
Wollny et al. Source Code for Biology andMedicine 2013, 8:20
http://www.scfbm.org/content/8/1/20

SOFTWARE REVIEW Open Access

MIA - A free and open source software for gray
scale medical image analysis
Gert Wollny1,3*, Peter Kellman5, María-Jesus Ledesma-Carbayo1,3, Matthew M Skinner2,4,
Jean-Jaques Hublin2 and Thomas Hierl6

Abstract
Background: Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of
many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition
devices, spatial and temporal image resolution increases, and data sets become very large.
Various image processing frameworks exists that make the development of new algorithms easy by using high level
programming languages or visual programming. These frameworks are also accessable to researchers that have no
background or little in software development because they take care of otherwise complex tasks. Specifically, the
management of working memory is taken care of automatically, usually at the price of requiring more it. As a result,
processing large data sets with these tools becomes increasingly difficult on work station class computers.
One alternative to using these high level processing tools is the development of new algorithms in a languages like
C++, that gives the developer full control over how memory is handled, but the resulting workflow for the
prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no
knowledge in software development.
Another alternative is in using command line tools that run image processing tasks, use the hard disk to store
intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual
programming, this approach is still accessable to researchers without a background in computer science. However,
only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide
an clear approach when one wants to shape a new command line tool from a prototype shell script.

Results: The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that
make it possible to run image processing tasks interactively in a command shell and to prototype by using the
according shell scripting language. Since the hard disk becomes the temporal storage memory management is
usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes,
the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design
based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the
requirement to touch or recompile existing code.

Conclusion: In this article, we describe the general design of MIA, a general purpouse framework for gray scale
image processing. We demonstrated the applicability of the software with example applications from three different
research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution
image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic
surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is
a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need
to be processed.

*Correspondence: gw.fossdev@gmail.com
1Biomedical Imaging Technologies, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
3Ciber BBN, Zaragoza, Spain
Full list of author information is available at the end of the article

© 2013 Wollny et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 2 of 20
http://www.scfbm.org/content/8/1/20

Background
Imaging modalities like ultrasound, magnetic resonance
imaging (MRI), computed tomography (CT), positron
emission tomography (PET) make out the bulk of images
used in bio-medical imaging and image processing. Com-
mon to these imaging modalities is that they all provide
gray scale images, and although image fusion steadily
gains importance in image analysis, the focus is still on
processing these gray scale image, albeit only to properly
fuse modalities.
Challenges arise from the ever increasing improvement

of the imaging devices. On one hand, the spatial resolution
is increasing. For instance, in anthropological research
high resolution data sets of teeth that are obtained by
using micro CT (μCT) can easily reach 20GB. Likewise,
in medical research 7-Tesla MR scanners that offer imag-
ing at high resolution with a reasonable acquisition time
are more and more used and will most likely soon find
their way into the clinical routine. On the other hand, the
temporal resolution of data acquisition increases making
it possible to monitor dynamic processes, like the beating
heart, in real time, which also results in large data sets. As
a result, the software that is used to process this data must
handle working memory efficiently.
Image processing frameworks exist that focus on easy

prototyping, like SciLab [1], ImageJ [2], ICY [3], or the
image processing toolbox in Matlab. These frameworks
make it easy to develop new algorithms also for scientists
who have little or no experience in software development.
One of the reasons why these frameworks are easy to
use is that they hide the difficulties of memory manage-
ment, i.e. how and when working memory is allocated,
reused, and released. Without this kind of control the
developer can not specify when memory is to be released,
instead this is taken care of by, e.g., a garbage collector
(cf. e.g. [4]) that usually works asynchronously. In addition,
researchers inexperienced in structured and object ori-
ented programming tend to write code where temporary
variables are kept alive, even though they are no longer
used. Hence, when running algorithms that allocate mem-
ory temporarily, the amount of working memory that is
actually used may vastly exceed the amount of memory
that the algorithm theoretically requires. When working
with large data sets an image processing task may easily
require more memory that is installed in the work station,
resulting in the corresponding program being terminated
by the operating system before it can finish processing the
data. This makes it difficult to implement algorithms that
are supposed to work on large data sets with languages
that use this kind of automatic memory management.
To avoid these problems when developing new algo-

rithms, one can try to prototype by working with small
example data sets, and then translate the prototyped
algorithm to an implementation that gives the developer

full control over memory handling. However, switching
from one programming language used in prototyping to
another in the final implementation puts an additional
burden on the developers and introduces an additional
source for errors.
As a second alternative one can also prototype directly

in a language that gives full control over memory manage-
ment like C or C++, where the programmer can explicitly
decide when to allocate and free memory chunks. Here,
OpenCV [5] that focuses on computer vision tasks in 2D
images, and the insight toolkit (ITK) [6] could be used
as a basis. Especially the latter is very well suited for
bio-medical image processing. It is provided under a per-
missive license, comes with an in-depth documentation,
is backed by a commercial company, Kitware, and enjoys
a large user base. However, various reasons exist why an
alternative to prototyping in C++ by using, e.g., ITKmight
be sought for: Prototyping on a change code - compile -
run basis is very time consuming because compiling C++
code is notoriously slow [7], especially when dealing with
heavily templated code (like in ITK) that requires that the
implementation of most algorithms is provided by includ-
ing C++ header files that need to be processed in each
compilation run, even though they do not change when
the prototype algorithm implemented in the main com-
pilation unit changes. In addition, developing in C++ is
quite challenging for researchers inexperienced in soft-
ware development.
A third option for algorithmic prototyping is to use a

combination of command line tools and a scripting lan-
guage. Here, the hard disk becomes the temporary storage -
a figuratively limitless resource when compared to the
available random access memory (RAM) of a worksta-
tion. A command line tool based prototyping has also the
advantage that the researcher doesn’t need to know soft-
ware development, only a basic understanding of a shell
scripting language is required to facilitate some automa-
tion when developing new algorithms.
Toolkits that support this kind of command line based

programming are e.g. the FMRIB Software Library (FSL)
[8] and Lipsia [9] that are specifically designed for the
analysis of 3D FMRI, MRI and DTI brain imaging data.
Other software tools that may be of interest in this con-
text are elastix [10] and NiftyReg [11] that focus on image
registration only, and NiftySeg [12] that is tailored for
very specific segmentation tasks. Because of their specific
focus, these software packages are not very well suited
as a basis for a general purpose gray scale image pro-
cessing. With ITKTools [13] a set of image processing
command line tools exists that expose ITK functionality,
but their documentation is somewhat limited. In addition,
above toolkits don’t define a clear road for the transi-
tion from the script based prototype to a stand alone
program.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 3 of 20
http://www.scfbm.org/content/8/1/20

Other software for image analysis exist that go beyond
image processing, even provide graphical user interfaces
and the means for visualization, e.g. 3D Slicer [14], the
Medical Imaging Toolkit (MITK) [15], andMeVisLab [16].
Out of these, only 3D Slicer is free software, i.e. its source
code is available and allows redistribution. 3D Slicer is
a platform that provides many means for image pro-
cessing and visualization, and acts as a front end to a
variety of image processing back-ends, to which it inter-
faces either by direct linking of libraries, through plug-ins,
or command line calls to external programs. However, 3D
Slicer also uses python scripting for algorithmic prototyp-
ing with the implications arising from automatic memory
management described above.
Apart from these problems regarding specifics of the

implementation and memory management, it is also of
interest to provide alternatives to widely used implemen-
tations of algorithms in order to assure the reproducibility
of research.

Contribution
With MIA we provide a free and open source software
package written in C++ that strives to solve some of these
challenges: It can be used for prototyping new algorithms
by working interactively on the command line and imple-
ment some automation by using a shell scripting language,
which makes it also accessible to researchers that are not
experienced in software development.
Because in this phase of algorithm development the

hard disk is the temporal storage, memory requirements
are generally a non-issue. For very large data setsMIA also
provides an interface to run certain image processing tasks
out-of-core, i.e. by only keeping a subset of the data in the
working memory.

MIA also provides libraries that can be used to shape
newly created algorithms into new command line tools.
Because a string based interface is used to describe fil-
ters, optimizers, etc., the algorithmic description on the
command line is often very similar to the implementation
in C++ code, making a transition from the former to the
latter easier.
Since the functionality of MIA is mostly provided by

plug-ins and one-purpose command line tools, it can eas-
ily be extended without the need to touch original code.
The reliability and trustworthiness of the library and plug-
in code is ensured by unit-tests [17]. Finally, using C++
as programming language leaves memory management
in the hands of the software developer, and hence, she
can tune the algorithms accordingly when the limit of the
available working memory becomes an issue.
In the following sections, the design and the develop-

ment methodology of MIA are described in more detail.
Examples are given how the software can be used interac-
tively, how the transition from shell script to C++ program
can be achieved, and options are discussed on how the
software can be extended for ones own needs. Finally,
examples of the successful application of the software in
image analysis tasks are discussed and remarks about the
current state and future directions conclude the article.

Implementation
MIA is a general purpose image processing toolbox writ-
ten in C++ that puts its focus on gray scale image process-
ing. It consists of the following main building blocks as
outlined in Figure 1:

1. data types for image processing,
2. specific, task oriented algorithms,

Figure 1 The logical structure of MIA. Library functions and plug-ins are under test to ensure the reliability of the implementation. Command line
tools are provided as logically independent entities that are either only wrappers around library functions or implement complex tasks that require
extra validation.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 4 of 20
http://www.scfbm.org/content/8/1/20

3. plug-ins that provide specific functionality,
4. generic algorithms whose specific workings are

defined at run-time by indicating the appropriate
plug-ins,

5. tests to ensure the correct implementation of most of
above functionality,

6. logging facilities,
7. a command line parser that provide the means for

the automatic creation of the documentation for
command line tools, and

8. command line tools for interactively running image
processing tasks.

In addition to these components that directly form part
of the MIA software, we also provide some add-on tools
which can be used for the visualization of results and basic
manual segmentation tasks.
The functionality of MIA is split into a core library

for basic infrastructure, libraries dedicated to 2D and
3D image processing, and a library for very basic 3D
mesh handling. The generic image processing function-
ality provided includes image registration, image filter-
ing and combination, tools for the creation of synthetic
images and transformations, and image segmentation.
In order to reduce duplication of basic functionality
that is available elsewhere, MIA makes use of exter-
nal libraries for image in- and output, optimization,
Fourier and wavelet transforms, independent component
analysis, and unit testing (cf. Table 1). In a few cases,
freely available code was directly incorporated into the
library [18,19].
In the following, the building blocks of MIA are

discussed in more detail, we will give example code

fragments to illustrate some of the inner workings of the
software, and we briefly discuss the add-on tools.

Data types for image processing
MIA focuses on gray scale image processing, and there-
fore, it supports images with the following pixel/voxel
types: Boolean for binary images and masks, integer val-
ued types (signed and unsigned) of 8, 16, and 32 bits,
(on 64 bit platforms 64 bit integers are also supported),
as well as floating point valued pixels (single and double
precision).
Currently, MIA supports the processing of 2D and 3D

images, and of series of such images. In order to handle
the different pixel types in a way that is mostly transparent
to the application developer, a class hierarchy (Figure 2) is
used that employs an abstract base class C2DImage (the
3d implementation uses an equivalent notation by replac-
ing “2D” by “3D”), and its (shared) pointer type P2DImage.
This abstract base class holds only meta-data but no pixel
data and it provides the interface to query this meta-data
including image size and pixel type.
The actual images make used of the class T2DImage

which is a child class of C2DImage and templated over the
pixel type. Hence, within the code the image data is passed
around by means of the abstract base class and its respec-
tive (shared) pointer type, and only for image processing
the actual pixel type needs to be resolved.
The preferred approach to resolve the specific pixel type

of an image is a callback mechanism that implements the
processing of all possible pixel types by means of a tem-
plated functor (Program 1). This approach can also be
used to provide pixel type specific code paths by using
(partial) template specialization (cf. [20]).

Program 1. If the pixel type is neither known nor one specific pixel type required, the function mia::filter is used to
dispatch the image processing to a functor that implements the filter for all available data types, usually by means of a
template.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 5 of 20
http://www.scfbm.org/content/8/1/20

Table 1 Required software packages

Package Additional information

CMake (≥ 2.8) http://www.cmake.org

C/C++ compiler ANSI compatibility and support for some features of the C++11 standard [35,36] are required. - GNU g++ (≥ 4.6) http://gcc.
gnu.org and clang (≥ 3.2) http://clang.llvm.org are known to work.

GIT (≥ 1.7) GIT - the fast version control system http://git-scm.com/ to download and manage the source code.

BOOST (≥ 1.46.1) The BOOST library http://www.boost.org

CBLAS e.g. ATLAS http://math-atlas.sourceforge.net

GSL (≥ 1.14) The GNU Scientific Library (GSL) http://www.gnu.org/software/gsl

Intel TBB (≥ 3.0) Intel threading building blocks for open source http://threadingbuildingblocks.org

libxml++ (≥ 2.34) The C++ wrapper for the libxml XML parser library libxml++ and all its dependencies, http://libxmlplusplus.sourceforge.net

fftw (≥ 3.0) Fast fourier transformation http://www.fftw.org

In cases where an algorithm only supports one pixel
type, or the actual pixel type is known because of the pre-
ceding processing, dynamic casting can also be used to
resolve the pixel type.
The templated image types (as well as other data con-

tainers) that are implemented in MIA are compatible with
the C++ standard template library (STL) [21] containers,
i.e. they provide the required iterators, access functions,
and type traits to make the application of algorithms pro-
vided by the STL and compatible libraries (e.g. BOOST
[22]) possible.

Filters and pipelines
Most image processing algorithms require the execution
of series of filters that are usually chained, to form a
pipeline, and of course, MIA supports this kind of pro-
cessing from the command line and within the C++ code.
In MIA, filters act as functions, i.e. after initialization

parameters can not be changed. Filters are only implicitly
chained together to form a filtering pipeline based on their
ordering in the appropriate command or function specifi-
cation. Within the application each filter is called in turn,
the obtained result overwrites the original data and is then
passed to the next filter to simulate a pipeline.
To filter images MIA provides two modes of processing:

The basic 2D and 3D filter that process complete images
one at a time, and the first-in first-out filter (FIFOF)
described in more detail in the next section that makes it
possible to interpret a series of n-D images as one (n+1)
image.
Given the comparable small memory footprint of the

filter objects themselves, the memory requirement for a
given filter chain composed of basic filters is effectively
independent of the filter chain length.
To create filter chains that are not linear, i.e. chains

where results of early filtering stages are used as input
in later filter stages, a virtual storage system is imple-
mented (Figure 3) that holds the data in working memory.
By adding, e.g. the tee filter at the appropriate pipeline

position an intermediate result can be stored in the virtual
storage from where it can be retrieved later.

Out-of-core processing
In order to process data sets that would require such
a large amount of memory that they do not fit in the
available working memory, in addition to the basic filter
infrastructure given above, an alternative filter infrastruc-
ture is provided that interprets a series of n-dimensional
images as one (n+1) dimensional image and, hence, makes
it possible to process series of n-D images as if it were one
(n+1)-D image.
Two types of processing may be considered: accumu-

lation and filtering. Accumulation can be implemented
straightforward, since it only requires to load each image
slice of a set, and accumulate the requested quantity, e.g.
a histogram. Filtering, on the other hand is implemented
similar to a first-in first-out buffer that we call a first-in
first-out filter (FIFOF). This approach is - on a very basic
level - comparable to the ITK streaming API; one notable
difference is that with ITK the input image may actually
be one large file and the number of data chunks is defined
by the program, whereas with MIA, the input is always
given as a series of files and the number of data chunks
corresponds to the number of input files.
Like with basic filters these filters can be chained

together, so that different filters can be run one after
another, without writing intermediate results to the hard
disk. The last FIFOF in the chain usually implements the
disk write operation. Apart from the chaining operation,
of the two operations a FIFOF makes visible to the user
one provides the means to push an image slice into the
FIFOF chain and the other to finalize the filtering. Each
FIFOF itself contains a buffer to accumulate and pro-
cess slice data according to the implemented filter. In the
simplest case, this buffer is used to store the number of
n-D slices required to provide the (n+1)-D neighborhood
information needed by the filter. In more advanced cases,
the buffer may also store additional intermediate results.

http://www.cmake.org
http://gcc.gnu.org
http://gcc.gnu.org
http://clang.llvm.org
http://git-scm.com/
http://www.boost.org
http://math-atlas.sourceforge.net
http://www.gnu.org/software/gsl
http://threadingbuildingblocks.org
http://libxmlplusplus.sourceforge.net
http://www.fftw.org

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 6 of 20
http://www.scfbm.org/content/8/1/20

Figure 2 The images are passed around in the code either as references to the abstract base class C2DImage or the corresponding shared
pointer. The actual image data is held within the derived templated class and the resolution of the actual pixel type is only done when the pixel
data needs to be processed.

During the course of the operation of a FIFOF. three
stages can be distinguished:

• First slices are pushed into the FIFOF, until the buffer
contains the minimum number of n-D slices required

to start (n+1)-D filtering. This push operation might
already prepare the input data in some way. For
example, in the (separable) Gaussian filter, a buffer
stores slices that are already filtered in two
dimensions.

Figure 3 Construction of non-linear pipelines by using the tee filter and virtual storage. Note, the virtual storage is located in main memory.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 7 of 20
http://www.scfbm.org/content/8/1/20

• The buffer is then processed to obtain an output slice
that is then pushed further down the chain. In
addition, if the buffer has reached its maximum fill,
the first slice is removed from the buffer, making
room for the next input.

• When no more input is available, the finalize
operation of the FIFOF is executed. It takes care to
run the filtering of the remaining buffer content and
to push its result down the filter chain.

With this filter structure, the requirement on working
memory for a filter chain depends on the filters provided,
and the size of an image slice of the image stack to be
processed. Given an image slice size of w × h, and since
the (n+1)-D filter width is usually small compared to the
image size, the memory requirement of a filter chain can
be expressed as O(wh) and, therefore, independent from
the number of slices to be processed. However, this fil-
ter structure only provides the means to run filters that
process the 3D data in one single pass. This rules out fre-
quency domain filters as well as filters that need to be
solved iteratively, like e.g., anisotropic diffusion.
Note, however, although the basic infrastructure for this

type of processing is independent of the dimension, cur-
rently only filters for the processing of a series of 2D image
as a single 3D image are implemented.

Plug-ins and algorithms
In MIA, dynamically loadable plug-ins provide file in- and
output for most supported data and image types, and the
means to specialize generic algorithms. Plug-ins are mod-
ules that implement the specialization of a certain gener-
alized interface and are loaded during the run-time of a
program. Thereby, they provide an elegant way to extend
the functionality of such a software without touching its
original code base.
An example how to invoke various different plug-ins to

specialize a registration algorithm by invoking the respec-
tive plug-ins (i.e. transformation model, the image simi-
larity measure to be optimized, and which optimization
method should be used) is given in Program 2.

Currently, the following functionality is provided by
plug-ins: data file in- and output, image filters and com-
biners, image similarity measures, transformationmodels,
function minimizers, neighborhood shapes, interpolation
kernels, and interpolation boundary conditions (see also
below, section Overview over available algorithms and fil-
ters). Each type of plug-in is managed by its own plug-in
handler. To avoid superfluous hard disk access that would
result from initializing the same plug-in handler multiple
times, plug-in handlers are implemented using the single-
ton design pattern [24], i.e. only one plug-in handler exists
for a plug-in type during the run-time of the program.
When the plug-in handler is first invoked, the available
plug-ins are loaded and the plug-in list can not be changed
afterward, i.e. no additional plug-ins can be added during
the run-time of the program. However, for command-line
based programs this is usually not a problem.

Command line parser with auto-documentation
Although various implementations of command line
parsing libraries exist (e.g. popt [25], BOOST program
options [26]), they lack the option of generating a cross
referenced documentation of command line tools and
available plug-ins. Therefore, the command line parsing
was implemented from scratch to provide the means of
directly generating objects (filters, cost functions, ...) from
their string based plug-in descriptions, and to generate
an exhaustive description of the according command
line tool in XML format that describes its command line
options and the plug-ins that may be used by the tool.
This output can then be used in two ways: The creation
of documentation and introspection. Incorporated into
the MIA build process is the creation of man pages and a
cross referenced documentation in Docbook format [27]
of the command line tools and plug-ins. The latter is also
used to create a HTML based user reference, i.e. [28].
Since the XML descriptions of the command line tools
and plug-ins provide the introspection that is needed to
automatically form proper calls to MIA programs, they
could also be used to automatically create interfaces to
MIA functionality.

Program 2. Invocation of a non-linear registration of two images moving.png and fixed.png by using (1) a spline based
transformation model with a grid spacing of 5 pixels and penalizing the magnitude of the separate norms of the second
derivative of each of the deformation components [23], (2) minimizing the sum of squared differences, (3) by using L-
BFGS for minimization with a maximum of 200 iterations, and stopping if the absolute change of all transformation
parameters is below 0.001, and (4) writing the result to registered.png.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 8 of 20
http://www.scfbm.org/content/8/1/20

Tests
In order to ensure reliability of the software, all plug-
ins and most algorithms are implemented following the
test driven development (TDD) paradigm [17]. BOOST
test [29] is used as the testing framework. Since plug-
ins provide a very specific functionality that can usually
be tested easily, the build system strongly encourages
the developer to provide the program that implements
the according unit tests. For many algorithms the same
assumption about testing can be made, and hence, unit
tests are provided. However, for some complex algo-
rithms, like e.g. non-linear image registration, or certain
segmentation algorithms the expected result can not eas-
ily be defined, because they depend on many factors,
like which optimization algorithm is used, which param-
eters are defined, and sometimes, algorithms even use
a random component for initialization. In these cases,
sensible unit-testing is impossible and the proof of cor-
rectness of the implementation requires a task specific
validation. Currently, we estimate that approximately 65%
of the library and the plug-in code is covered by unit
tests.

Command line tools
The command line tools that are implemented in MIA
provide the means to run image processing tasks without
the need for software development. This makes MIA also
usable for researchers with no or only a limited experience
in software development.
These tools follow the Unix-philosophy one tool, one

task, i.e. each command line program is designed to run
exactly one type of image processing task. This task may
be as simple as running a series of filters on an image, or
combine two images. In these cases the tools are simple
drivers to the library functionality that is already devel-
oped by using TDD, and it only needs to be ensured that
the parameters are properly passed to the library func-
tions. A command line tool may also comprise a complex
task like running a motion compensation algorithm on
a series of images. Here a full, task specific validation
is required, for example, like it was done in [30-32] for
various motion compensation algorithms.

Below, in section Overview over available algorithms
and filters an overview of the available tools is given.

Add-on tools
The add-on tools that aremaintained in conjunction at the
MIAweb page http://mia.sourceforge.net consist of a soft-
waremiaviewit that is used for basic visualization tasks, a
library mialm, and a volume surface renderer mialmpick
that can also be used to pick landmarks in 3D volume data
sets, and pymia bindings that makes some of the function-
ality available to python and also provide a simple pro-
gram for the manual segmentation of myocardial images.

Using and extendingMIA
The software can be utilized in various ways: The command
line programs can be called to run certain image process-
ing tasks ad-hoc, and one can make use of the library
to create new programs that combine the available image
processing operators. To tackle a certain image processing
task,MIA is designed to accommodate a work-flow for the
development of new algorithms as illustrated in Figure 4.
The command line programs provide a flexible means

for algorithmic prototyping based on interactive exe-
cution of atomic image processing tasks and their
combination in shell scripts. If functionality is missing,
like e.g, a filter, image combiner, or some specific algo-
rithm, the design that is based on the combination of
plug-in and task specific command line tools makes it
easy to add this functionality without touching existing
code. Hence, only little development overhead is required
in the process of prototyping, and no additional testing is
required to ensure that new code does not break existing
functionality.
Once a working prototype algorithm is implemented as

a shell script, moving to a tool written in C++ is made
easy, because the driving feature of most processing done
by using MIA, that is, specifying how the functionality of
certain plug-ins should be invoked, is very similar in both
cases. For example when comparing how the image fil-
ters are specified in a shell script (Program 3) versus in
C++ source code (Program 4), one can see that the filter
descriptions are essentially the same, only the (language
specific) glue code changes.

Program 3. Bash script for the segmentation of the brain from a T1MRI. The values ${...} are user provided parameters.
It would also be possible to run each filter separately, and store the result for algorithmic fine-tuning without the need
to re-do the whole pipeline.

http://mia.sourceforge.net

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 9 of 20
http://www.scfbm.org/content/8/1/20

Program 4. Sketch of a C++ program for the segmentation of the brain from a T1 MRI (The full code can be found
in the file src/3dbrainextractT1.cc of the MIA source code distribtion.) The parameters infile, outfile, wmprob,
thresh, and growshape, may be defined from the command line.

Image processing on the command line
As an example on how the command line tools can be
used to achieve a certain image processing task, a simple
algorithm to peel the skull and skin from a T1 magnetic
resonance image (MRI) will hold forth.
The tools are applied as given in Program 3 with the fol-

lowing objective: First, a 3-class adaptive fuzzy c-means
segmentation is run to correct the B0 gain field [33], and
to obtain a segmentation of the image into background,
white matter, and gray matter (line 1). Then, the proba-
bility image related to the white matter is selected (line
2). Finally, the following filter chain is run to obtain the

masked brain (lines 3–6): An initial white matter mask is
extracted by binarizing the probability image, the mask
is shrunk and small connections are eliminated by run-
ning a morphological erosion. Then connected compo-
nents are labeled and the largest connected component
is selected as the one representing an approximation of
the white brain matter. This approximation of the white
matter is used to initialize a region growing algorithm
on the B0 field corrected image using a given neigh-
borhood shape and intensity threshold to stop region
growing. Alternatively, region growing is stopped, if all
neighboring pixels that are not yet labeled have a higher

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 10 of 20
http://www.scfbm.org/content/8/1/20

Figure 4 Suggested work-flow for tackling new image processing tasks.

intensity value than the according seed pixel. Then, mor-
phological closing and opening are run to eliminate small
holes and smooth the mask boundary, and finally, the
obtained mask is used to extract the brain from the
B0 field corrected image. The parameters infile, outfile,
wmprob, erode_shape, thresh, growshape, close_shape, and
open_shape must be defined by the user in the shell
environment.
For initial prototyping it may be better to run each fil-

ter separately, and store the result on the hard disk, in
order to be able to tune the algorithm without re-applying
the full filter chain. Note, that storing intermediate results
to disk in itself imposes only a limited run-time penalty
if the software is executed on a computer that has suf-
ficient memory to hold all the data in working memory.
Here, at least with Linux, the operating systemwill use this
memory as disk cache and writes to the disk in the back-
ground without the program having to wait until the write
operation is finished [34]. Hence, no run-time penalty is
imposed on the software by the disk in- and output that
goes beyond the operations that are needed to convert the
data to and from the used in- and output file formats.

Translating the shell script into a C++ command line tool
Given successful prototyping, one may then shape the
obtained algorithm into a new command line tool. In the
case of the example given above this is straight-forward

and illustrated in Program 4. Here, lines 1–7 define the
parameters that need to be set from the command line.
Then, the command line options must be created and
parsed (line 9–19).
After loading the image (line 31), the fuzzy c-means seg-

mentation [33] with B0 gain field correction is run (line
22–24). In line 25–26, the gain field corrected image is
used in the internal data pool to make it accessible for
the plug-ins. Then, the white matter probability image is
selected from the fuzzy segmentation class images (line
27). In the next step, the descriptions of the binarize (line
28–29) and region grow filters (line 30–32) are created.
Finally, the filters are applied in the order given in the
run_filters function call, to obtain the masked brain image
from the white matter probability image and the gain field
corrected image (lines 33–37) and the result is saved (line
38). Also note, the function run_filters is implemented as a
variadic template [35,36] that can take an arbitrary num-
ber of parameters, and these parameters may be strings
that described the filters as well as previously created
filters.
In this example, the parameters erode_shape, close_

shape, and open_shape from the shell script example
above have been replaced by fixed values. Also note, that
the specification of filters is very similar in shell scripts
and C++ programs: In both cases, the filters are specified
by string literals or constructed strings. All functionality

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 11 of 20
http://www.scfbm.org/content/8/1/20

in MIA that is provided by plug-ins is invoked by similar
string based descriptions.

Extending the library
The library may be extended in various ways: Firstly, one
may add a plug-in to provide an additional specializa-
tion to an already implemented generic concept, such as
adding a new cost function, filter, or optimizer. Consid-
ering the MIA code base, adding a new plug-in has the
advantage of not being intrusive, i.e. the original code base
will not be touched by doing so. An example on how a
new plug-in is implemented can be found in the on-line
documentation [37].
If new algorithms are to be added that do not fit into

the abstract category provided by an existing plug-in type,
the proposed approach is first to create a new command
line tool that provides the intended functionality, and test
it on appropriate data. Then, after proper testing, the
algorithm may be moved to the core libraries as new
functions and classes, leaving the command line tool as
a skeleton program that handles the command line pars-
ing and just calls the functions that were moved to the
library.
Finally, specialized algorithms may be replaced by

generic versions, moving functionality to plug-ins, and
thereby making it interchangeable. In such a refactoring
step, new generic concepts will be added that provide new
plug-in types with their corresponding handlers and inter-
faces. This task is more intrusive since not only interfaces
may be added to the library but also already available
interfaces may be changed.

Use cases
In this section the usability of MIA for image process-
ing and analysis tasks will be illustrated by presenting
three use cases: Motion compensation in myocardial per-
fusion imaging, out-of-core processing of high resolution
data, and the evaluation of medical treatment. For the
first two use cases the according data sets and scripts to
run the analysis are available for download on the project
web page. Since the data used in the third use case can
not be completely anonymized (i.e. a 3D reconstruction
makes an identification of the patient possible) it will
only be made available on request. As an alternative for
hands on experience with the software we provide the
3D data of a pig head that was surgically altered in two
steps.
All experiments were run on a Gentoo Linux AMD64

workstation, facilitating an AMD Phenom II X6 1035T
Processor, 16 GB of DDR3 RAM (1333 MHz); the soft-
ware was compiled using GNU g++ 4.6.3 and the compiler
flags were set to “-O2 -g -funroll-loops -ftree-vectorize
-march=native -mtune=native -std=c++0x”.

Motion compensation in myocardial perfusion imaging
Perfusion quantification by using first-pass gadolinium-
enhancedmyocardial perfusionmagnetic resonance imag-
ing (MRI) has proved to be a reliable tool for the diag-
nosis of coronary artery disease that leads to reduced
blood flow to the myocardium. A typical imaging pro-
tocol usually acquires images for 60 seconds to cover
the complete first pass and to include some pre-
contrast baseline images. To quantify the blood flow, the
image intensity in the myocardium is tracked over time
(cf. [38,39]).
In order to perform an automatic assessment of the

intensity change over time, no movement should occur
between images taken at different times. Electrocardio-
gram (ECG) triggering is used to ensure that the heart is
always imaged at the same cardiac phase. However, since
the 60 seconds acquisition time span is too long for aver-
age people to hold their breath, breathing movement is
usually present in the image series.
Various methods for automatic motion compensa-

tion based on linear and non-linear registration have
been implemented in MIA [30-32,40,41]. By implement-
ing these methods all in the same general software
framework, a fair comparison has been made possi-
ble, since differentiating factors like the use of differ-
ent programming languages, different implementations
of optimizations algorithms, etc. could be eliminated
(cf. [32]).
As an example consider the motion compensation

applied to a perfusion data set of a patient considered clin-
ically to have a stress perfusion defect that was acquired
free breathing. First-pass contrast-enhanced myocardial
perfusion imaging data sets were acquired and pro-
cessed for one subjects under clinical research proto-
cols approved by the Institutional Review Boards of the
National Heart, Lung, and Blood Institute and Suburban
Hospital. The patients provided written informed con-
sent, and the analysis was approved by the NIH Office
of Human Subject Research. Images were taken in 60
time steps for three slices (at the base, mid, and apical
level). The first two time steps comprise proton density
weighted images that may be used for intensity inhomo-
geneity correction (see, e.g., [42]); however, this intensity
correction is not considered here. The remaining slices
were acquired by using the SR-FLASH protocol. An exam-
ple of the different time steps at the base level is given in
Figure 5.
Motion compensation was achieved by using the ICA

based method described in [32], running motion com-
pensation like given in Program 5. The run-time of the
motion compensation for one slice consisting of 60 frames
took approximately 85s when the registrations were run
serially, and 25s when run parallelized utilizing the six
available processor cores.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 12 of 20
http://www.scfbm.org/content/8/1/20

Program 5. Run the slice wise motion compensation for a perfusion set within the directory where the original files are
stored as dcm (DICOM) files. First, the slices are sorted into time series sets based on the recorded z-location. Then for
each set ICA based motion compensation is run.

In order to qualitatively assess the success of the motion
compensation, horizontal and vertical cuts (Figure 6 (a))
through the temporal stack of the slices can be visu-
alized (Figure 6(b-e)), and a quantitative validation can
be obtained by comparing automatically obtained time-
intensity curves of the myocardium to manually obtained
ones (Figure 7). It is clearly visible how the motion was
eliminated from the image series, making an automatic
analysis feasible. For a detailed discussion of this analysis
and the validation of the according methods implemented
in MIA by using a larger set of patients the reader is
referred to [30-32]. Revised pre-prints of these articles
are also available as downloads on the MIA project home
page [37].

Segmentation of high resolutionμCT data by out-of-core
processing
Paleoanthropological research increasingly employs the
use of non-destructive imaging technologies, such as
microtomography. These technologies introduce several
advantages into the research process, most importantly
the preservation of valuable fossil and extant biologi-
cal tissues (in lieu of physical and chemical alteration
of these specimens to examine their internal properties).
One research area where many samples are available is

the analysis of teeth. Teeth dominate the fossil record,
because of their resistance to diagenetic alteration and
other degenerative taphonomic processes, and the ability
to extract new information from their internal structures
allows us to address important aspects of human evolu-
tionary history such as processes of tooth development
[43-45], species identification and diversity [46,47], and
the evolution of human/primate diet [48].
Amongst others, the comparative analysis of tooth

shape has applications for understanding the function
of teeth as well as reconstructing the taxonomy and
phylogeny of living and extinct mammalian species. High-
resolution computed tomography hasmade possible accu-
rate 3D digital reconstruction of both external tooth shape
and internal tooth structure. However, since the image
data is acquired at a high resolution (50 pixels per mm and
more) the resulting data sets are very large (possibly up
to 20 GB per tooth). Processing this data on workstation
class computers can hardly be done using software imple-
mentations that require loading all data into the working
memory, and do not provide the user with a tight control
over the memory management, i.e. out-of-core processing
is a requirement. Furthermore, the segmentation of teeth
is particularly difficult to automate given the large num-
ber of interfaces between tissues (e.g., air-enamel, enamel-

(a) Right ventricle (RV) peak (b) Left ventricle (LV) peak (c) myocardial perfusion

Figure 5 Images from a first-pass gadolinium-enhancedmyocardial perfusion MRI study, here taken at the moment when the contrast
agent first enters the right ventricle (RV) (a), then the left ventricle (LV) (b), and finally, perfuses the LVmyocardium (c). Note, the
hypointense region in the perfused myocardium (c) indicates a reduction in blood flow.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 13 of 20
http://www.scfbm.org/content/8/1/20

(a) legend

(b) H before (c) V before

(d) H after (e) V after

Figure 6 Profiles obtained by cutting through the time stack at the locations indicated (a) before and after registration. (a) Location of the
horizontal (H) and vertical (V) cuts used to obtain the intensity profiles shown in (b-e), as well as the location of the myocardial section (S) whose
time-intensity profiles are shown in Figure 7. In the profiles cut through the time stack of the original series (b,c), the breathing movement is clearly
visible. In the registered series (d,e), this movement has been considerably reduced.

dentine, dentine-pulp, dentine-air, and dentine-bone).
In particular, voxels at the air-enamel interface tend to
overlap in gray scale value with dentine. This may result
in a segmentation that falsely indicates the presence of
dentine on the surface of the enamel cap (Figure 8 (left)).
The FIFO filtering implementation in MIA was specif-

ically designed for this kind of data and as example of
its applicability we illustrate here how the pre-filtering
and segmentation of a high resolution microtomographic
scan of a chimpanzee lower molar (isotropic voxel reso-
lution of 0.028mm) can be achieved (Figure 9). The input
data consisted of 769 slices at a resolution of 1824×1392
pixels (approximately 2 Giga-pixel). In order to obtain a
segmentation of the enamel and dentine, first the images
were smoothed with a median filter followed by the edge
preserving mean-least-variance filter, both applied with a

filter width parameter of two. These filters were applied
as FIFO-filter to process the image series as a 3D volume.
After filtering, an accurate automatic segmentation of
dentine and enamel tissue can be easily achieved (Figure 8
(right)). Importantly, a proper segmentation reduces the
necessity to edit by hand hundreds, or even thousands, of
individual slices.
A segmentation then can either be achieved by using

interactive tools, like e.g. Avizo, or by using additional fil-
ters available inMIA. In the case presented here, based on
the all-over histogram of the images, a three-class fuzzy c-
means classification of the intensity values was obtained,
and enamel and background where segmented by using
the classification to seed a region growing algorithm.
Finally, the dentine was segmented as the remainder. For
further analysis onemay then evaluate the enamel-dentine

Original
Corrected

Manual

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50

In
te

ns
ity

time (s)

Figure 7 Automatically obtained time-intensity curves before (green), and after (blue) motion compensation of the section S of the
myocardium as indicated in Figure 6(a), compared to the manually (red) obtained one. Note, before motion compensation the oscillation of
the automatically obtained curve (green) hinders an automatic analysis of the contrast agent uptake of the myocardium which is used to quantify
blood flow. After motion compensation, the automatically obtained time-intensity curve (blue) follows closely the manual obtained one (red),
making a proper quantification possible.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 14 of 20
http://www.scfbm.org/content/8/1/20

Figure 8 Visualization of of a cut through the original (left) and filtered tooth data (right) by usingmialmpick. The left image was
post-processed to colorize the offending pixels. All pixels with intensities outside the range [46,90] were discarded, the resulting surface is expected
to correspond to the dentine. Before filtering the level of noise results in overlapping intensities for dentine and enamel at the air-enamel boundary
that is not eliminated by this segmentation approach and results in the appearance of a dentine-like surface (colored red) mimicking the enamel
cap (left). Running the out-of-core filters significantly reduces this overlap providing a better representation of the dentine surface (right).

boundary using morphological filters. By running a dis-
tance transform [49] on this boundary one can then, e.g.
measure the enamel thickness that can give a variety of
insights to human and primate evolution (cf. [48]). A
visualization of the automatic evaluation of the enamel
thickness of the example tooth is given in Figure 10.
The run-time to extract the enamel-dentine and the

enamel air boundaries for the given data set was 90 min-
utes. Extracting the enamel surface, optimizing it by using
a mesh-decimation algorithm implemented in the GNU

Triangulated Surface library [50], and colorizing it accord-
ing to the enamel thickness took another 60 minutes.

Evaluating medical treatment
In many surgical specialties a certain need exists to eval-
uate treatment outcome. If pre- and post-therapeutic 3D
datasets exist, MIA can be used to evaluate, quantify, and
thus help to understand, therapy induced changes. This
way MIA aids to improve treatment strategies and may
improve future surgical outcome.

(a) example slice of tooth µ CT scan

(b) original

(c) filtered

Figure 9 Example slice of a primate molar scanned at a resolution of 0.028 × 0.028 × 0.028 mm3 (a). The original image (b) is very noisy
making it difficult to properly segment the boundaries. After applying the out-of-core filtering, the tissue boundaries are more prominent (c) and
segmentation can be achieved e.g. by thresholding.

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 15 of 20
http://www.scfbm.org/content/8/1/20

Figure 10 Visualization the enamel thickness obtained by running the MIA tool chain on the provided example tooth data by using
viewitgui. The scale is given in pixel units, i.e. the maximum value of 97.2 corresponds to a thickness of approximately 2.7mm.

As an example, we given the analysis of a treatment by
means of orthognathic surgery (i.e. changing the position
of the jaws). In this case, midfacial distraction osteogen-
esis using a rigid external distraction (RED) system was
utilized to correct a midfacial hypoplasia and retrognathia
associated with isolated cleft palate (Figure 11).
Using a RED system for midfacial distraction osteoge-

nesis is a method to correct the underdevelopment of
the midface, surpassing traditional orthognathic surgi-
cal approaches for these patients (e.g. [51]). In complex
malformations, surgery planning is based on CT images
followed by a modified midfacial osteotomy. Finally, the
midface is slowly advanced by a halo-borne distraction
device until a correction of the midfacial deficiency is
achieved. Striking aesthetic improvements are obvious
(Figure 11(a), left vs. right), but the analysis of the three-
dimensional bony changes of the skull is necessary to get
a better understanding of the effects of the distractor onto
the whole skull, and thus, to improve therapy planning.
Based on the routinely acquired pre- and postopera-

tive CT scans, and by using the fluid dynamics based
image registration [52] implemented in MIA, the defor-
mation field that described the underlying transforma-
tion could be estimated, and an analysis of the changes
could be achieved (Figure 11(b,c)). Here the distrac-
tion osteogenesis resulted in a forward-downward dis-
placement of the maxilla accompanied by a clockwise
maxillary-mandibular rotation achieving the intended

aesthetic improvements. The processing of these images
of approximately 2503 voxels, including the rescaling to
an isotropic voxel representation, rigid registration, non-
linear fluid-dynamics based registration, and the extrac-
tion and optimization of the iso-surface that corresponds
to the skull took approximately 15 min.
Based on this kind of analysis the outcome of the treat-

ment by means of the RED system became more pre-
dictable resulting in better treatment outcome and higher
patient satisfaction (cf. [53-55]).
For a landmark based validation of the method executed

on 20 patient data sets the reader is referred to [53] (A
pre-print of the article is also available on theMIA project
home page [37]).

Conclusion and future work
In this paper, we have presented a software package frame-
work for general purpose gray scale image processing
that is implemented in C++. Various image processing
algorithms are implemented in MIA, amongst these spe-
cific segmentation algorithms, a variety of image filters
and combiners, and generic image registration algorithms.
One can make use of this functionality for ad-hoc image
processing by running the various command line tools
that are provided by the software. By offering an applica-
tion programming interface (API) that exposes the special-
ized functionality provided by the plug-ins by the same
string based interface that is used with the command

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 16 of 20
http://www.scfbm.org/content/8/1/20

(a) Patient before (left) and after (right) mid-facial distraction

(b) Changes in soft tissue (c) Shape change of the mid-facial bones

Figure 11 A 17-year-old girl suffering frommidfacial hypoplasia and retrognathia associated with isolated cleft palate (a, left).
Postoperative situation shows a harmonic maxillo-mandibular relationship and markedly improved esthetic appearance (a, right). Visualizing the
changes by fluid-dynamical non-linear registration displays the complex changes caused by the forward-downward displacement and clockwise
maxillary-mandibular rotation (b, c). Red indicates displacements in the direction of the surface normal, and blue indicates displacements in the
opposite direction of the surface normal. The visualization was obtained by usingmiaviewit.

line tools, the transition from script based prototyp-
ing to fully fledged programs is made easy. Because of
its modular design that is based on dynamically load-
able plug-ins and single task command line tools, adding
new functionality to MIA is made easy and normally

doesn’t require existing code to be changes, let alone
recompiled.
We have illustrated the applicability of the software

by providing examples from different research areas
where the tool kit has and is being used. We showed how

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 17 of 20
http://www.scfbm.org/content/8/1/20

the software can be used for motion compensation of
image series in the specific case of myocardial perfusion
imaging, we presented an example of out-of-core image
processing that is useful for the (pre-)processing of high
resolution image data that is used in virtual anthropo-
logical research, and we provided an example for the
retrospective analysis of mid-facial surgery by means of
an external distraction device (RED) that has been and
is used to improve the understanding of the underlying
mechanics of the treatment.
The focus for the further development of MIA follows

two main directions: On one hand, the code base is con-
stantly improved by increasing test coverage, new algo-
rithms are added as new application areas are explored.
Here, of specific interest it is to improve existing and add
new methods that are required for the processing and
analysis of 3D+t data, and to introduce multi-threading
to exploit the now commonly available multi-core hard-
ware architectures, especially for the application of the
software to high resolution and 3D data sets. On the
other hand, given that the known user base of MIA users
(i.e. of those who give feedback) is limited to the work
groups of the contributing authors, it is in our inter-
est to grow a lager community, and therefore, in order
to encourage third party contributions, focus is also laid
on providing tutorials for the use of and development
with MIA.

Availability and requirements
Software
Project name: Medical Image Analysis
Project home page: http://mia.sourceforge.net/
Operating system(s): POSIX compatible, Linux is tested.
Programming language(s): C/C++
Other requirements: In order to compile the software the
packages given in Table 1) are required. Additional func-
tionality can be enabled if the packages given in Table 2
are also available.
License: GNU GPL v3 or later
Any restrictions to use by non-academics: None

Additional notes about availability and quality assurance
The source code is manged in a public GIT repository
[56], and the master branch of the version control system
is normally kept in a stable state, i.e. before upload-
ing changes it is tested whether all unit tests pass on
the main developers platform (Linux x86_64). Bugs are
tracked publicly [57], and for discussions public forums
are available [58].
In addition, tagged releases of the source code are made

available on the project home page. For these releases
Debian GNU/Linux packages (mia-tools for end users,
and libmia-2.0-dev for developers) are sponsored by the
Debian-med project [59]. Back-ports to the current sta-
ble long time release version of Ubuntu Linux (12.04) are
provided in a personal package archive [60].
Note, that while the GIT repository is not under an

automatic test regime, the Debian GNU/Linux packag-
ing process adds this additional layer of quality assur-
ance because packaging only succeeds when all unit tests
pass. Hence, when using the packages provided by the
Debian/Ubuntu repositories it is ensured that all unit tests
pass on the respective architecture.

Licensing considerations
MIA has been licensed under the terms of the GNU GPL
version 3 for two reasons: Firstly, it is the software license
that in our opinion best protects the interests of the soft-
ware user, i.e. with its most prominent requirement that
the distribution object code of a work covered by the GPL
must be accompanied by the source code, or an offer to
obtain the source code [61], the GPL license ensures that
a user will always have access to the source code, the
right to learn from it, tinker with it, improve it, contract
someone to improve it, and redistribute it and derivative
versions of it under the same GPL license. Secondly, MIA
makes use of the GNU scientific library and IT++, which
are both exclusively distributed under the terms of the
GNU GPL, thereby imposing these terms also on the dis-
tribution of MIA. Note however, that software provided
under the GPL can still be sold (cf. [62]), and it can also be

Table 2 Supported external packages

Package Additional information

DCMTK DICOM image IO (partial support) http://dicom.offis.de/dcmtk

GTS GNU triangulated surfaces library to support mesh processing and iso-surface extraction from volume data http://gts.sourceforge.net

IT++ Signal processing library http://itpp.sourceforge.net

NLopt Nonlinear optimizers library http://ab-initio.mit.edu/wiki/index.php/NLopt

OpenEXR A HDR image library that supports 32 bit integer and floating point valued images http://www.openexr.org

PNG Portable network graphics http://www.libpng.org

TIFF The tagged image file sormat http://www.remotesensing.org/libtiff/libtiff.html

VTK Visualization toolkit data IO (partial support) http://www.vtk.org

http://mia.sourceforge.net/
http://dicom.offis.de/dcmtk
http://gts.sourceforge.net
http://itpp.sourceforge.net
http://ab-initio.mit.edu/wiki/index.php/NLopt
http://www.openexr.org
http://www.libpng.org
http://www.remotesensing.org/libtiff/libtiff.html
http://www.vtk.org

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 18 of 20
http://www.scfbm.org/content/8/1/20

distributed as part of medical devices where special certi-
fication may restrict the ability of the user to run changed
code.

Overview over available algorithms and filters
At the time of this writing MIA version 2.0.10 is tagged as
stable and it provides tools to run the following tasks on
2D and 3D images:

• image conversion: combining series of 2D images to
3D images and extracting 2D slices from 3D images,
selecting images from multi-frame data sets, and
converting raw data to annotated 2D or 3D images,
image file type conversion (implicitly based on filter
output file type).

• image filtering: standard morphological filters (e. g.
erode, dilate, thinning, open, close), pixel type
conversion, various neighborhood filters in 2D and
3D (median, mean, Gaussian smoothing), point filters
(binarize, invert, intensity-bandpass), segmentation
filters (kmeans, seeded and basic watershed), and
pipeline helper filters; in total 40 2D filters, 31 3D
filters, and 9 FIFO filters are available. In addition,
one FIFO byslice provides the means to make use of
the available 2D filters in a FIFO pipeline.

• image combination: Combining pairs of images
pixel-wise either arithmetically (subtract, add,
multiply pixel values), or logically (and, or, xor, ...).

• image registration: linear and non-linear registration
in 2D and 3D optimizing various cost functions, and
working on pairs or series of images. Non-linear
registration includes transformations defined by
B-splines [63] regularized by a vector-spline model
[23], and dense vector fields regularized by a
linear-elastic or a fluid-dynamical model [52,64], and
possible optimizers are provided by the GNU
Scientific library [65] and NLopt [66].

• image segmentation: 2D and 3D implementations for
fuzzy c-means based segmentation [33,67] are
provided.

• Myocardial perfusion analysis: A large set of tools is
available that centers around motion compensation
in perfusion imaging and its validation.

All filters, image similarity measures, optimizers, and
most image combiners are implemented as plug-ins and
are, hence, are also available through API calls. In addition
to these image centric tools and filters, some facilities are
available to create triangular meshes from 3D volume data
and process these meshes.
An exhaustive, cross-referenced list of tools and plug-

ins that are implemented within the current stable release
is available on-line [28]. This documentation can also be
created in the build process.

Consent
Written informed consent was obtained from the patients
whose data was used in use case one and three for the
publication of this report and any accompanying images.

Abbreviations
API: Application programming interface; CT, μCT: Computed tomography,
micro computed tomography; ECG: Electrocardiogram; FIFO: First-in-first-out;
FIFOF: First-in-first-out filter; GPL: GNU General public license; LV: Left ventricle;
MRI: Magnetic resonance image; PET: Positron emission tomography; POSIX:
Portable operating system interface; PPA: Personal package archive; RED: Rigid
external distraction; RV: Right ventricle; STL: Standard template library; TDD:
Test driven development.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
GW is responsible for the software design and development, and for the main
body of the article. PK and MJLC provided the data, medical expertise and
planning for the motion compensation in myocardial perfusion analysis (1st
use case). MS and JJH provided the data expertise and execution of analysis of
tooth data (2nd use case). ThH provided the data, medical expertise and
execution of analysis for the evaluation of the distraction osteogenesis
treatment (3rd use case). All authors read and approved the manuscript.

Acknowledgements
This work was partially supported by Spain’s Ministry of Science and
Innovation through CDTI - CENIT (AMIT), INNPACTO (PRECISION and XIORT),
and projects TEC2010-21619-C04-03 and TEC201-28972-C02-02; Comunidad
de Madrid (ARTEMIS S2009/DPI-1802), and the European Regional
Development Funds (FEDER).
Experimental data for use case one were provided with the support of the
Intramural Research Program of the NIH, National Heart, Lung and Blood
Institute. For access to the chimpanzee molar used in the second use case we
thank Frieder Mayer of the Berlin Natural History Museum.
In addition, the authors would like to thank Tanya Smith and Anthony
Olejniczak for useful discussions regarding the paleoanthropological
applications of the software, Jörg Hendriks for the help with the preparation of
the pig data set provided as alternative to the patient data set for use case
three, Marc Tittgemeyer for providing insights and help in design phase of the
MIA and code contributions, Carsten Wolters for the implementation of the
fuzzy c-means segmentation algorithm, David Pastor, Stefan Burckhardt, and
Heike Jänicke for miscellaneous code contributions, and Carlos Castro for a
feedback and comments on the article.
Last but not least, we would like to thank the patients whose data was used in
use case one and three for provided informed consent that this data can be
used for scientific research and publications.

Author details
1Biomedical Imaging Technologies, ETSI Telecomunicación, Universidad
Politécnica de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain. 2Human
Evolution, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6,
Leipzig, Germany. 3Ciber BBN, Zaragoza, Spain. 4UCL Anthropology, Gower
Street, London, UK. 5Laboratory of Cardiac Energetics, National Heart, Lung
and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD, USA.
6Department of Oral and Maxillo Facial Plastic Surgery, University of Leipzig
Liebigstr. 10-14, Leipzig 4103, Germany.

Received: 22 February 2013 Accepted: 7 August 2013
Published: 11 October 2013

References
1. Scilab Enterprises: Scilab: Free and Open Source Software for Numerical

Computation. Scilab Enterprises: Orsay; 2012. http://www.scilab.org.
[Access: 2013-06-05]

2. Schneider C, Rasband W, Eliceiri K: NIH image to ImageJ: 25 years of
image analysis. Nat Methods 2012, 9(7):671–675.

3. de Chaumont F, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T,
Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T,

http://www.scilab.org

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 19 of 20
http://www.scfbm.org/content/8/1/20

Dufour A, Olivo-Marin J: Icy: an open bioimage informatics platform
for extended reproducible research. Nat Methods 2012,
9(7):690–696.

4. Chase DR: Garbage collection and other optimizations. PhD thesis; 1988.
http://hdl.handle.net/1911/16127. [Access: 2013-05-17]

5. Bradski G, Kaehler A: Learning OpenCV: Computer Vision with the OpenCV
Library, 1st edition; 2008.

6. Yoo T, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S,
Metaxes D, Whitaker R: Engineering and algorithm design for an
image processing API: a technical report on ITK - The insight toolkit.
InMedicine Meets Virtual Reality. Edited by Westwood J. AmsterdamL: IOS
Press; 2002:586–592.

7. Bright W: C++ Compilation speed; 2010. http://www.drdobbs.com/cpp/c-
compilation-speed/228701711. [Access: 2013-05-17]

8. Woolrich M, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T,
Beckmann C, Jenkinson M, Smith S: Bayesian analysis of neuroimaging
data in FSL. NeuroImage 2009, 45(1):173–186.

9. Lohmann G, Müller K, Bosch V, Mentzel H, Hessler S, Chen L, Zysset S, von
Cramon DY: LIPSIA - a new software system for the evaluation of
functional magnetic resonance images of the human brain.
Computer Med Imaging Graph 2001, 25(6):449–457.

10. Klein S, Staring M, Murphy K, Viergever M, Pluim J: elastix: a toolbox for
intensity based medical image registration. IEEE Trans Med Imaging
2010, 29:196–205.

11. Modat M, Ridgway GR, Taylor ZA, Lehmann M, Barnes J, Hawkes DJ, Fox
NC, Ourselin S: Fast free-form deformation using graphics processing
units. Comput Methods Prog Biomed 2010, 98(3):278–284.

12. Cardoso MJ: NiftySeg - Statistical segmentation and label fusion
software package. http://niftyseg.sourceforge.net/. [Access: 2012-05-24].

13. Doria D, Staring M, Klein S: ITKTools. https://github.com/ITKTools/
ITKTools. [Access: 2013-05-17]

14. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S,
Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward SR, Miller JV,
Pieper S, Kikinis R: 3D SLICER as an image computing platform for the
quantitative imaging network.Magn Reson Imaging 2012,
30(9):1323–1341.

15. Tian J, Xue J, Dai Y, Chen J, Zheng J: A novel software platform for
medial image processing and analyzing. IEEE Trans Med Imaging 2008,
12(6):800–811.

16. MeVisLab - medical image processing and visulaization. http://www.
mevislab.de/. [Access: 2012-05-24]

17. Beck K: Test-DrivenDevelopment by Example. Boston: AddisonWesley; 2003.
18. Everett F, Carter J: Implementation of the polar form of the

Box-Muller transformation. 1994. ftp://ftp.taygeta.com/pub/c/
boxmuller.c. [Access: 2012-01-22]

19. Thévenaz P, Blu T, Unser M: Interpolation revisited. IEEE Trans Med Imag
2000, 19(7):739–758.

20. Vandervoorde D, Josuttis NM: C++ Templates: The Complete Guide. Boston:
Addison Wesley; 2005.

21. Jusottis NM: The C++ Standard Library. Boston: Addison-Wesley; 1999.
22. Karlsson B: Beyond the C++ Standard Library: An Introduction to Boost.

Boston: Addison Wesley; 2005.
23. Rohlfing T, CRM Jr, Bluemke DA, Jacobs MA: Volume-preserving

nonrigid registration of MR breast images using free-form
deformation with an incompressibility constraint. IEEE Trans Med
Imag 2003, 22:730–741.

24. Gamma E, Helm R, Johnson R, Vlissides J: Design Patterns: Elements of
Reusable Object-Oriented Software. Boston: Addison Wesley; 1994.

25. Troan EW: POPT - Parsing command line options. http://rpm5.org/
files/popt/. [Access: 2012-05-24]

26. Prus V: BOOST Program Options. http://www.boost.org/libs/
program_options. [Access: 2012-10-24]

27. Walsh N: DocBook 5: The Definitive Guide, 1.0.4 edition. O’Reilly: Sebastopol;
2011.

28. Wollny G:Mia User Reference. 2012. http://mia.sourceforge.net/userref/
index.html. [Access: 2013-05-24]

29. Rozental G: Boost Test Library. http://www.boost.org/libs/test. [Access:
2012-10-24]

30. Wollny G, Ledesma-Carbayo MJ, Kellman P, Santos A: NewDevelopments
in Biomedical Engineering. chap. On breathing motion compensation in
myocardial perfusion imaging. In-Teh 2010: Vukovar, Croacia. 235–247.

31. Wollny G, Ledesma-Carbayo MJ, Kellman P, Santos A: Exploiting
quasiperiodicity in motion correction of free-breathing myocardial
perfusion MRI. IEEE Trans Med Imag 2010, 29(8):1516–1527.

32. Wollny G, Kellman P, Santos A, Ledesma-Carbayo MJ: Automatic motion
compensation of free breathing acquiredmyocardial perfusion data
by using independent component analysis.Med Image Anal 2012,
16(5):1015–1028.

33. Pham DL, Prince JL: An adaptive fuzzy C-means algorithm for image
segmentation in the presence of intensity inhomogeneities. Pattern
Recognit Lett 1999, 20:57–68.

34. Wirzenius L, Oja J, Stafford S, Weeks A: Linux System Administrators Guide.
The Linux Documentation Project 2005 chap. 6.6 The buffer cache.
http://www.tldp.org/LDP/sag/html/buffer-cache.html.
[Access: 2013-05-17]

35. Stroustrup B: C++11 - the recently approved new ISO C++ standard.
http://www.stroustrup.com/C++11FAQ.html 2012. [Access: 2013-10-21]

36. International Organization for Standardization S Geneva: ISO/IEC
14882:2011: Information technology – Programming languages –
C++. 2011. http://www.iso.org/iso/catalogue_detail.htm?csnumber=
50372 [Access: 2013-08-07]

37. Wollny G:MIA - tools for the processing of gray scale images. 2012.
http://mia.sourceforge.net/. [Access: 2013-06-05]

38. Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE: A quantitative
pixel-wise measurement of myocardial blood flow by
contrast-enhanced first-pass CMR perfusion imaging: microsphere
validation in dogs and feasibility study in humans. JACC Cardiovasc
Imaging 2012, 5(2):154–166.

39. Jerosch-Herold M: Quantification of myocardial perfusion by
cardiovascular magnetic resonance. J CardiovMagn Reson 2010, 12(57).
http://www.jcmr-online.com/content/12/1/57. [Access: 2013-08-07]

40. Milles J, van der Geest R, Jerosch-Herold M, Reiber J, Lelieveldt B: Fully
automated motion correction in first-pass myocardial perfusion MR
image sequences. IEEE Trans Med Imag 2008, 27(11):1611–1621.

41. Li C, Sun Y: Nonrigid registration of myocardial perfusion MRI using
pseudo ground truth. InMedical Image Computing and
Computer-Assisted Intervention –MICCAI 2009. London, Berlin, Heidelberg:
Springer-Verlag; 2009:165–172.

42. Xue H, Zuehlsdorff S, Kellman P, Arai A, Nielles-Vallespin S, Chefdhotel C,
Lorenz CH, Guehring J: Unsupervised inline analysis of cardiac
perfusion MRI.. InMedical Image Computing and Computer-Assisted
Intervention –MICCAI 2009, Volume 5762/2009 of LNCS. Berlin, Heidelberg:
Springer-Verlag; 2009:741–749.

43. Skinner M, Wood B, Boesch C, Olejniczak A, Rosas A, Smith T, Hublin JJ:
Dental trait expression at the enamel-dentine junction of lower
molars in extant and fossil hominoids. J Human Evol 2008, 54:173–186.

44. Skinner M, Gunz P: The presence of accessory cusps in chimpanzee
lower molars is consistent with a patterning cascade model of
development. J Anat 2010, 217(3):245–253.

45. Skinner M, Skinner M, Boesch C: Developmental defects of the dental
crown in chimpanzees from the Taï National Park, Côte D’Ivoire:
coronal waisting. Am J Phys Anthropol 2012, 149(2):272–282.

46. Skinner M, Gunz P, Wood B, Hublin JJ: Enamel-dentine junction (EDJ)
morphology distinguishes the lower molars of Australopithecus
africanus and Paranthropus robustus. J Human Evol 2008,
55(6):979–988.

47. Skinner M, Gunz P, Wood B, Hublin JJ: Discrimination of extant Pan
species and subspecies using the enamel-dentine junction
morphology of lowermolars. Am J Phys Anthropol 2009, 140(2):234–243.

48. Smith T, Kupczik K, Machanda Z, Skinner M, Zermeno J: Enamel
thickness in Bornean and Sumatran orangutan dentitions. Am J Phys
Anthropol 2012, 147(3):417–426.

49. Felzenszwalb PF, Huttenlocher DP: Distance Transforms of Sampled
Functions. Tech. rep. Cornell Computing and Information Science 2004.
http://www.cs.brown.edu/~pff/dt/. [Access: 2013-01-22]

50. Popinet S: GTS - The GNU Triangulated Surfaces Library. http://gts.
sourceforge.net. [Access: 2013-10-24]

51. Hierl T, Hemprich A: A novel modular retention system for midface
distraction osteogenesis. Br J Oral Maxillofac Surg 2000, 38:623–626.

52. Wollny G, Kruggel F: Computational cost of non-rigid registration
algorithms based on fluid dynamics. IEEE Trans Med Imaging 2002,
11(8):946–952.

http://hdl.handle.net/1911/16127
http://www.drdobbs.com/cpp/c-compilation-speed/228701711
http://www.drdobbs.com/cpp/c-compilation-speed/228701711
http://niftyseg.sourceforge.net/
https://github.com/ITKTools/ITKTools
https://github.com/ITKTools/ITKTools
http://www.mevislab.de/
http://www.mevislab.de/
ftp://ftp.taygeta.com/pub/c/boxmuller.c
ftp://ftp.taygeta.com/pub/c/boxmuller.c
http://rpm5.org/files/popt/
http://rpm5.org/files/popt/
http://www.boost.org/libs/program_options
http://www.boost.org/libs/program_options
http://mia.sourceforge.net/userref/index.html
http://mia.sourceforge.net/userref/index.html
http://www.boost.org/libs/test
http://www.tldp.org/LDP/sag/html/buffer-cache.html
http://www.stroustrup.com/C++11FAQ.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50372
http://mia.sourceforge.net/
http://www.jcmr-online.com/content/12/1/57
http://www.cs.brown.edu/~pff/dt/
http://gts.sourceforge.net
http://gts.sourceforge.net

Wollny et al. Source Code for Biology andMedicine 2013, 8:20 Page 20 of 20
http://www.scfbm.org/content/8/1/20

53. Wollny G, Kruggel F, Hierl T, Hendricks J: Assessment, validation, and
visualisation of bony changes in crano-facial surgery. In The 4th
IASTED International Conference on Visualisation, Imaging, and Image
Processing VIIP’04. Calgary, Marbella: ACTA Press; 2004.

54. Hierl T, Wollny G, Hendricks J, Berti G, Schmidt JG, Fingberg J: Hemprich
A: 3D-Analysis of soft tissue changes followingmaxillary distraction
osteogenesis. In Reconstruction of Soft Facial Parts. 31-2. Edited by Buzug
TM, Prüfer K, Sigl K, Bongartz J, Hering P, Willems G. Remagen. Police and
Research, Luchterhand Publishers; 2005.

55. Hierl T: Distraction Osteogeneis of the Facial Skeleton. BC Decker Inc: chap.
Lengthening the maxilla by distraction osteogenesis; Hamilton; 2007.

56. MIA GIT repository https://sourceforge.net/p/mia/mia2/ci/master/tree/.
57. MIA bug tracking https://sourceforge.net/p/mia/tickets/.
58. MIA discussion forums https://sourceforge.net/p/mia/discussion/.
59. Tille A, Möller S, Hanke M, Halchenko Y: Debian Med - Integrated

software environment for all medical purposes based on Debian
GNU/Linux. In Global Telemedicine and eHealth Updates: Knowledge
Resources, Volume 4. Edited by Jordanova M, Lievens F. Luxembourg:
ISfTeH International Society for Telemedicine & eHealth; 2011:12.

60. Wollny G: PPA for Medical Image Analyis. 2012. https://launchpad.
net/~gert-die/+archive/ppa-mia. [Access: 2012-05-24]

61. The Free Software Foundation: GNU General Public License. http://
www.gnu.org/licenses/gpl.html. [Access:2013-05-20]

62. The Free Software Foundation: Selling Free Software. http://www.gnu.
org/philosophy/selling.html. [Access: 2012-05-20]

63. Kybic J, Unser M: Fast parametric elastic image registration. IEEE Trans
Image Process 2003, 12(11):1427–1442.

64. Christensen GE, RR D.Miller MI: Deformable templates using large
deformation kinematics 1996, 5(10):1435–1447.

65. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi
F: The GNU Scientific Library. http://www.gnu.org/software/gsl/
[Access: 2012-05-24].

66. Johnson SG: The NLopt nonlinear-optimization package. 2011. http://
ab-initio.mit.edu/nlopt. [2012-05-24]

67. Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T: Amodified
fuzzy C-means algorithm for bias field estimation and segmentation
of MRI data. IEEE Trans. Med Imaging 2002, 21(3):193–198.

doi:10.1186/1751-0473-8-20
Cite this article as: Wollny et al.: MIA - A free and open source software
for gray scale medical image analysis. Source Code for Biology and Medicine
2013 8:20.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

https://sourceforge.net/p/mia/mia2/ci/master/tree/
https://sourceforge.net/p/mia/tickets/
https://sourceforge.net/p/mia/discussion/
https://launchpad.net/~gert-die/+archive/ppa-mia
https://launchpad.net/~gert-die/+archive/ppa-mia
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/philosophy/selling.html
http://www.gnu.org/philosophy/selling.html
http://www.gnu.org/software/gsl/
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

	Abstract
	Background
	Results
	Conclusion

	Background
	Contribution

	Implementation
	Data types for image processing
	Filters and pipelines
	Out-of-core processing
	Plug-ins and algorithms
	Command line parser with auto-documentation
	Tests
	Command line tools
	Add-on tools

	Using and extending MIA
	Image processing on the command line
	Translating the shell script into a C++ command line tool
	Extending the library

	Use cases
	Motion compensation in myocardial perfusion imaging
	Segmentation of high resolution CT data by out-of-core processing
	Evaluating medical treatment

	Conclusion and future work
	Availability and requirements
	Software
	Additional notes about availability and quality assurance
	Licensing considerations
	Overview over available algorithms and filters

	Consent
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

