to represent the similarity matrix and an
ArrayList data type to represent cluster objects. The values
are retrieved from the array or ArrayList based on the
index, a constant time operation. Unlike the old implemen-
tation, the new code utilizes bookkeeping with HashSet and
ArrayList data types, where applicable, to decrease the
number of operations inside the loops. In the threshold es-
timation step, the data are now sorted before retrieving the
required values from the array, whereas the values were se-
lected in a brute-force fashion in the old implementation.

The evaluation results (Figure 1) show that the execu-
tion times are greatly improved. The clusterings result-
ing from the two implementations agree closely, with a
very high average Rand Index [10] of 0.985 over the
seven datasets from [9].

Applications

The previous implementation has already been success-
fully used for biologically related problems with very
promising results [9]. A set of protein domains taken from
CATH [11] were clustered using a spherical polar Fourier
shape-based representation [12,13]. PFClust proposed 11
protein families and one singleton domain, whereas CATH
clusters them into 11 families. While CATH superfamilies
are based on protein structures that share a common fold,
structures in the same superfamily might differ consider-
ably [13]. Hence, approaches like PEClust could be used to
refine the current families and to identify interesting out-
liers or problematic cases.

Page 3 of 4

PFClust has also been successfully used to cluster a large
number of small molecular structures [14]. ChREMBL [15]
holds information on over 1,000,000 compounds and
groups them into families according to their experimental
bioactivities. These families were individually clustered
using PFClust to create “refined” families which signifi-
cantly improved the precision of our protein target
predictions.

Conclusion

An efficient implementation of PFClust enabled us to run
the program on all our synthetic datasets [9] acceptably
fast. It processes the largest data set (5000 2D Vectors) in
minutes, while the original implementation took several
days. This new implementation can be now used effectively,
not only for small datasets (< 1500) as previously shown,
but also for larger ones (= 5000).

Competing interests
The authors have received funding from WADA. Other than this sponsorship,
the authors declare no conflict of interest.

Authors’ contributions

KM developed the software. KM and LM designed the software. LM
conceived the original idea. TH, JBOM and LM supervised the project. All
authors participated in the drafting of the manuscript. All authors have read
and approved the final manuscript.

Acknowledgements

This work was supported by the World Anti-Doping Agency and the Scottish
Universities Life Sciences Alliance.

Availability: http://chemistry.st-andrews.ac.uk/staff/jpom/group/PFClusthtml
Contact: lazaros.mavridis!m@gmail.com

Author details

'School of Computer Science, University of St Andrews, North Haugh,
St Andrews, Scotland KY16 9SX, UK. “EaStCHEM School of Chemistry and
Biomedical Sciences Research Complex, University of St Andrews, North
Haugh, St Andrews, Scotland KY16 9ST, UK.

Received: 18 September 2013 Accepted: 28 January 2014
Published: 4 February 2014

References

1. Jain AK, Murty MN, Flynn PJ: Data clustering: a review. ACM Comput Surv
1999, 31:264-323.

2. Lance BGN, Williams WT: A general theory of classificatory sorting
strategies 1: hierarchical systems. Comput J 1967, 9:373-380.

3. Jain AK: Data clustering: 50 years beyond K-means. Pattern Recogn Lett
2010, 31:651-666.

4. Ester M, Kriegel HP, Sander J, Xu X: A density-based algorithm for discovering
clusters in large spatial databases with noise. Proc 2nd Int Conf Know! Discov
Data Min 1996, KDD-96:226-231.

5. Wei C: Empirical comparison of fast clustering algorithms for large data
sets. Expert Syst Appl 2003, 24:351-363.

6. Fraley C, Raftery AE: Model-based clustering, discriminant analysis, and
density estimation. J Am Stat Assoc 2002, 97:611-631.

7. Kaufman L, Rousseeuw PJ: Finding Groups in Data: An Introduction to Cluster
Analysis. New York: Wiley; 1990.

8. Finley T, Joachims T: Supervised clustering with support vector machines.
In ICML '05 Proceedings of the 22nd International Conference on Machine
Learning; 2005:217-224.

9. Mavridis L, Nath N, Mitchell JBO: PFClust: a novel parameter free
clustering algorithm. BMC Bioinformatics 2013, 14:213.

10. Rand WM: Objective criteria for the evaluation of clustering methods.

J Am Stat Assoc 1971, 66:846-850.

http://chemistry.st-andrews.ac.uk/staff/jbom/group/PFClust.html

Musayeva et al. Source Code for Biology and Medicine 2014, 9:5
http://www.scfbm.org/content/9/1/5

Cuff AL, Sillitoe |, Lewis T, Redfern OC, Garratt R, Thornton J, Orengo CA:
The CATH classification revisited-architectures reviewed and new ways
to characterize structural divergence in superfamilies. Nucleic Acids Res
2009, 37:D310-D314.

Mavridis L, Ritchie DW: 3D-Blast: 3D protein structure alignment,

comparison, and classification using spherical polar Fourier correlations.

Pac Symp Biocomput 2010, 2010:281-292.

Mavridis L, Ghoorah AW, Venkatraman V, Ritchie DW: Representing and
comparing protein folds and fold families using three-dimensional
shape-density representations. Proteins: Struct, Funct Bioinform 2011,
80:530-545.

Mavridis L, Mitchell JBO: Predicting the protein targets for athletic
performance-enhancing substances. J Cheminform 2013, 5:31.

Gaulton A, Bellis LJ, Bento PA, Chambers J, Davies M, Hersey A, Light Y,
McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP: ChEMBL:

a large-scale bioactivity database for drug discovery. Nucleic Acids Res
2012, 40:D1100-D1107.

doi:10.1186/1751-0473-9-5

Cite this article as: Musayeva et al.: PFClust: an optimised
implementation of a parameter-free clustering algorithm. Source Code
for Biology and Medicine 2014 9:5.

Page 4 of 4

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BiolVied Central

	Abstract
	Background
	Results
	Conclusions

	Introduction
	PFClust
	Method
	Performance evaluation
	Applications
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

