
Campos et al. Source Code for Biology and Medicine 2014, 9:1
http://www.scfbm.org/content/9/1/1
SOFTWARE REVIEW Open Access
TrigNER: automatically optimized biomedical
event trigger recognition on scientific documents
David Campos1*†, Quoc-Chinh Bui2†, Sérgio Matos1† and José Luís Oliveira1†
Abstract

Background: Cellular events play a central role in the understanding of biological processes and functions,
providing insight on both physiological and pathogenesis mechanisms. Automatic extraction of mentions of such
events from the literature represents an important contribution to the progress of the biomedical domain, allowing
faster updating of existing knowledge. The identification of trigger words indicating an event is a very important
step in the event extraction pipeline, since the following task(s) rely on its output. This step presents various complex
and unsolved challenges, namely the selection of informative features, the representation of the textual context, and
the selection of a specific event type for a trigger word given this context.

Results: We propose TrigNER, a machine learning-based solution for biomedical event trigger recognition, which takes
advantage of Conditional Random Fields (CRFs) with a high-end feature set, including linguistic-based, orthographic,
morphological, local context and dependency parsing features. Additionally, a completely configurable algorithm is
used to automatically optimize the feature set and training parameters for each event type. Thus, it automatically selects
the features that have a positive contribution and automatically optimizes the CRF model order, n-grams sizes, vertex
information and maximum hops for dependency parsing features. The final output consists of various CRF models, each
one optimized to the linguistic characteristics of each event type.

Conclusions: TrigNER was tested in the BioNLP 2009 shared task corpus, achieving a total F-measure of 62.7 and
outperforming existing solutions on various event trigger types, namely gene expression, transcription, protein catabolism,
phosphorylation and binding. The proposed solution allows researchers to easily apply complex and optimized
techniques in the recognition of biomedical event triggers, making its application a simple routine task. We believe
this work is an important contribution to the biomedical text mining community, contributing to improved and
faster event recognition on scientific articles, and consequent hypothesis generation and knowledge discovery.
This solution is freely available as open source at http://bioinformatics.ua.pt/trigner.
Background
A growing amount of biomedical data is continuously be-
ing produced, resulting largely from the widespread appli-
cation of high-throughput techniques, such as gene and
protein analysis. This growth is accompanied by a corre-
sponding increase of textual information, in the form of
articles, books, and technical reports. In order to organize
and manage these data, several manual curation efforts
have been set up to identify entities (e.g., genes and pro-
teins), their interactions (e.g., protein-protein) and events
(e.g., gene transcription and regulation). The extracted
* Correspondence: david.campos@ua.pt
†Equal contributors
1IEETA/DETI, University of Aveiro, 3810-193, Aveiro, Portugal
Full list of author information is available at the end of the article

© 2014 Campos et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
waiver (http://creativecommons.org/publicdom
stated.
information is then stored in structured knowledge re-
sources, such as Gene Ontology [1] and Swiss-Prot [2].
However, manual curation of large quantities of data is a
very demanding and expensive task, being difficult to keep
these databases up-to-date. These factors have naturally
led to increasing interest in the application of text mining
(TM) systems to help perform those tasks.
Biomolecular events such as gene transcription, pro-

tein binding or cell cycle regulation, play a key role in
the interpretation of biological processes and cellular
functions. For instance, a given protein may regulate the
expression of a gene, whose products are in turn in-
volved in some biological process. These events, as well
as their biological significance and impact, are usually
described in the scientific literature, and building up the
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited. The Creative Commons Public Domain Dedication
ain/zero/1.0/) applies to the data made available in this article, unless otherwise

http://bioinformatics.ua.pt/trigner
mailto:david.campos@ua.pt
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 2 of 13
http://www.scfbm.org/content/9/1/1
complex chains of events that compose a biological net-
work is a very demanding and time-consuming task.
Additionally, the yielded knowledge can also be used by
the pharmaceutical industry for both drug discovery and
design, as the identification of proteins involved in key
events might result in the subsequent uncovering of new
drug targets. Thus, automatic event extraction from text
constitutes an important contribution, in order to help
find hidden biological relationships and allow faster up-
dating of existing knowledge.
Textual representation of biological events typically oc-

curs as a relation between a word indicating the event,
which we call the trigger, and one or more arguments,
which may be a biomedical concept or another event. For
instance, Figure 1 contains two different biological events:
1) Gene Expression between the trigger word “expression”
and the protein “interferon regulatory factor 4″; and 2)
Negative Regulation between the trigger “Down-regulation”
and “expression”, representing event 1.
The development of automatic solutions to extract

biological events from scientific documents has been
greatly promoted by the BioNLP shared tasks [3,4],
aimed at the recognition of events particularly focused
on genes and proteins. More recently, the extraction of
events focused on infectious diseases, bacteria and can-
cer genetics were also targeted. In general, the proposed
approaches to event extraction consist of two subse-
quent sub-tasks:

� Trigger recognition: aimed at identifying the chunk
of text that triggers the event and serves as a
predicate;

� Argument recognition: aimed at identifying the
entity and/or event that take part in the event.

Trigger recognition is the first and crucial task of
event recognition, since the following task(s) completely
rely on its output. This was clearly shown by Björne
et al. [5], who stated a drop of more than 20 points in
performance between using predicted and gold standard
triggers. However, trigger recognition presents various
complex and unsolved challenges, namely:

� The same chunk of text may be a trigger word or
not depending on the textual context;

� The same chunk of text may be a trigger of two or
more event types;
Figure 1 Textual representation of a complex biomedical event.
� Triggers of different event types have different
linguistic characteristics;

� Large amount and variety of event types.

Approaches to perform event trigger recognition can be
categorized as being based on rules, dictionary matching
and machine learning. Rule-based approaches apply a set
of manually or automatically generated linguistic rules to
extract trigger words. For instance, Cassillas et al. [6] iden-
tified the most common trigger-based patterns from train-
ing data using lemmas, such as “phosphorylat* + of +
PROTEIN”, where “phosphorylat*” represents the trigger.
Regarding dictionary-based solutions, developers need to
collect trigger words for each event type, in order to build
a focused knowledge resource, i.e., dictionary. In the end,
the words in the dictionary are matched with the text and
accepted as triggers for each event type. However, such
an approach accepts all trigger words without consi-
dering the textual context, possibly producing large
amounts of false positives. To minimize this problem,
manual linguistic rules can be applied, in order to filter
provided triggers and significantly reducing the amount
of false positives. For instance, Minh et al. [7] accepts
only words that are present in specific contexts and
with specific part-of-speech tags, such as “NN/NNS +
of + PROTEIN” and “VBN + PROTEIN”. On the other
hand, Kilicoglu and Bergler [3,4,8] applied statistical
measures based on linguistic features to collect “good”
trigger words from training data.
Machine learning (ML) based solutions use statistical

models focused on recognizing specific words by apply-
ing a feature-based representation of the observed data.
Such an approach aims to minimize various problems of
rule and dictionary-based solutions, namely regarding
context definition. ML-based solutions vary with the
used statistical model and extracted features. Support
Vector Machines (SVMs) are the most commonly used
ML model for this task. For instance, Björne et al. [5,9]
apply SVMs with a complex feature set consisting of
tokens, dependency parsing tree and external resources
to identify event triggers for each input sentence. The
problem of multiple trigger types per chunk of text is
solved through the application of composite labels. Miwa
et al. [6,10] also took advantage of SVMs, but training
two different models: one for trigger-protein (TP-T) re-
lations and another for trigger-trigger (TT-T) relations,
using the output of the TP-T predictor as an input



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 3 of 13
http://www.scfbm.org/content/9/1/1
feature for the TT-T model. Their system employs a
complete feature set based on tokens, local context and
dependency parsing with shortest paths features. On the
other hand, Zhang et al. [7,11] used SVMs with neighbor-
hood hash features to reflect the syntactic structure of the
sentences, in combination with token and sentence-based
features. Finally, Martinez and Baldwin [12] used SVMs in
the perspective of word sense disambiguation (WSD), by
defining a list of target words, i.e., triggers. This solution
also used features based on tokens, context, dependency
parsing and external resources. Besides SVMs, Conditional
Random Fields (CRFs) have also been applied, presenting
state-of-the-art results on sequence tagging problems. For
instance, MacKinlay et al. [13] used CRFs with a feature
set based on token, dependency parsing and context defin-
ition features. Martinez and Baldwin [12] also applied
CRFs using a similar feature set as applied in the WSD ap-
proach. Overall, the results presented so far show that
SVMs offer better performance, but we believe that CRFs
have not yet been properly and deeply explored in the task
of trigger event recognition.
ML-based approaches were the most commonly used

in previous BioNLP event extraction challenges, followed
by dictionary-based systems and rule-based solutions.
Regarding performance behavior, ML-based solutions
present the best results, followed by dictionary matching
approaches. However, current ML-based approaches still
present various limitations, namely:

� The problem of a single chunk of text with multiple
trigger types is not properly and generally solved;

� Current solutions do not consider the
heterogeneous linguistic characteristics of different
event types;

� Feature set selection is typically performed manually;
� Availability of open source solutions is limited;
� Existing solutions are not usually configurable and/

or extendable, limiting their application in different
domains and with different event types.

This article proposes an advanced, open source and high
performance machine learning-based approach for event
trigger recognition, aimed at minimizing the aforemen-
tioned limitations. It takes advantage of a high-end feature
set and is focused on automatic optimization per event
type. Such a method makes the application of complex
trigger recognition techniques a simple routine task, con-
tributing to improved and faster biomedical event re-
cognition. The following section presents the applied
techniques, namely the used feature set and the imple-
mented optimization algorithm. Afterwards, a comparison
of achieved performance results is performed, discussing
the advantages and limitations of the proposed approach.
Finally, some concluding remarks are presented.
Methods
This section presents the applied processing pipeline
and supporting data structure, which will serve as sup-
port to extract linguistic features and train machine-
learning models to automatically recognize triggers.

Processing pipeline
Since a trigger recognition solution must be combined
with other methods to perform event extraction, such a
system must be implemented on top of a modular and
flexible architecture, in order to allow easy integration of
new modules and respective features. Thus, our solution
was developed on top of Neji [14], an open source
framework that provides a modular processing pipeline
for biomedical concept recognition. Neji integrates vari-
ous modules optimized for the biomedical domain, such
as natural language processing (sentence splitting, toke-
nization, lemmatization, part-of-speech tagging, chunk-
ing and dependency parsing) and concept recognition
(dictionaries and machine learning). Popular biomedical
input and output formats are also supported. The pro-
cessing pipeline applied in our system is illustrated on
Figure 2, which contains the following general modules
and steps:

� Reader: read input data and mark the text regions of
interest;

� NLP: perform sentence splitting using LingPipe [15],
and tokenization, lemmatization, part-of-speech
(POS) tagging, chunking and dependency parsing
using a custom version of GDep [16] with optimized
tokenization;

� Concept loader: load relevant concepts;
� Dictionary tagger: perform trigger recognition using

one or multiple previously built dictionaries;
� Machine learning: perform trigger recognition using

one or multiple previously trained models;
� Post-processing: remove false positive trigger names

through rule-based approaches;
� Writer: write the output to an external resource.

Data structure
After reading input data in RAW format and performing
NLP processing, it is fundamental to store relevant lin-
guistic information in a structured manner, in order to
facilitate further processing. Figure 3 illustrates the in-
ternal data representation to support all the information
associated with a corpus. The core components are sen-
tences and tokens, which provide their relative positions
regarding the input text. Chunking output is stored
using the target token positions and a label for the cor-
responding chunk type. Moreover, dependency-parsing
output is stored as an undirected graph, where nodes
are tokens and edges contain labels to describe each



factor 4interferon regulatory

RB HYPH NN IN NN CD NN NN IN JJ NNS .NN JJ

Down - regulation of factor 4 gene expression in leukemic cells .interferon regulatory

Down - regulation of factor 4 gene expression in leukemic cell .interferon regulatory

Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells. Although the bcr-abl translocation has been 
shown to be the causative genetic aberration in chronic myeloid leukemia (CML), there is mounting evidence that the deregulation 
of other genes, such as the transcription factor interferon regulatory factor 4 (IRF-4), is also implicated in the pathogenesis of CML. 
Promoter methylation of CpG target sites or direct deletions/insertions of genes are mechanisms of a reversible or permanent 
silencing of gene expression, respectively.

Down-regulation of interferon regulatory factor 4 gene expression in leukemic cells.

Although the bcr-abl translocation has been shown to be the causative genetic aberration in chronic myeloid leukemia (CML), there 
is mounting evidence that the deregulation of other genes, such as the transcription factor interferon regulatory factor 4 (IRF-4), is 
also implicated in the pathogenesis of CML.

Promoter methylation of CpG target sites or direct deletions/insertions of genes are mechanisms of a reversible or permanent 
silencing of gene expression, respectively.

ADVP O NP PP PP NP ONP

Read input

Sentence splitting

Tokenization

POS tagging

Lemmatization

Chunking

Dependency parsing

Load concepts

Extract features

Trigger recognition

Down - regulation of factor 4 gene expression in leukemic cells .interferon regulatory

VMOD NMOD

NMOD
NMOD

NMOD
NMOD

NMOD
NMOD

OBJ PMOD

NMOD

PMOD

P

Down - regulation of factor 4 gene expression in leukemic cells .interferon regulatory

Down - regulation of gene expression in leukemic cells .

VMOD NMOD

NMOD
NMOD

NMOD
NMOD

NMOD
NMOD

OBJ PMOD

NMOD

PMOD

P

Down - regulation of factor 4 gene expression in leukemic cells .interferon regulatory

TOKEN=regulation
LEMMA= regulation
POS=NN
CHUNK=B-NP
Lowercase
...

Write output T1 Negative_regulation 0 15  Down-regulation
T2 Gene_expression 55 65 expression

Post-processing Down - regulation of factor 4 gene expression in leukemic cells .interferon regulatory

Figure 2 Illustration of the processing pipeline for the sentence “Down-regulation of interferon regulatory factor 4 gene expression in
leukemic cells.”, highlighting the output of linguistic parsing, shortest paths, provided concepts and extracted triggers.

Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 4 of 13
http://www.scfbm.org/content/9/1/1
linguistic dependency. Such graph representation allows
easy traversing of the various dependencies and extract-
ing paths for any given token. The graph implementa-
tion is based on the JGraphT library [17], which contains
methods to simplify path and shortest path construction.
The support for other features and/or information as-

sociated with each token is provided through a map of
keys and values, where a key identifies a type of feature
and the value is the feature itself. However, since each
feature type may contain multiple values, the mapping is
performed between a key and a list of values. This im-
plementation is based on a Multimap from the Guava
library [18]. Thus, since lemmas and part-of-speech tags
are specific to each token, they are provided as features
in the multimap. Moreover, to cope with nested and
intersected concept and trigger annotations, it is import-
ant to integrate a data structure that suits such charac-
teristics in the best and most automated way. This is
achieved through a tree of annotations, which offers
various advantages over typical approaches (e.g., list of
annotations), such as automatic maintenance of struc-
tured annotations and easy identification of ambiguity
problems. The extracted and stored information is also
illustrated on Figure 2.



com.google.common.collect

org.jgrapht

- id: String

Corpus

+ add(Sentence s): void
+ get(int i): Sentence
+ size(): int

- start: int
- end: int

Sentence

+ add(Token t): void
+ get(int i): Token
+ size(): int - text: String

- start: int
- end: int
- index: int

Token

+ add(Feature f): void
+ get(int i): Sentence
+ size(): int

Tree

+ exists(Annotation a): boolean
+ build(Traversal t): Node[0..*]
+ build(int depth): Node[0..*]

- source: String
- id: String
- subgroup: String
- group: String

Annotation

- start: int
- end: int
- score: double

Node

preoder
postorder

Traversal

- index: int
- start: int
- end: int
- tag: ChunkTag

Chunk

+ getBIO(Token t): String

ADJP
ADVP
CONJP
INTJ
LST
NP
PP
PRT
SBAR
VP
UCP
O

ChunkTag

Multimap

UndirectedGraph Graph

0..1

1

*

1

*

1
*

1

0..11

*

1

0..1
1

11 11

0..11

*1

Figure 3 Internal data structure to support a corpus with multiple sentences and associated information, namely tokens, chunks,
dependency parsing graph, concept tree and features.

Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 5 of 13
http://www.scfbm.org/content/9/1/1
Loading concepts
Since the extraction of biomedical events requires previ-
ous annotation of biomedical concepts, we support both
loading and automatically identifying those concepts
in the texts. If manual annotations are available, they
should be provided in A1 format [19] (bottom of figure
Figure 2). On the other hand, dictionary or machine
learning-based approaches can be applied to perform
automatic recognition of such biomedical concepts.

Dictionary matching
When data containing manual annotations of event trig-
gers are unavailable or scarce, training machine learning
models may not be possible. Thus, we also provide the
ability to perform trigger recognition using dictionaries.
Such functionality is achieved by case-insensitive exact
dictionary matching, using deterministic finite automata
(DFA) through a custom version of the dk.brics.auto-
maton library [20]. Dictionaries are provided in TSV
(tab-separated values) files with two fields: identifier and
respective list of names. The responsibility for building
such dictionaries is left to the user.

Machine learning
When ML techniques are applied to trigger recognition,
an algorithm must build a feature and statistic-based
representation of target names from training data, in
order to develop an appropriate response to unseen data.
Such methodologies are commonly categorized as being
supervised or semi-supervised. Semi-supervised solu-
tions use both annotated and unannotated data, in order
to obtain features of the trigger words that are not
present in the annotated data. Specifically for this task,
the use of unannotated data could contribute to a better
abstract learning of triggers. However, the application of
such techniques is computationally heavy and could be
implemented as an extension to an equivalent super-
vised solution. Thus, we decided to follow a supervised
training approach, through the application of Condi-
tional Random Fields (CRFs) [21]. Such a technique pre-
sents various advantages over other methods. Firstly,
CRFs avoid the label bias problem [21], a weakness of
Maximum Entropy Markov Models (MEMMs). Add-
itionally, the conditional and discriminative nature of
CRFs relaxes strong independence assumptions required
to learn the parameters of generative models, such as
Hidden Markov Models (HMMs) [22]. Finally, Support
Vector Machines (SVMs) follow a different approach
and have been shown to deliver high-performance re-
sults. However, training complex SVM models may take
more time.
Conditional Random Fields (CRFs) were first intro-

duced by Lafferty et al. [21]. Assuming that we have an
input sequence of observations (represented by X), and a



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 6 of 13
http://www.scfbm.org/content/9/1/1
state variable that needs to be inferred from the given
observations (represented by Y), a “CRF is a form of un-
directed graphical model that defines a single log-linear
distribution over label sequences (Y) given a particular
observation sequence (X)” [22]. This layout makes it
possible to have efficient algorithms to train models, in
order to learn conditional distributions between Yj and
feature functions from the observable data. To accom-
plish this, it is necessary to determine the probability of
a given label sequence Y, given X. First, the model as-
signs a numerical weight to each feature, and then those
weights are combined to determine the probability of Yj.
Such probability is calculated as follows:

pðyjx; λÞ ¼ 1
Z xð Þ exp

X
j

λjF j y; xð Þ
 !

;

where λj is a parameter to be estimated from train-
ing data and indicates the informativeness of the re-
spective feature, Z(x) is a normalization factor and
Fj y; xð Þ ¼ ∑n

i¼1 f j yi−1; yi; x; ið Þ , where each fj(yi-1, yi,x,i)
is either a state function.
s(yi-1, yi,x,i) or a transition function t(yi-1, yi,x,i) [22].

When considering higher-order models, each label de-
pends on a specific number of o-previous labels. Thus,
the probability will consider not only the previous obser-
vation and its features, but o-previous observations and
features, which produces better model dependencies and
may provide improved results, depending on the target
data and task. However, the training complexity of higher-
order models increases exponentially with the pre-defined
order o.
The support for CRF models is provided through

Gimli [23], an open-source biomedical concept recogni-
tion tool based on the MALLET framework [24] that
provides high-performance results in two well-known
corpora: GENETAG [25] and JNLPBA [26]. Gimli imple-
ments a comprehensive set of features optimized for the
biomedical domain, therefore serving as a good starting
point for trigger recognition.

Feature set
The proposed solution supports a complex and high-end
feature set, extracting features based on tokens, sen-
tences, concepts, dependency parsing trees and external
resources. On top of those, different strategies to model
local context are also provided.

Token
Token-based features intend to capture specific know-
ledge regarding to each token, namely linguistic, ortho-
graphic and morphological characteristics. The most
basic feature is the token text. However, in most cases,
morphological variants of words have similar semantic
interpretations, which can be considered as equivalent.
For this reason, lemmatization is used to group together
inflected forms of a word, so that they can be analyzed
as a single item. On the other hand, it is also possible to
associate each token with a particular grammatical cat-
egory based on its definition and context, a procedure
called part of speech (POS) tagging. Moreover, we also
use chunking, dividing the text into syntactically corre-
lated chunks of words (e.g., noun or verb phrases). The
BIO encoding format is used to properly indicate the be-
ginning and end of each chunk. For instance, consi-
dering two consecutive tokens that constitute a noun
phrase chunk, the tag “B-NP” is associated with the first
token and the tag “I-NP” with the second one. In the
end, each tag is used as a feature of the respective token.
Regarding orthographic features, their purpose is to
capture token formation characteristics, through three
different types of features:

� Capitalization: reflect uppercase and lowercase
characteristics, such as “InitUpp” (token starts with
uppercase character) and “MixCase” (token has both
lowercase and uppercase characters);

� Counting: count the number of uppercase
characters and numbers, and provide token length;

� Symbol: reflect the occurrence of symbol characters,
such as dots, commas and semicolons.

On the other hand, morphological features reflect
common structures and/or sub-sequences of characters
among several tokens, identifying similarities between
distinct triggers. Three different types of morphological
features are considered: suffixes and prefixes, char n-
grams and word shape patterns. Particular prefixes and
suffixes could be used to distinguish trigger names, such as
the 3-character prefix “coe” for the “coexpression” trigger.
A char n-gram is a subsequence of n characters from a
given token, which finds common sub-sequences of charac-
ters in the middle of tokens. Finally, it is also important to
extract the token’s structure, reflecting how letters, digits
and symbols are organized in the token. For instance, the
structure of “Abc:1234” is expressed as “Aaa#1111”.

Sentence
Sentence based features intend to reflect general charac-
teristics of the sentence where the target token is
present. Features are provided to reflect the number of
tokens present on each sentence. Considering an average
number of 25 tokens per sentence, we decided to gener-
ate the following seven clusters: 1) less than 15 tokens;
2) between 15 and 20 tokens; 3) between 20 and 25
tokens; 4) between 25 and 30 tokens; 5) between 30 and
35 tokens; 6) between 35 and 40 tokens; and 7) more
than 40 tokens.



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 7 of 13
http://www.scfbm.org/content/9/1/1
Concepts
These features reflect information regarding the concept
annotations previously provided, such as gene and pro-
tein names. Four different types of concept-based fea-
tures are generated:

� Tags: a tag is provided when the token is part of a
concept name, such as “Concept = Protein”;

� Names: the names of the concepts in the sentence
are also added as features. When the concept name
contains more than one token, it is concatenated
with “_”. For instance, considering the protein in
Figure 2, the feature “CONCEPT_NAME= interferon_
regulatory_factor_4” is added to all the tokens in the
sentence;

� Heads: a feature is added to reflect the head token
of the concept name. For instance, considering the
protein name “interferon regulatory factor 4”
(Figure 2), the feature “CONCEPT_PROTEIN_
HEAD = interferon” is added to all the tokens in the
sentence;

� Counting: a feature is added with the number of
annotations per concept type in the sentence. For
instance, if the sentence containing the token has
two genes and one chemical annotation, the features
“NUM_PROTEIN = 2” and “NUM_CHEMICAL = 1”
are added to each token in the sentence.

External resources
Further optimization can be achieved by adding biomed-
ical knowledge to the feature set. To provide this know-
ledge, dictionaries of specific domain terms and trigger
words are matched in the text and the resulting tags are
used as features. Thus, the tokens that are part of a
matched term contain a feature that reflects such infor-
mation. For instance, if a dictionary of gene expression
triggers is provided, and the token “coexpressed” is
matched, the feature “Trigger = Gene_expression” is
added to the token.

Dependency parsing
The previous features provide a local analysis of the
sentence. To complement these with information about
relations between the tokens of a sentence, we use fea-
tures derived from dependency parsing. First, we con-
sider modifier features that could indicate the presence
of a trigger word. This is done by adding as features of
each token, the lemmas corresponding to each of the
following: verbs for which the token acts as subject;
verbs for which the token acts as object; nouns for
which the token acts as modifier; and the modifiers of
that token.
Features to reflect input and output dependencies are

also added, considering inherent dependency, lemma,
POS and chunk tags. For instance, regarding the sentence
of Figure 2 and the token “regulation”, the following fea-
tures are added:

� Input dependencies:

○ “IN_DEP_LABEL = NMOD”;
○ “IN_DEP_LEMMA = in”;
○ “IN_DEP_POS = PP”;
○ “IN_DEP_CHUNK = PP”;

� Output dependencies:
○ “OUT_DEP_LABEL =OBJ”;
○ “OUT_DEP_LEMMA= −”;
○ “OUT_DEP_POS = HYPH”;
○ “OUT_DEP_CHUNK =O”.

By analyzing the dependency parse graph, we can find
the shortest paths between two different tokens, by ap-
plying the Dijkstra's algorithm [27]. Since biomedical
events and their triggers rely on entity names, it should
be informative to extract features to reflect the relation be-
tween each token and the closest entity name. For in-
stance, as illustrated in Figure 2, the shortest path between
the token “regulation” and the closest entity “interferon
regulatory factor 4”, is “regulation-of-expression-4”. Spe-
cific to shortest paths, we provide a feature to reflect the
shortest distance between the current token and the clos-
est entity name. Again, considering the token “regulation”
on Figure 2, it should contain the feature “SPDistance =
3”, which is the number of hops between the token and
the closest entity.
For both dependency and shortest paths, the following

features are added (examples are based on the tokens
“regulation” and “4” of Figure 2):

� Edge path: path of edge labels between two tokens
(e.g., “NMOD-PMOD-NMOD”);

� Edge type: reflect the type of path based on its size
and first edge label (e.g., “NMOD_3”);

� Vertex path: path of features of tokens (vertexes)
between two tokens (e.g., “regulation-of-expression-
4”, considering lemmas as features);

� Edge n-grams: n-grams of edge labels between two
tokens (e.g., “NMOD_PMOD” and “PMOD_NMOD”,
considering 2-grams);

� Vertex n-grams: n-grams of features of tokens
(vertexes) between two tokens (e.g., “regulation_of”,
“of_expression” and “expression_4”, considering
2-grams and lemmas as features).

Context
Higher-level relations between tokens and extracted fea-
tures can be established through windows or conjunc-
tions of features, reflecting the local context of each
token. Conjunctions consist of creating new features by



Table 1 Pseudo-code of the optimization algorithm

Optimization(D, T, F, O, C, N, H, V)

1) randomly split dataset D into train DT and development DD datasets

2) for each trigger type Ti � T

a) for each feature type Fj � F

i) activate feature Fj on model configuration MCi

ii) call TrainModels with DT, DD, MCi and O

iii) if no improvement, deactivate feature Fj on model
configuration MCi

b) for each context type Cj � C

i) activate context Cj on model configuration MCi

ii) call TrainModels with DT, DD, MCi and O

c) store best performing context on model configuration MCi

d) for each feature with n-grams FNj � FN

i) for each n-grams Nk � N

(1) activate n-gram Nk for feature FNj on model configuration MCi

(2) call TrainModels with DT, DD, MCi and O

ii) store best performing n-gram of feature FNj on model
configuration MCi

e) for each feature with dependency hops FHj � FH

i) for each dependency hop Hk � H

(1) activate hop Hk for feature FHj on model configuration MCi

(2) call TrainModels with DT, DD, MCi and O

ii) store best performing n-gram of feature FNj on model
configuration MCi

f) for each feature with vertex feature type FVj � FV

i) for each vertex feature type Vk � V

(1) activate vertex type Vk for feature FVj on model
configuration MCi

(2) call TrainModels with DT, DD, MCi and O

ii) store best performing vertex type of feature FVj on model
configuration MCi

3) Return MC

Train models (DT, DD, MCi, O)

1) for each Oj � O

a) train model M on dataset DT using MCi

b) get performance of model M on dataset DD

c) store performance and model order if better

2) return better performance and order

Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 8 of 13
http://www.scfbm.org/content/9/1/1
grouping together features of the surrounding tokens.
For instance, considering the token “regulatory” in the
sentence of Figure 2 and a {−1,1} window, the new con-
junction feature “interferon@-1_&_factor@1” is created.
The windows {−3,-1}, {−2,-1}, {−1,0}, {−1,1} and {0,1} are
used with lemmas and POS tags, which have been
shown to provide positive outcomes on biomedical con-
cept recognition [23]. On the other hand, the application
of windows consists of adding selected features from
surrounding tokens, selected following two different in-
terpretations of neighborhood: local and dependency.
Local windows add features of preceding and succeeding
tokens as features of the current token. The offset posi-
tions considered are the same as those applied for con-
junctions, but using token, lemma, POS and chunk
features. Regarding dependency windows, the tokens are
selected following the linguistic dependencies provided
by dependency parsing. For instance, considering the
token “regulation” in the sentence of Figure 2 and a
maximum of 1 hop, features of the tokens “of”, “-” and
“in” would be used. In the end, we consider a maximum
of 3 hops and take the lemma, POS and chunk features
of each token in that neighborhood.

Optimization algorithm
Since triggers for different event types have different
characteristics in terms of textual context and linguistic
construction, we believe that training a CRF model fo-
cused on each event type will deliver improved results in
terms of accuracy and speed. Thus, the optimization
algorithm aims to find the feature set and model param-
eters that better reflect the characteristics of each event
type. The proposed method considers the following
optimization targets:

� Feature set: choose the features that better reflect
the linguistic characteristics of the triggers for a
particular event type.

� Context: choose the technique that provides a
better representation of local context.

� Model orders: choose the model order that
better fits the linguistic characteristics of the
triggers.

� N-grams sizes: find the n-grams size that better
reflects the common sub-structures of the
triggers

� Maximum hops on dependency parsing: choose the
maximum number of hops used to extract dependency
parsing-based features.

� Feature extracted from vertex on dependency
parsing associated features: during the
construction of dependency parsing-based
features, optimize the information used from
each vertex.
Table 1 presents the pseudo-code and processing pipe-
line of the optimization algorithm, assuming the follow-
ing notation:

� D: data set:

○ DT: train data set;
○ DD: development data set;

� M: model;
� MC: model configurations;
� T: trigger types;



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 9 of 13
http://www.scfbm.org/content/9/1/1
� F: feature set;
� O: model orders;
� N: n-grams;
� FN: features that use n-grams;
� C: contexts;
� H: dependency hops;
� FH: features that use dependency hops;
� V: vertex feature type;
� FV: features that use vertex type.

Optimization algorithm arguments (T, F, O, N, C, H) are
entirely configurable, allowing users to easily customize
optimization goals, workflow and complexity. Addition-
ally, default values are assumed unless others are provided.
For instance, considering the array of contexts [None,
Window, Conjunctions], None is considered the default
value until further optimization is performed. The same
approach is applied for n-gram sizes, maximum hops and
vertex features. By analyzing the “TrainModels” method,
which is used on every training task, we can see that a
model is trained for each order, considering the various
model orders o during the entire optimization process. Re-
garding the “Optimization” method, which considers each
trigger type from T, it starts by iteratively choosing the best
feature set from F, followed by the best local context tech-
nique selection from C. Afterwards, alternative optimiza-
tions are performed, choosing the best n-grams size for
each feature in FN, selecting the best maximum number of
hops for each dependency parsing feature in FH, and
choosing the best vertex information for each vertex-
based dependency parsing feature in FV. During this
process, if a feature is not used in the feature set, it is
skipped from further optimization. When the optimiza-
tion process finishes, the final model configurations are
obtained, with optimized feature set and parameters for
each event type. In the end, the final model for each event
type is trained using the obtained model configuration
and the complete train data set, and stored.

Annotation
In order to annotate hundreds of documents using mul-
tiple ML models with different feature sets, we have to
avoid generating the complete feature set for each ML
model. Thus, a strategy must be applied to extract all the
required features at once and filter them per model. To
achieve this, a model configuration that results from the
union of all model configurations is built and used to ex-
tract all the required features. Afterwards, the features are
filtered per model, respecting the optimized requirements
of each model, and the corpus is annotated using these
models. By applying this strategy we considerably reduce
the complexity of annotating a corpus with multiple ML
models, since extracting some complex features may take
considerable amounts of time and computational resources.
Post-processing
Post-processing tasks can be performed to further
optimize and/or filter the identified event triggers. Three
different approaches are implemented, based on:

� Parentheses: if the number of parentheses (round,
square and curly) on each annotation is an odd
number, the annotation is removed since it clearly
indicates a mistake by the ML model;

� Concepts: the trigger annotation is removed if the
sentence does not contain any concept annotation;
Output
The output can be generated in various formats, namely
JSON, XML and A1, the default, which is the official for-
mat for the BioNLP challenges. A sample output is
shown in the bottom of Figure 2, composed of a unique
identifier, the event type, start and end character posi-
tions, and the chunk of text.
Results
This section presents the performance results achieved
on a manually annotated corpus. A detailed comparison
with other existing approaches is performed, and the
annotation and optimization speeds are analyzed.
Corpus
To provide a fair comparison of the achieved performance
results in terms of event trigger recognition, we used an
annotated corpus with manually annotated triggers and
events. As stated before, the BioNLP challenges have
highly promoted the extraction of biomedical events, es-
pecially in the recognition of gene and protein-based
events. Moreover, since the training and development data
sets provided in the first two BioNLP GENIA challenges
(2009 and 2011) are similar, we decided to use the corpus
of the BioNLP 2009 GENIA shared task [28] since more
results were available for comparison. This corpus con-
tains manual event annotations for nine biomedical
events, categorized into three different groups:

� Simple events: gene expression, transcription,
protein catabolism, phosphorylation and localization.

� Binding events: binding.
� Regulation events: regulation, positive regulation and

negative regulation.

The corpus contains training and development parts,
which we used to train the ML models and compare final
performance results, respectively. Table 2 presents a de-
tailed analysis of the corpus parts and the provided man-
ual annotations, namely proteins, events and triggers.



Table 2 Statistics of the training and development data
sets of the BioNLP 2009 GENIA shared task: number of
abstracts, sentences, annotated proteins, events and
triggers

Train Development

Abstracts 800 150

Sentences ≈7449 ≈1450

Proteins 9300 2080

Events 8615 1795

Triggers 7041 1476

Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 10 of 13
http://www.scfbm.org/content/9/1/1
Experiment
Figure 4 illustrates the workflow applied to perform
optimization (1), train the final models (2), and annotate
the development set (3) for evaluation and comparison.
Here we split the training dataset into two parts in order
to train and optimize the system. Moreover, the original
development dataset is used as the test dataset. The
optimization algorithm was executed with the following
input arguments:

� Triggers (T): [Gene_expression, Transcription,
Protein_catabolism, Phosphorylation, Localization,
Binding, Regulation, Positive_regulation,
Negative_regulation];

� Feature set (F): all features;
� Orders (o): [1-3];
� Contexts (c): [None, Window, Dependency Window,

Conjunctions];
� N-grams (N): [2-4], [2,3], [3,4];
� Hops (H): [2,3];
� Vertex types (v): [Lemma, Token, POS, Chunk].

Additional file 1: Table S1 presents the model configu-
rations obtained after running the optimization algo-
rithm. As can be observed, each event type requires a
different feature set, reflecting the heterogeneous lin-
guistic and context characteristics. As expected, simple
Train

Development

Optimization

Train

Development

Model configurations

Perform optimization

1

Figure 4 Illustration of the workflow applied to perform optimization
events require simpler feature sets in comparison to
regulatory events, whose feature sets include more
token-based, concept-based and syntactic information,
in order to properly model the higher complexity associ-
ated with their phrasal structure and linguistic contexts.
Moreover, we also observed that the reduced amount of
examples for some event types, namely protein catabol-
ism, phosphorylation and localization, is also reflected in
the complexity of the feature set, since fewer features
are required to model the lower heterogeneity present in
these fewer cases. By contrast, the feature sets to
recognize gene expression, transcription and binding
events require a considerable amount of context and de-
pendency parsing information. Overall, higher order
CRF models are preferred, with seven out of nine event
trigger types requiring CRFs of order three. This reflects
a strong dependency on accurate sequence prediction,
which we believe is directly associated with the inherent
linguistic complexity of event descriptions. The low im-
pact of local context features was unexpected, since they
provide an important contribution in the case of bio-
medical concept recognition. However, we believe that
this reduced contribution is a consequence of the deeper
context description provided by dependency parsing fea-
tures. Finally, we can observe that shortest path features
have a much more relevant contribution than depend-
ency path features, showing that, as expected, establish-
ing a relation with concept names in the sentence is
fundamental in the recognition of event trigger words.

Evaluation metrics
Since more than 90% of trigger expressions are a single
token, we believe that there is no need to apply fuzzy
matching techniques for evaluation. Thus, only exact
matching is applied, accepting an annotation as correct
only if both left and right sides match. Standard eva-
luation metrics are used to analyze and compare the
achieved results: Precision (the ability of a system to
present only relevant items); Recall (the ability of a
Models
Train

Train

2

Annotate

Annotate

3

Annotated
Development

, train the final models and annotate the development corpus.



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 11 of 13
http://www.scfbm.org/content/9/1/1
system to present all relevant items); and F-measure (the
harmonic mean of precision and recall). These measures
are formulated as follows:

P ¼ TP
TP þ FP

; R ¼ TP
TP þ FN

; F1 ¼ 2⋅
P � R
P þ R

;

where TP is the amount of true positives, FP the number
of false positives and FN the amount of false negatives.
Note that the presented results are micro-averaged,
meaning that a general matrix of TP, FP and FN values
is built from all documents to obtain final precision,
recall and F-measure scores.

Results
Figure 5 details the results of the proposed event trigger
recognition method in the development set of the
BioNLP 2009 GENIA shared task, and compares this
with other existing systems. The data show that our
approach achieves state-of-the-art results, with an F-
measure of 74.5 on simple events and 52.5 on regulatory
events. Overall, it achieves an F-measure of 62.7. Com-
paring with other existing systems, it achieves the best
results on simple events, outperforming other solutions
on gene expression, transcription, protein catabolism,
phosphorylation and binding event triggers. Overall, our
approach presents the second best results, due to the
significant performance differences for regulation and
negative regulation events, on which it is considerably out-
performed by the best performing system. Nonetheless,
the presented results are comparable to the best ones pre-
viously reported for this task and show the positive contri-
bution of a simple automatic optimization approach.
Regarding the application of CRFs, our solution con-

siderably outperforms previous systems, with an overall
difference of more than 6 points of F-measure. This
shows that CRFs are able to provide positive results in
the recognition of event trigger words.
P R F1 P R F1
Gene expression 83.4 76.6 79.9
Transcription 77.4 60.3 67.8
Protein catabolism 95.0 100.0 97.4
Phosphorylation 86.1 77.5 81.6
Localization 76.5 65.0 70.3
Binding 71.6 58.9 64.6
EVT-TOTAL 79.8 69.8 74.5
Regulation 54.4 35.5 43.0
Positive regulation 62.7 50.9 56.2
Negative regulation 53.9 45.1 49.1
REG-TOTAL 59.5 46.9 52.5
TOTAL 69.3 57.3 62.7 65.0 30.2 41.2

Our [11]
CRF CRF

Figure 5 Detailed performance results achieved by the proposed aut
Speed
In order to analyze the applicability of our approach in
large-scale problems, it is important to analyze the an-
notation processing speeds. There are various factors
that add complexity to our system, namely dependency
parsing, feature extraction and annotation with multiple
ML models. However, the applied annotation algorithm
together with multithreaded processing reduces the pro-
cessing times significantly. Considering the complete
processing pipeline presented on Figure 2 and the com-
plexity associated with the previously obtained model
configurations, the 1450 sentences of the development
set of the BioNLP 2009 shared task were annotated in
40 seconds (excluding the time required to load pro-
cessing models) on a machine with 8 processing cores
@ 2.67 GHz and 16GB of RAM and using four process-
ing threads. Thus, our system is able to process more
than 36 sentences/second, corresponding to almost 4 ab-
stracts/second. We believe that these results present a
positive contribution, considering the inherent complex-
ity and obtained performance results.
Regarding the optimization algorithm, this requires

significant computational resources and may take a con-
siderable amount of time, depending on the optimization
algorithm configuration. In our case, which considered a
high variety of complex features and parameters, the
optimization process took almost 24 hours to find the
best model configurations for nine event types. Thus, on
average, about 2.6 hours were necessary to find the best
model configuration for each event type.

Discussion
The solution presented in this article was built thinking on
flexibility and configurability. Its architecture allows easy
inclusion of new functionalities and modules, enabling easy
development of new feature extraction algorithms and its
integration in complex event extraction solutions. Add-
itionally, considering the extracted linguistic information
and its structured storage and access, and the amount of
P R F1 P R F1 P R F1
75.9 77.4 76.7 77.1 77.7 77.4
64.0 61.5 62.7 66.2 66.2 66.2

100.0 84.6 91.7 94.4 89.5 91.9
82.8 70.6 76.2 77.3 85.0 81.0
72.7 61.5 66.7 85.3 75.5 78.4
78.7 52.9 63.3 68.6 53.3 60.0

74.8 70.0 72.3
51.2 25.6 34.1 64.4 48.6 55.4
64.9 42.2 51.2 66.5 54.1 59.7
50.0 23.3 31.8 67.2 52.3 58.8

66.3 52.7 58.7
72.4 46.3 56.5 70.2 52.6 60.1 70.5 60.6 65.2

WSD [10] Turku [3]
CRF CRF-VSM SVM

omatic approach compared with existing state-of-the-art systems.



Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 12 of 13
http://www.scfbm.org/content/9/1/1
already implemented ML features, we believe that our
solution is also a good starting point for the develop-
ment of event extraction systems. Moreover, the ap-
proach and research presented in this article provides a
new perspective of the linguistic and context complexity
associated with each event trigger, providing a better
perception of the associated requirements. This infor-
mation is useful for the implementation of new event
and trigger extraction solutions.
Regarding the optimization algorithm, it was devel-

oped to be completely configurable, allowing developers
to easily specify the feature set, n-grams sizes, model or-
ders and maximum dependency parsing hops. Such
flexibility facilitates adapting the tool to new corpora,
different domains and event triggers. Typically, the de-
velopment of NER or trigger recognition solutions is
performed by manually selecting the feature set and pa-
rameters that provide the best results, which is a very
demanding and time-consuming task. The presented ap-
proach is able to automatically find high-performance
models in just a few hours, which we believe will save
researchers’ time. Since the optimization process only
has to be executed once for any particular corpus, we
consider the presented optimization times acceptable, in
comparison with the time required to manually perform
a similar process. Moreover, considering the variety of
possible biomedical events, as can be seen from the new
tasks emerging in the BioNLP challenges [3,4], we can
argue that the presented automatic optimization ap-
proach is an added value.
As previously shown, the automatic approach proposed

here presents state-of-the-art results in the recognition of
nine heterogeneous event triggers, outperforming existing
solutions on simple event triggers. However, we believe
there is still a margin to improve results on regulation
events, which can be accomplished through the integra-
tion of new features for improved context description. By
comparing the achieved performance results, we also
showed that CRFs are able to perform as well as SVMs in
the recognition of event triggers, considerably outperform-
ing previous CRF-based approaches through appropriate
context definition features. Additionally, our approach also
presents positive annotation processing speeds, enabling
its application in large-scale problems, such as annotating
the entire MEDLINE.

Conclusions
This article presents TrigNER, a new tool for biomedical
event trigger recognition, taking advantage of a flexible
and configurable optimization algorithm that allows the
tool to adapt itself to corpora with different events and
domains while maintaining high-performance results. It
takes advantage of CRFs and feature sets optimized for the
linguistic and context characteristics of each event type.
The application of this automatic optimization algorithm
delivered state-of-the-art performance results on the
BioNLP 2009 shared task corpus with a total F-measure of
62.7 and outperformed existing solutions on various event
trigger types, namely gene expression, transcription, pro-
tein catabolism, phosphorylation and binding.
We believe that TrigNER represents a valuable contri-

bution to the biomedical text mining community, by pro-
viding simplified event trigger recognition. Researchers
can use it to replace or complement non-state-of-the-art
dictionary-based approaches, taking advantage of a com-
plex and high-performance solution and applying it as a
simple and routine task, therefore leveraging their time to
optimize and improve event argument extraction algo-
rithms. Thus, this research work contributes to an im-
proved, grounded and faster development of biomedical
event extraction solutions, leading to the identification of
hidden relations and facilitating knowledge discovery.

Additional file

Additional file 1: Table S1. Detailed description of the model
configurations obtained after running the automatic optimization
algorithm.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
DC and QCB participated in the design and implementation of the tool and
drafted the manuscript. SM and JLO conceived the study, participated in its
coordination and helped to draft the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
We would like to acknowledge Edgar Duarte for the biological background
input. This work was supported by FEDER through the Operational Program
Competitiveness Factors–COMPETE and by National Funds through
FCT–Foundation for Science and Technology, in the context of the projects
FCOMP-01-0124-FEDER-010029 (FCT reference PTDC/EIA-CCO/100541/2008),
FCOMP-01-0124-FEDER-022682 (FCT reference PEst-C/EEI/UI0127/2011) and
Incentivo/EEI/UI0127/2013. S. Matos is funded by the Cloud Thinking project
(QREN Mais Centro program, reference CENTRO-07-ST24-FEDER-002031).

Author details
1IEETA/DETI, University of Aveiro, 3810-193, Aveiro, Portugal. 2Department of
Medical Informatics, Erasmus Medical Centre Rotterdam, Rotterdam,
Netherlands.

Received: 24 September 2013 Accepted: 19 December 2013
Published: 8 January 2014

References
1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: tool for the
unification of biology: the gene ontology consortium. Nat Gen 2000,
25:25.

2. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E,
Martin MJ, Michoud K, O’Donovan C, Phan I, et al: The SWISS-PROT protein
knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res
2003, 31:365.

3. Kim J-D, Ohta T, Pyysalo S, Kano Y, Tsujii J: Overview of BioNLP’09 shared
task on event extraction. In BioNLP Shared Task 2009 Workshop. Boulder,
Colorado, USA: Association for Computational Linguistics; 2009:1–9.

http://www.biomedcentral.com/content/supplementary/1751-0473-9-1-S1.docx


Campos et al. Source Code for Biology and Medicine 2014, 9:1 Page 13 of 13
http://www.scfbm.org/content/9/1/1
4. Kim J-D, Pyysalo S, Ohta T, Bossy R, Nguyen N, Tsujii J: Overview of BioNLP
Shared Task 2011. In Association for Computational Linguistics; 2011.

5. Björne J, Heimonen J, Ginter F, Airola A, Pahikkala T, Salakoski T: Extracting
complex biological events with rich graph-based feature sets. In BioNLP
Shared Task 2009 Workshop. Boulder, Colorado, USA: Association for
Computational Linguistics; 2009:10–18.

6. Casillas A, de Ilarraza AD, Gojenola K, Oronoz M, Rigau G: Using Kybots for
extracting events in biomedical texts. In BioNLP Shared Task 2011
Workshop. Portland, Oregon, USA: Association for Computational Linguistics;
2011:138–142.

7. Le Minh Q, Truong SN, Bao QH: A pattern approach for biomedical event
annotation. In BioNLP Shared Task 2011 Workshop. Stroudsburg, PA, USA:
Association for Computational Linguistics; 2011:149–150.

8. Kilicoglu H, Bergler S: Syntactic dependency based heuristics for biological
event extraction. Boulder, Colorado, USA: Association for Computational
Linguistics; 2009.

9. Björne J, Ginter F, Salakoski T: University of Turku in the BioNLP’11 shared
task. BMC Bioinforma 2012, 13(Suppl 11):S4.

10. Miwa M, Sætre R, Kim J-D, Tsujii J: Event extraction with complex event
classification using rich features. J Bioinform Comput Biol 2010, 8:131–146.

11. Zhang Y, Lin H, Yang Z, Wang J, Li Y: Biomolecular event trigger detection
using neighborhood hash features. J Theor Biol 2013, 318:22–28.

12. Martinez D, Baldwin T: Word sense disambiguation for event trigger word
detection in biomedicine. BMC Bioinforma 2011, 12:S4.

13. MacKinlay A, Martinez D, Baldwin T: Biomedical event annotation with
CRFs and precision grammars. In Workshop on Current Trends in Biomedical
Natural Language Processing: Shared Task. Boulder, Colorado, USA:
Association for Computational Linguistics; 2009:77–85.

14. Campos D, Matos S, Oliveira JL: A modular framework for biomedical
concept recognition. BMC Bioinformatics 2013. 14:281. http://bioinformatics.
ua.pt/neji/.

15. LingPipe: http://alias-i.com/lingpipe/index.html.
16. Sagae K: Dependency parsing and domain adaptation with LR models

and parser ensembles. In Eleventh Conference on Computational Natural
Language Learning. Prague, Czech Republic: Association for Computational
Linguistics; 2007:1044–1050.

17. JGraphT. http://jgrapht.org.
18. Guava: Google Core Libraries for Java. https://code.google.com/p/guava-

libraries/.
19. Standoff format–brat rapid annotation tool: http://brat.nlplab.org/standoff.

html.
20. Finite-state automata and regular expressions for Java: http://www.brics.

dk/automaton/.
21. Lafferty JD, McCallum A, Pereira FCN: Conditional random fields: probabilistic

models for segmenting and labeling sequence data. In International
Conference on Machine Learning. Morgan Kaufmann; 2001:282–289.

22. Wallach HM: Conditional random fields: an introduction. In CIS Technical
Report MS-CIS-04-21. Philadelphia, PA, USA: University of Pennsylvania; 2004:22.

23. Campos D, Matos S, Oliveira JL: Gimli: open source and high-performance
biomedical name recognition. BMC Bioinformatics 2013, 14:54.

24. MALLET: a machine learning for language toolkit: http://mallet.cs.umass.edu.
25. Tanabe L, Xie N, Thom LH, Matten W, Wilbur WJ: GENETAG: a tagged

corpus for gene/protein named entity recognition. BMC Bioinformatics
2005, 6(Suppl 1):S3.

26. Kim J-D, Ohta T, Tsuruoka Y, Tateisi Y, Collier N: Introduction to the
bio-entity recognition task at JNLPBA. In Proceedings of the International
Joint Workshop on Natural Language Processing in Biomedicine and its
Applications. Geneva, Switzerland: Association for Computational Linguistics;
2004:70–75.

27. Dijkstra EW: A note on two problems in connexion with graphs. Numer
Math 1959, 1:269–271.

28. Kim J-D, Wang Y, Takagi T, Yonezawa A: Overview of genia event task in
bionlp shared task 2011. In BioNLP Shared Task 2011 Workshop. Portland,
Oregon, USA: Association for Computational Linguistics; 2011:7–15.

doi:10.1186/1751-0473-9-1
Cite this article as: Campos et al.: TrigNER: automatically optimized
biomedical event trigger recognition on scientific documents. Source
Code for Biology and Medicine 2014 9:1.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://bioinformatics.ua.pt/neji/
http://bioinformatics.ua.pt/neji/
http://alias-i.com/lingpipe/index.html
http://jgrapht.org
https://code.google.com/p/guava-libraries/
https://code.google.com/p/guava-libraries/
http://brat.nlplab.org/standoff.html
http://brat.nlplab.org/standoff.html
http://www.brics.dk/automaton/
http://www.brics.dk/automaton/
http://mallet.cs.umass.edu

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Processing pipeline
	Data structure
	Loading concepts
	Dictionary matching
	Machine learning
	Feature set
	Token
	Sentence
	Concepts
	External resources
	Dependency parsing
	Context
	Optimization algorithm
	Annotation
	Post-processing
	Output

	Results
	Corpus
	Experiment
	Evaluation metrics
	Results
	Speed

	Discussion
	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

