Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3

http://www.scfbm.org/content/8/1/3 SOURCE CODE FOR

SOFTWARE REVIEW Open Access

FCC - An automated rule-based processing
tool for life science data

Simon Barkow-Oesterreicher, Can Tirker and Christian Panse”

BIOLOGY AND MEDICINE

Abstract

Background: Data processing in the bioinformatics field often involves the handling of diverse software programs in
one workflow. The field is lacking a set of standards for file formats so that files have to be processed in different ways
in order to make them compatible to different analysis programs. The problem is that mass spectrometry vendors at
most provide only closed-source Windows libraries to programmatically access their proprietary binary formats. This
prohibits the creation of an efficient and unified tool that fits all processing needs of the users. Therefore, researchers

spectra, add waiting time for the users.

parallel using all available CPU resources.

are spending a significant amount of time using GUI-based conversion and processing programs. Besides the time
needed for manual usage, such programs also can show long running times for processing, because most of them
make use of only a single CPU. In particular, algorithms to enhance data quality, e.g. peak picking or deconvolution of

Results: To automate these processing tasks and let them run continuously without user interaction, we developed
the FGCZ Converter Control (FCC) at the Functional Genomics Center Zurich (FGCZ) core facility. The FCCis a
rule-based system for automated file processing that reduces the operation of diverse programs to a single
configuration task. Using filtering rules for raw data files, the parameters for all tasks can be custom-tailored to the
needs of every single researcher and processing can run automatically and efficiently on any number of servers in

Conclusions: FCC has been used intensively at FGCZ for processing more than hundred thousand mass
spectrometry raw files so far. Since we know that many other research facilities have similar problems, we would like
to report on our tool and the accompanying ideas for an efficient set-up for potential reuse.

Keywords: Computing, Automatization, High-throughput, Data processing

Background

Most bioinformatics workflows involve handling and
computationally demanding processing of raw files. In
spite of strong efforts from standardization committees
like the Proteomics Standards Initiative (PSI) to facilitate
community-driven standardization of file formats (see e.g.
[1]), conversion into compatible file formats is still a major
task in this process. Initial efforts to reverse engineer
the proprietary formats of mass spectrometry vendors to
access the mass spectra directly are underway (e.g. [2])
but are still working on only very few raw data types. An

*Correspondence: cp@fgcz.ethz.ch

Functional Genomics Center Zurich (FGCZ), Swiss Federal Institute of
Technology Zurich (ETHZ) | University of Zurich (UZH), Winterthurerstrasse 190,
CH-8057 Zurich, Switzerland

() BiolVled Central

example for a frequently used file converter is the Prote-
oWizard msconvert tool [3], which can deal with most of
the binary vendor formats (using their provided Windows
libraries) and features a graphical user interface as well as
a command line interface.

At FGCZ, fourteen different mass spectrometers from
three vendors produce between 50 and 100 raw data files
per day that have to be dealt with according to the needs
of FGCZ users in a reproducible fashion. Mass spectrom-
eter raw files are often produced with different device
options, e.g. with different ion fragmentation methods like
ETD or CID. Furthermore, different protein quantification
methods require special converter options. Lastly, new
converter programs are released frequently so that data
have to be converted again with the new versions of the
executables. An example for a new method is the H-Score

© 2013 Barkow-Qesterreicher et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3

http://www.scfbm.org/content/8/1/3

algorithm, a rescoring approach for improved peptide
identification [4]. The introduction of this postprocessing
step has led to a lot of new conversions of already exist-
ing proteomics data sets at FGCZ. A manual handling of
all these different conversion tasks would be cumbersome
and error prone. Another problem comes from the fact
that the conversion programs and libraries are only built
for a single operating system and sometimes do not offer a
graphical user interface. Every user, therefore, would have
to maintain both linux and windows operating systems
and be command line savvy to be able to make use of all
different options.

There exist several integrated systems for proteomics
data management, examples are PRISM [5] or B-Fabric
[6]. These systems are usually designed for the business
use cases of specific research facilities. The FCC system,
on the contrary, is designed to be most flexible to adapt to
specific uses. It can also operate under the hood of a more
general data management system, like we implemented it
in our in-house developed B-Fabric system, to offer one
way of dealing with processing tasks.

FCC features

To overcome the described problems and to automate all
file processing tasks we have developed the FCC system.
We designed it to meet the following requirements:

e Robustness: FCC should handle unexpected
exceptions from executables and from corrupt input
files.

e Maintainability: To allow other developers to quickly
adapt the source code to their needs, the entire
program should consist of less than 500 lines of
readable code.

e Simple configuration: There should be only one
single configuration file that can be edited in a local
directory on any computer. No direct access to the
conversion servers should be necessary for the user.

e Full CPU utilization: All available CPU cores of all
machines should get used in parallel.

e Commercial software licenses should be used most
efficiently for all users.

e Multi platform compatibility: Support for Windows
32Bit, Windows 64Bit, and Linux simultaneously
(note that the provided example files are all Windows
based).

e Customizability: File path filters for project,
instrument, user, time, and regular expression
patterns should allow customized conversion tasks.

e Extensibility: New file matching rules, converter
programs, and converter server can be added
on-the-fly without interruption of the conversion
processes.

Page 2 of 7

e Implementation of workflows: FCC should be able to
deal with multi-level workflows where the output of
one processing can get processed by the next
executable.

Implementation

The design of FCC is inspired by the OpenBSD Stateful
Packet Filter [7]. The equivalent of packets are the input
file candidates on the shared file system that are compared
against the filter rule set. The default is to block processing
and let only files pass that match the defined set of rules
triggering a configured pass action. When a file matches
arule, it gets forwarded to a wrapper script that packages
it together with the execution command of the respective
converter and the necessary processing parameters. Cor-
rectness and error handling of the conversion process lies
in the responsibility of the wrapper code (see Listing 1 as
example).

Listing 1 Example Mirosoft batch script for generating
Mascot Generic Files (mgf) using ProteoWizard
msconvert and the H-score algorithm written in python

rem C:\FGCZ\fcc\fgcz-mgf_H-score-wrapper.bat
rem by Simon Barkow ;sb@fgcz.ethz.ch;, 2012-10-03
rem input: Thermo RAW files

rem output: .mgf files

echo %1

echo %2

“C:\Program Files\ProteoWizard\ProteoWizard

3.0.3860\msconvert.exe” *
_O p—
—mgf "
—filter “peakPicking._true_[2,3]” %1 *
> %2.tmp

thon C:\FGCZ\fcc\Hscorer_single_file.py *
by —massfile C:\FGCZ\fcc\mascgotmasspe};txt .
—tolerance 50 *
—inp %2.tmp ”
—outp %2

del %2.tmp
exit 1

FCC itself consists of a python program and an XML
configuration file. The configuration file is divided into
two parts: (i) the configuration of the converter programs
and (ii) the filtering rules for the candidate files. On every
participating server, FCC monitors the shared file system
and distributes conversion tasks among all available CPU
cores automatically. The servers can run on different oper-
ating systems. The following steps are conducted on every
converter server (see Figure 1): (1) FCC parses the config-
uration file. (2) It crawls the specified shared file location
creating a complete list of candidate files for conversion in
a python data structure. (3) In the next step each file path

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3

http://www.scfbm.org/content/8/1/3

Page 3 of 7

G
A

python fcc.py --dir s:\ --loop --exec

staff Customer
: fcc_config.xml ; : DATA ;
Y
fce.py N~
parsing san & - 83
config file '?
¢ shared storage
a®
. Y
" &4 @i,
crawling (;' [» e
@ T Dropbax gﬁg
matching
converter rules)
|
A4 |
|
execute l

multi process

Figure 1 Flow diagram of FCC. Flow diagram of the FCC system: 1. parse the configuration file, 2. crawl the shared storage space, 3. match file
path filters and converter rules, and 4. execute processing jobs. The customers use mass spectrometers to produce raw data on a shared storage
while the bioinformatics staff is responsible for the FCC configuration in a Subversion version control system.

on that list is tested against the rule set. (4) If a file matches
and the output file does not already exist, the processing is
triggered. An execution command consisting of the path
to the executable, conversion options, and the input and
output file paths is fed to the pool of processors on that
computer. FCC logs successful as well as erroneous results
in a central log file and guarantees that erroneous pro-
cesses will get excluded in the next iteration to avoid an
endless loop of processing attempts of corrupt input files.

Parallelization is implemented with the python mul-
tiprocessing.pool class. The commands get executed as
soon as resources become available. We use the function-
ality of the native python class to mimic a minimalistic
local resource management system avoiding the complex-
ity of larger systems, like the Oracle Grid Engine. After
the conversion is done, the crawling step is started over
to look for new files. A more elegant solution than to
reiterate would be to use a notification service from the
underlying operating system, e.g. the fileSystemWatcher

class of Microsoft .NET or the inotify service on linux.
The problem is that these services are dependent on the
operating system.

The configuration of rules and converters in the XML
config file is normally done using a text editor. In order
to reduce the introduction of errors, we have developed
a simple mac cocoa application for adding new rules (see
Figure 2). This application simplifies configuring new fil-
tering rules and simultaneously checks the validity of the
XML file. The configuration file can be distributed using,
e.g., the Apache Subversion versioning and revision con-
trol system which can be set up to automatically update
all participating computers. Choosing Subversion allows
to save a history of all configuration files with their spe-
cific conversion parameters to be able to reproduce all
conversion tasks at a later point in time. Any system of
picking up the latest configuration would also be suffi-
cient to allow a remote configuration. Examples would be
Dropbox, Google Drive, or an SSH based script.

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3

http://www.scfbm.org/content/8/1/3

Page 4 of 7

FCC_GUI

8006

ConverterlD | 28
Project pl086
Omics Proteomics
User cpanse
Instrument | VELOS_2
Begin Date 20120201
End Date 20991231
Keywords | .*_[tT]est_.*
Config File

load XML config file

Figure 2 FCC GUI. Mac OS X graphical user interface for adding rules to the configuration XML file.

/Users/simon/__svnco/fgcz/fcc/fcc_config.xml

or select | Converter ID v

Submit new rule

Listing 2 shows example FCC configurations that
include the following parameters:

e converterID: identifier to select the converter in
the filtering rules

e converterDir: name of the directory where the
output files are saved

e converterCmd: path to the executable of the
converter

e converterOptions: command-line parameters
for the converter
fromFileExt: file extension of the input file
toFileExt: file extension of the output file
hostname: DNS hostname of the computer where
the converter is installed

Listing 2 Example for FCC processing configuration

< converter
converterID=33
converterDir="mgf__ProteoWizard—H-score’
converterCmd="C:\FGCZ\fcc\fgcz-mgf__H-

score-wrapper.bat’
converterOptions="
fromFileExt="raw’
toFileExt="mgf
hostname="fgcz-v-066">
</converter>

<rule converterID="28’
project="p1086’
omics="Proteomics’

user="cpanse’

instrument="VELOS_2’

beginDate="20120201’

endDate="20991231’

keyword="*_[tT]est_.*">
</rule>

If the executables do not need a commercial license,
they can be distributed together with the configuration
files. If their path is relative to the checkout directory there
is no individual setup necessary. Commercial licenses that
can be bound to specific Hardware addresses have to
be installed individually on every participating server. A
setup without commercial licenses, at least for a part of
the converter programs, is especially useful in a virtual-
ized computer environment where converter servers can
easily be cloned and spawned on demand. Adding an
additional converter server to deal with a high load then
only means to start an additional virtual machine, alter
the hostname, enter the new hostname into a number of
converter configuration lines, and commit the configu-
ration file to the Subversion system. New files matching
these rules will then get automatically processed on the
additional server. A rule-of-thumb for the time point
to spawn a new server is a continuous utilization of
fifty percent.

To use Subversion, a central repository is needed as well
as Subversion clients on all converter servers. On the con-
verter servers a batch script can be set up to automatically
update the checkout directories. To be able to use a service
like Dropbox or Microsoft SkyDrive, the respective clients

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3
http://www.scfbm.org/content/8/1/3

have to be set up to use a common directory for all users
on all converter servers as well as on the user PCs.

Results and discussion

In the following, we describe our set-up at FGCZ. We
run FCC on five 8-core servers, running Windows 64bit,
Windows 32bit, and Linux operating systems. One Win-
dows server is assigned to convert Thermo Velos and
Orbitrap raw files, another for AB Sciex Q-TOF and
TripleTOF wiff files. The third windows server converts
Waters raw files into netCDF files. The fourth Windows
server runs different open source converter programs,
e.g. for mzXML conversion. The linux server handles
in-house developed converter scripts, e.g. for creating
exclusion lists.

The mass spectrometer raw files are organized in a
project-centric way. We have run about 1200 different
projects, yielding 101,000 raw files from fourteen mass
spectrometers over the last ten years, 20,000 alone in
2011, approximately 50 per day (see Table 1 for an
overview of the current status at the FCGZ). The large
number of files makes a consistent and meaningful nam-
ing convention and organisation of the file storage indis-
pensable. Given that the folder structure is organized in
a meaningful hierarchy, it becomes possible to filter the
candidate raw files during the crawling step on the basis
of their file paths. The definition of the filtering rules and
the configuration of the converters has to be adapted to
the individual situation and conventions at other research
facilities. If they do not match the set-up of FGCZ, some
minor alterations have to be done in the python source
code.

At FGCZ, the shared file system for raw files and pro-
cessed files is organized as follows: every project has a
unique identifier. The folder hierarchy then includes the
scientific area (the -omics technology), the name of the
instrument that generated the file, the name of the user
that measured the sample, and the creation date of the file.
At the end the file name can include keywords as descrip-
tion. These keywords can be used for regular expression
filtering.

An example filtering rule is shown in Listing 2. This rule
triggers the converter with the converterID 28, e.g., for
this raw file:

Table 1 The set-up at FGCZ consists of 14 mass
spectrometers and 217 converter rules for 1200 projects

#rules 217
#converters 50
#projects 1200
#instruments 14
#hosts 5

Page 5 of 7

D:\pl086\Proteomics\VELOS 2\cpanse 20120216
\NGlyco_-let7.01_test_ETD_CID.raw

The command on Figure 1 lets FCC run in an endless
loop on every converter server. Alterations to the configu-
ration file will become effective in the next iteration with-
out requiring a restart. The raw files get pushed automat-
ically from the mass spectrometer PC to a spool directory
on a samba share by an external process running on the
instrument PCs. To keep the raw data secure, we created
a special active directory user for FCC and grant only him
write permissions on the spool directory. After processing
is done, the resulting files get automatically synchronized
from the spool directory to a user-accessible read-only
share by a daemon process on the file server. The raw
files reside on the user-accessible archive next to the pro-
cessed files in case users need them for manual processing.
The spool directory gets cleared monthly to prevent long
crawling times.

The FCC configuration at FGCZ defines 217 different
converter rules. There is a set of standard converter rules
defined for every instrument that deals with all files com-
ing from the specific instruments. Additionally, there are
customized rules active for 73 different user projects. We
have investigated the FCC crawling and matching time
(Figure 3) over a six month period and the processing
time for diverse raw files and instruments on a number
of exemplary days (Figure 4). The processing times can
vary largely. As an example, the average time for the Mas-
cot Distiller processing of Thermo Velos raw files is two
hours per file. Although it can spread out to more than
24 hours for exceptional large files (see date 2012-06-14
in Figure 4).

We chose Samba technology for file sharing, because
it provides enough data throughput even for very large
file sizes and provides all necessary security features for
a multi-user environment. On the other hand, it could
also be beneficial to use a web-based sharing service, like
Amazon S3. This would have the advantage that converter
servers can also be set up on another physical location,
e.g. in a compute cloud using services like Amazon EC2,
although the file size of the mass spectrometry raw files
can prohibit such a hybrid set-up.

Since the executables as well as all input and out-
put file extensions are freely configurable, FCC in gen-
eral could also be used for other workflows where data
has to be processed efficiently. An example would be
the task of downsampling and further processing of
high resolution images making full use of todays multi-
core computer systems. The custom regular expressions
in the filter rules, thereby, allow to match the naming
convention of a local file system. For subsequent work-
flow steps one would set up different rules for processes
that take the output files of other processes as input.

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3
http://www.scfbm.org/content/8/1/3

Page 6 of 7

0 200 400 600
| ! | | | |] |
crawling matching
[0)
g fgcz-v-066 ‘UI:]» 7777777 omEpan ILB——PO 00 00
j=
@
T T T T T T T T
0 200 400 600

time [in seconds]

Figure 3 FCC crawling and matching time. The graphic shows the average FCC crawling and matching times over a six month period. The times
are dependant on the number of file candidates, network protocol, network load, and file system type (local or remote).

Although, for more complex workflows it may be advis-
able to use a dedicated workflow system, like KNIME [8],
for example.

For very large set-ups, it could be beneficiary to use a
Grid Engine system instead of running the python multi-
processing library on every converter server. This would

have the advantage that a single FCC process on the grid
engine master server, ideally the file server, could deal with
all the crawling and matching, while the FCC processes on
the nodes would only have to deal with the actual file pro-
cessing. This way matching and crawling would only be
conducted once.

Process time distribution of jobs executed by FCC on daily base.

-1 0 1 2 3 4 5 -1 0 1 2 3 4 5 -1 0 1 2 3 4 5
' 2012-06-30 | 2012-07-01 ‘ 20120702 | 2012-07-03. 2012-07-04 | 2012-07-05.
VELOS_2 °o oo Pt ¢ | - {e} B ‘#ia
VELOS_1 | oo o} R — @ & ao o} e o e e
TSQ_2
TsQ_1
ORBI_2 - T e Pt o
ORBI_1 11-{eh e e e - {e}---p
LTQ_1
LTQFT_1 | 84 files / 225 hours 84 files / 224 hours 29 files / 94 hours 43 files / 130 hours 73 files / 232 hours 53 files / 158 hours 71 files / 204 hours
2012-06-22 2012-06-23 2012-06-24 2012-06-25 2012-06-26 2012-06-27 2012-06-28
VELOS_2 b--et- {Tem oo e ¢ =] T t---pd oo s
VELOS_1 — Tt ° -i--{oTh ¢ et T 1 4~k
TSQ_2 [
TsQ_1 o1
ORBI_2 | owo o ®® [e]) o} Lo} fo}:
ORBI_1 O] e} -{Ce}y
LrQ_1 Lo T H
LTQFT_1 | 51 files / 146 hours 65 files / 190 hours 2files / 7 hours 1 files / NA hours 26 files / 62 hours 288 files / 289 hdurs, 63 files / 174 hours
2012-06-15 2012-06-16 2012-06-17 2012-06-18 2012-06-19 2012-06-20 2012-06-21
VELOS_2 ST T o ek oo Or-mmf- {o T R NN S oo oo e
VELOS_1 R CId RAC »H--k RRICES {oh--1¢ ek
TsQ_2 ¢
TSQ_1
ORBI_2 © 0o oo {& @ ¢ hC3 =@ o1 o e | {0 o}
ORBI_1 oi---- {7t o o l{-{o - a--9} o -}
Lra_1
LTQFT_1 |105 files / 352 hours 39 files / 168 hours 17 files / 77 hours 82 files / 216 hours 159 files / 451 hours 108 files / 390 hours 65 files / 198 hours
2012-06-08 2012-06-09 2012-06-10 2012-06-11 2012-06-12 2012-06-13 2012-06-14
VELOS_2 00 I--r--- e t-{eh b} --{eh: oo -{e #F- @0 i o T
VELOS_1 ° # RO hOd h_H o¢ o R}
TSQ_2 K,
TsQ_1 ¢
oRBL2| © § -l
ORBI_1 ° O] et O] e —
Lra_1
LTQFT_1 | 55 files / 174 hours ¢ 103 files / 341 hours 41 files / 120 hours 69 files / 226 hours 137 files / 483 hours 64 files / 143 hours 18 files / 61 hours

T T
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

T T
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5

time [in seconds log10 scale]
panel.ablines = ¢(0.02, 1, 6, 12, 24, 48)
Figure 4 FCC processing time. The trellis box-plot graphic shows the distribution of the process time of the file conversions and filtering of
different mass spectrometer files. The x-axis is log10 based. The grey lines show the time (1 minute, 1, 6, 12, 24, 48 hours). Each panel shows the data
from a particular day. The red boxes are weekend days. The processing time changes unpredictably with the kind of instrument settings, e.g. the
measurement gradient time, and with the different conversion, the filtering options of the converter programs.

Barkow-Oesterreicher et al. Source Code for Biology and Medicine 2013, 8:3

http://www.scfbm.org/content/8/1/3

Conclusions

FCC streamlines and automates the task of large-scale
customized file processing in bioinformatics workflows.
It utilizes all available compute resources and commer-
cial licenses efficiently and simplifies configuration and
maintenance for life science research facilities.

Availability and requirements

Project name: FGCZ Converter Control (FCC)

Project home page: http://fgcz-data.uzh.ch/public/fec/
Operating system(s): Platform independent for FCC,
Mac OS X for graphical user interface

Programming language: Python 3.2 or higher

Other requirements: Shared file system for raw files,
mechanism for distributing configuration files (e.g Sub-
version, Dropbox, SSH)

License: GNU General Public License GPLv3

Any restrictions to use by non-academics: none

Abbreviations

FGCZ: Functional Genomics Center Zurich; FCC: FGCZ Converter Control; ETD:
Electron-transfer dissociation; CID: Collision-induced dissociation; EC2: Elastic
Compute Cloud; GUI: Graphical User Interface; S3: Amazon Simple Storage
Service; SSH: Secure Shell; DNS: Domain Name System.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions

CP and SB contributed equally to this work. SB drafted the manuscript. SB and
CP developed the software, CT contributed conceptually to its design and led
the integration into the B-Fabric system. All authors have read and approved
the final manuscript.

Acknowledgements

The authors would like to thank Ralph Schlapbach for general support and
Jonas Grossmann for evaluating and testing the system and for making
suggestions for improvement.

Received: 30 October 2012 Accepted: 3 January 2013
Published: 11 January 2013

References

1. Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang
WH, Roempp A, Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N,
Coleman M, Reisinger F, Souda P, Hermjakob H, Binz PA, Deutsch EW:
mzML-a community standard for mass spectrometry data. Mo/ Cell
Proteomics 2011, 10:R110.000133.

2. Selkov G: unfinnigan - Painless extraction of mass spectra from
thermo “raw” files. 2012. [HTTP://code.google.com/p/unfinnigan/]

3. Kessner D, Chambers M, Burke R, Agus D, Mallick P: ProteoWizard: open
source software for rapid proteomics tools development.
Bioinformatics (Oxford, England) 2008, 24(21):2534-2536.

4. Savitski MM, Mathieson T, Becher |, Bantscheff M: H-score, a mass accuracy
driven rescoring approach for improved peptide identification in
modification rich samples. J Proteome Res 2010, 9(11):5511-5516.

5. Kiebel GR, Auberry KJ, Jaitly N, Clark DA, Monroe ME, Peterson ES, Toli¢ N,
Anderson GA, Smith RD: PRISM: A data management system for
high-throughput proteomics. Proteomics 2006, 6(6):1783-1790.

6. Turker C, Stolte E, Joho D, Schlapbach R: B-Fabric: A Data and Application
Integration Framework for Life Sciences Research. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2007. [link.springer.com]

Page 7 of 7

Hartmeier D, Systor AG: Design and performance of the OpenBSD

Stateful packet filter. USENIX 2002 Annu Tech Conf 2002:171-180.

Berthold MR, Cebron N, Dill F, Gabriel TR, Kotter T, Meinl T, Ohl P, Sieb C,

Thiel K, Wiswedel B: KNIME: The Konstanz information Miner. In Studies

in Classification, Data Analysis, and Knowledge Organization (GfKL 2007):
Springer; 2007.

doi:10.1186/1751-0473-8-3

Cite this article as: Barkow-Oesterreicher et al: FCC — An automated rule-
based processing tool for life science data. Source Code for Biology and
Medicine 2013 8:3.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolMed Central

HTTP://code.google.com/p/unfinnigan/
link.springer.com

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	FCC features
	Implementation
	Listing 1 Example Mirosoft batch script for generating Mascot Generic Files (mgf) using ProteoWizard msconvert and the H-score algorithm written in python
	Listing 2 Example for FCC processing configuration

	Results and discussion
	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Author's contributions
	Acknowledgements
	References

