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Abstract

Background: High—throughput (HT) technologies provide huge amount of gene expression data that can be used
to identify biomarkers useful in the clinical practice. The most frequently used approaches first select a set of genes
(i.e. gene signature) able to characterize differences between two or more phenotypical conditions, and then provide
a functional assessment of the selected genes with an a posteriori enrichment analysis, based on biological
knowledge. However, this approach comes with some drawbacks. First, gene selection procedure often requires
tunable parameters that affect the outcome, typically producing many false hits. Second, a posteriori enrichment
analysis is based on mapping between biological concepts and gene expression measurements, which is hard to
compute because of constant changes in biological knowledge and genome analysis. Third, such mapping is typically
used in the assessment of the coverage of gene signature by biological concepts, that is either score—based or
requires tunable parameters as well, limiting its power.

Results: We present Knowledge Driven Variable Selection (KDVS), a framework that uses a priori biological
knowledge in HT data analysis. The expression data matrix is transformed, according to prior knowledge, into smaller
matrices, easier to analyze and to interpret from both computational and biological viewpoints. Therefore KDVS,
unlike most approaches, does not exclude a priori any function or process potentially relevant for the biological
question under investigation. Differently from the standard approach where gene selection and functional
assessment are applied independently, KDVS embeds these two steps into a unified statistical framework, decreasing
the variability derived from the threshold—dependent selection, the mapping to the biological concepts, and the
signature coverage. We present three case studies to assess the usefulness of the method.

Conclusions: We showed that KDVS not only enables the selection of known biological functionalities with accuracy,
but also identification of new ones. An efficient implementation of KDVS was devised to obtain results in a fast and
robust way. Computing time is drastically reduced by the effective use of distributed resources. Finally, integrated
visualization techniques immediately increase the interpretability of results. Overall, KDVS approach can be
considered as a viable alternative to enrichment-based approaches.
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Background

One of the challenges of modern molecular biology is
to reconstruct the complex network of processes that
govern all the activities of living organisms. HT tech-
nologies allow to measure the expression of thousands
of genes simultaneously for each single biological sam-
ple [1,2], but these data are difficult to analyze because
the number of samples is always lower with respect to
the number of variables (e.g. genes, proteins). There-
fore, traditional statistical methods are unsuitable to face
this challenge. Nevertheless, these data are currently
used to identify possible biomarkers, useful in the clin-
ical practice: 1) to stratify a group of people affected
by a disease into separated groups that are predicted
to progress differently, 2) to subtype a disease through
the identification of subgroups of people, that are char-
acterized by a different molecular landscape, or by a
different response to a specific drug. The probability of
finding biomarkers is higher within the specific list of
genes, known as gene signature [3,4], whose expression
levels are able to separate two distinct phenotypic con-
ditions (e.g. disease and healthy, tumor and metastasis)
in comparison of two classes of biological samples. Such
list can be identified in a typical binary classification
setting [5].

Microarrays are a popular example of HT technol-
ogy currently used to evaluate gene expression data that
potentially contain meaningful gene signatures. The typi-
cal approach to analyze HT data is to first identify mean-
ingful gene signatures and then to perform enrichment
analysis [6,7].

Several methods can be chosen to identify gene signa-
tures. The most commonly used filtering methods (e.g.
t—test, ANOVA) [8,9] compare gene expression measure-
ments to identify differentially expressed genes (DEG).
The choice of the selection method is crucial because it
affects the enrichment analysis. Specifically, if some rele-
vant genes had not been included in the signature, it may
not be possible to identify processes or functions that are
connected with those genes, and that are relevant to the
biological question addressed [10].

In the enrichment analysis, selected genes of the signa-
ture are compared with previously determined functional
gene groups (that represent the current biological knowl-
edge). To determine such groups, first it is necessary
to assign genes to the biological concepts, that can be
accomplished in various ways [11,12]. Then, the signifi-
cant presence of genes in an individual group is assessed
with some scoring schema or statistical test [6,13,14].

Thus, in the classic enrichment analysis approach, the
discovery method is not affected by the prior knowledge
and it is performed independently with respect to the
functional analysis. On the opposite, using prior knowl-
edge before the selection step, the discovery method is
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applied according to the prior knowledge, thus giving a
direct biological contextualization of the gene signature
(Figure 1).

Several efforts in this direction have been recently pre-
sented in the literature. In [15], pathway information
has been incorporated into logistic regression models.
In [16-20] topological properties of Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways have
been used to constrain the learning process. The use
of Gene Ontology (GO) as prior information has been
explored in [21], where the authors propose a classi-
fication model based on functional groups of genes.
A comparison of the performance obtained using dif-
ferent kind of knowledge has recently been presented
in [22].

In this paper, we present KDVS (see Additional file 1),
an implementation of the second case aforementioned,
where the prior biological knowledge is used before the
identification of the gene signature, the procedure itself is
not altered, and the gene signature is defined according
to the chosen source of prior knowledge. This frame-
work can be considered as an alternative to most popular
approaches of HT data analysis.

In contrast to other methods, KDVS accepts as input,
besides the gene expression data, also specific annotations
for HT platforms, and a representation of prior biological
knowledge. As output, instead of gene signature and the
results of the enrichment analysis, KDVS produces the list
of significant biological concepts, as well as, for each of
them, the list of significant genes that can be considered
as individual signature associated to the concept.

The current implementation uses microarrays as source
of gene expression data [23]. To analyze these data, among
several supervised classification and variable selection
methods [4,24], we choose £1€2Fg, an embedded regular-
ization method for variable selection, proven to identify
subsets of discriminative genes [25,26]. Gene Ontology
(GO) is used as prior knowledge source [27].

KDVS is implemented in Python [28]. It was designed
according to the principle of individual applications
that share common functionality through the Applica-
tion Programming Interface (API). Such modularized way
allowed to dynamically adjust desired functionality piece
by piece across a long time frame, which is crucial in
the development of successful methodologies in statisti-
cal learning community. Also, it allowed to implement
necessary solutions for standard bioinformatics—related
problems, such as identifier mappings, in independent
way. At the end, it allowed to seamlessly introduce the
usage of parallel resources for time—consuming compu-
tations. Furthermore it is general enough to be applied
to any other experiment that involves a two classes set-
ting problem and it could be extended to a regression or
multi-class setting.
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Figure 1 The difference between classic approach and the KDVS approach. lllustration of the difference between classic enrichment-based
approach and the KDVS framework approach. In classic, monolithic gene expression data are mined for significant genes and prior biological
knowledge is used a posteriori to verify the soundness of result. This approach is sensitive to the choice of mining technique, as well as the
enrichment verification method. In KDVS, monolithic gene expression data are transformed according to prior knowledge (e.g. divided in smaller
parts accordingly), and then mined for significant genes. This approach enables wider choice of mining techniques and provides biological insight

The framework has been successfully applied to the
analysis of microarray data in experiments regarding neu-
rodegenerative diseases, namely Alzheimer’s and Parkin-
son’s diseases [29,30], as well as prostate cancer [31].

Methods

KDVS: Framework Overview

The schema of the overall framework activity is presented
in Figure 2. It is divided into experiment part and post-
process part. During the experiment part, all initial data
processing takes place, all computational tasks are per-
formed and the results are collected. The postprocess part
works further on computational results to generate addi-
tional useful information and statistics. The experiment
part is implemented in experiment.py and the postprocess
part is implemented in postprocess.py.

Input data

The framework follows standard procedure for prepar-
ing microarray gene expression data [32]. The data are
normalized using one of the standard methods avail-
able from BioConductor [33] set of packages (e.g. RMA,
GCRMA, aroma). Its output is the Gene Expression Data
Matrix (GEDM), in the form of Delimiter-Separated Val-
ues (DSV) file. The matrix has P rows and N + 1 columns,
where P is the number of genes/probe sets monitored over

N biological samples, with the first column reporting the
genes/probe sets IDs.

Moreover, the framework uses platform—specific anno-
tations, that describe each measurement and all the
related details (e.g. concerning the biological sequence
used, the gene associated with it, its relation to other bio-
logical entities). In the case of microarray data, the frame-
work utilizes chip—related annotations provided directly
by the manufacturer or the research community in the
form of a DSV file. KDVS uses platform annotations
available from Gene Expression Omnibus (GEO) [34] for
Affymetrix microarrays.

Since the framework heavily relies on prior biologi-
cal knowledge, it utilizes a tailored representation of it.
For example, for GO [27], the encoded Directed Acyclic
Graph (DAG) structure is obtained, along with basic data
regarding individual terms, such as the term identifier,
the name and the description. In the current implementa-
tion, the framework uses the representation of GO graph,
encoded in the RDF-XML file.

To perform supervised classification, it is necessary to
associate each biological sample from the experiment with
the phenotypical outcome, symbolized by specific labels
that are often numerical [35]. For example, in the two
class setting, samples can be associated with —1 and 1
labels accordingly. The framework uses label information
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Figure 2 General activity schema of KDVS. Diagram of the general activity of KDVS.

presented in the form of DSV file, where each sample is
associated with the corresponding label.

Statistical analysis

The DSV data sets are loaded into individual tables (“raw”
tables) of relational database. Specifically, a DSV data
set containing A columns and B rows is loaded into
the corresponding relational table that has A columns
and contains B rows. In current implementation, GEDM
matrix is loaded into “GEDM” table, the platform—related
annotations is loaded into “ANNO” table, gene naming
information is loaded into “HGNC” table, and the label
information is loaded into “LABELS” table.

Querying raw tables directly may not be sufficient in
some cases. To fulfill the main objective in effective way,
some derived tables may be created: they contain recom-
bined information from raw tables, and allow fast query-
ing of raw data. For example, the Affymetrix annotations
contain mapping probeset— GO terms. It is necessary,
however, to obtain reverse mapping GO term— probesets,
to associate each GO term with raw measurements.
Therefore, the term2probeset derived table is created
to allow fast querying of mapping probeset<>GO term
in both directions. However, platform-related annota-
tions may not be up—to—date, regarding constant changes

in annotations of genomes. This, for example, could
affect gene naming (by presence of obsolete symbols),
or coverage of genes by probesets (by rearrangement of
gene sequences). Therefore another derived table, probe-
set2gene, is created to control the information from
platform—specific annotations regarding gene naming, in
accordance with the data obtained from the HUGO Gene
Nomenclature Committee (HGNC) [36]. The process of
construction of derived tables is also referred to as local
data integration.

During the next step, GEDM and term2probeset tables
are queried to generate specific expression data subsets
that correspond to individual GO terms. The concept can
be envisioned as masking the original monolithic GEDM
data set and retrieving only the expression measurements
that are associated with the specific GO term. The mask-
ing is repeated for each GO term in the term2probeset
table that comes from the specified GO domain. Each
data subset forms a matrix of N columns and Py rows,
where Px is ||P. By construction, the data subsets over-
lap given the tree—structure of GO. Indeed each GO term
may include several variables also belonging to other GO
terms.

In the following step, a supervised classification is per-
formed for each data subset. This step is also referred to
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as knowledge discovery, being the core part of recover-
ing the functional characterization from gene expression
data. In the current implementation, a variable selection
technique £1£5 g is used [37-39]. The method returns the
classification error, as well as the list of selected variables
(in our case probesets), that are the most discriminant
between two classes. The procedure depends on a corre-
lation parameter u that governs the amount of correlated
variables selected in the final list. To evaluate an unbiased
classification performance, £1£;Fs performs a full model
selection by using two nested K—fold cross—validation
loops [39]. This also guarantees robustness, sensitivity and
specificity in feature selection [40]. Data subset is further
split into smaller parts, then classification is performed on
those parts and finally these partial results are integrated
into the final classification call. Based on that principle,
the method counts the appearance of every single variable
in each selected variable list obtained for each split, and it
reports in addition the resulting frequency.

Where data subset is sufficiently small, that is, where
the number of variables is roughly the same as number
of samples, there is no need to perform full model selec-
tion. Thus, for those data subsets, a classification task is
performed with Regularized Least Squares (RLS), and all
variables are treated as selected or not, depending on the
classification outcome.

The described statistical analysis focuses on the level of
probesets instead of genes. This approach shows some con-
siderable advantages. Typically, according to microarray
design principles [41], the biological sequence of the gene
can be monitored by more than one probeset. Therefore,
to perform the analysis on the gene level, some method of
aggregating the values of each probeset is required, e.g. by
taking the average of the expression values. However, such
procedures introduce certain additional bias into subse-
quent statistical analysis [35,42]. Since KDVS performs
the analysis at the probeset level, there is no need for
such procedures, and the mentioned additional bias is not
introduced.

Given the machine learning procedure used for super-
vised classification, it may be desirable to utilize a parallel
computing environment to speed up numerical compu-
tations [43]. In the current implementation, an ad—hoc
environment was built over a local network of multi—
core desktop machines, where the computational tasks
were distributed to individual machines and executed in
the background. The environment is controlled using the
Python package PPlus [44].

The output of the experiment part consists of an
ensemble of relational database and filesystem objects.
The ensemble is used to store all the information used
within the pipeline for further reference. This informa-
tion includes: all the input data, the results from local data
integration, all the generated data subsets and the output
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from knowledge discovery. The output from knowledge
discovery becomes the direct input for the next part.

Postprocess phase
This part is roughly composed of the core post—processing
activities and the visualization tasks.

During core activities, the results obtained from the
knowledge discovery step are reviewed and an error esti-
mate is obtained. Here, if the classification error is below
the chosen threshold, the GO term associated with a spe-
cific data subset is considered significant. Next, for each
significant term, the absolute frequency of each of its
selected variables is checked: if the frequency is above
the specified threshold, the variable is considered prop-
erly selected. The frequency is checked across variables
selected in the outer K—fold cross validation loop during
the model selection phase (see [39] for details). Next, sev-
eral useful statistics are collected, such as the standard
properties of classification error (i.e. the mean, the stan-
dard deviation, the median, the histograms of selected and
non-selected variables across all data subsets). Basic plots
of classification errors are generated as well.

Furthermore, each variable (here defined as probeset)
is annotated back with biologically meaningful annota-
tions, such as the gene symbol related to the probeset,
and the identifiers of the corresponding Entrez Gene
[45] and Genbank [46] database records. The annotations
come primarily from the ANNO table, and are verified
against HGNC table with gene naming information [36], if
applicable.

The output of the core activities of the postprocess step
is the list of significant GO terms that pass the super-
vised classification step, and for each significant GO term,
the list of properly selected probesets. The classification
results allow focusing on specific biological functional-
ity represented by the GO terms, and the frequencies
allow focusing only on those genes determined as play-
ing important role in a biological experiment. Even if the
output obtained during the core activities in the postpro-
cess part is meaningful, its further biological analysis may
be difficult, due to its low interpretability for researchers
outside machine learning and statistics communities. The
introduction of the visualization step is crucial to repre-
sent the results in a more visually clear way and it is useful
to perform further biologically—oriented investigations.

To this aim, significant GO terms are visualized on the
minimal subgraph built over the complete DAG of specific
GO domain [47,48]. The subgraph is generated with the
GOstats BioConductor [33] package and visualized with R
interface to GraphViz graph plotting library [49].

In order to further increase the interpretability of the
results, a semantic clustering was introduced. Referring
to the DAG, for each GO term the Information Content
[50] is calculated by comparing the number of occurring



Zycinski et al. Source Code for Biology and Medicine 2013, 8:2
http://www.scfom.org/content/8/1/2

annotations in the graph subsumed by that term to the
total number of annotations belonging to the GO graph
subsumed by the root node. This metric is based on fre-
quency of the term occurring in annotations by taking
advantage of the structural information organized in GO;
thus a rarely used term in the GO graph contains a greater
amount of information. Starting from this metric, it is pos-
sible to define a semantic similarity measure in order to
assess the degree of relatedness between two GO terms.
There are different similarity measures based on this kind
of metric [51]. Here, Resnik semantic similarity was used
since it associates to a pair of terms the information con-
tent of their common ancestor, thus preserving the level
of specificity of the relationships between the terms. For
the implementation of both the information content and
the Resnik measure the standalone FastSemSim Python
application [52] was used. FastSemSim requires as input
data the description of the DAG and the GO annotations.
This application allows other different semantic similarity
measures, thus the user can also decide to use a different
metric. However, since the aim is to group the selected GO
terms into homogeneous clusters, a normalized measure
is required. In this case, Resnik measure was normalized
to the maximum observed value.

Given the list of significant GO terms defined in the
postprocess step, a semantic similarity matrix was build
from the Resnik pairwise similarities provided by Fast-
SemSim. The similarity matrix was then used as input to
perform a hierarchical clustering. In order to select the
clusters, a default semantic threshold equal to 0.8 was
used in the implementation, which can be changed by
the user. Finally, the resulting clusters of terms were plot-
ted on the minimal subgraph with different colors using
GOstats and GraphViz.

Output data

The main interpretable output of KDVS consists of the
lists of significant GO terms, and for each significant term,
the list of properly selected variables (determined during
Postprocess phase).

Significant GO terms are obtained both with £; €55 and
RLS techniques. For €1£5rs, a list of significant terms is
generated for each used u value [39], and for RLS a sin-
gle list is generated. Since £1€rg procedure involves full
model selection as well as variable selection, some mean-
ingful details are collected here for each significant GO
term as well. To obtain a consistent output, each list of GO
terms obtained with £;¢;fg for given u value, is merged
with single list of GO terms obtained with RLS, thus
making unified term lists.

The specific details noted for significant GO terms
obtained with ¢;£5Fg include: the index of proper £1€5Fg
1 value, mean and standard deviation of test error, mean
and standard deviation of training error, median of test
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error, total number of variables in corresponding data
subset, and number of properly selected variables. Mean
test error is later re—used for unified term list as classi-
fication error estimate. £1£;Frg should guarantee that the
classification error estimate does not change much for dif-
ferent values of w. An abbreviated example output list of
significant GO terms obtained with €1£yg is presented
below:

GO term ID,Mu,Mean TS,Std TS,Mean TR, Std TR,
Med TS, Tot vars,Sel vars
GO:0005515,0,0.0595927312902,0.0237055815607,
0.0,0.0,0.0624713039486,15035,230
GO:0046872,0,0.045928030303,0.0265278311133,
0.00520912987994,0.00521768678784,
0.0606060606061,6596,98
GO:0008270,0,0.0693583562902,0.033817940487,
0.00781221192909,0.00851309206943,0.0625,
5250,87
GO:0003677,0,0.044951467803,0.0161935917425,
0.0104182597599,0.00708073456502,
0.047881155303,4895,62
GO:0000166,0,0.0478739812902,0.033404962323,
0.013073940168,0.0173600747312,
0.049834280303,4479,65

Each unified term list consists of significant GO terms
obtained with ¢1£5rg for single n value, and significant
GO terms obtained with RLS. The following details are
collected for each term: its full name, total number of
variables in corresponding data subset, number of prop-
erly selected variables, classification error estimate used
for significance call, numbers of: true positives, true neg-
atives, false positives, and false negatives, collected across
outer K—fold cross—validation loop, as well as the corre-
sponding Matthews Correlation Coefficient (MCC). An
abbreviated example of unified term list is presented
below:

GO term ID GO term name Tot vars Sel vars

Error estimate #TP #TN #FP #FN MCC

GO:0003677 DNA binding 2699 1295
0.262235054572 262 618 432 100
0.272783666823

GO:0000166 nucleotide binding 2641 1570
0.257119002375 261 635 415 101
0.284727627745

G0:0008270 zinc ion binding 2532 1489
0.252428297493 262 645 405 100
0.295650992308

GO:0004872 receptor activity 2025 1535
0.271277433846 250 628 422 112
0.25240601164
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For significant GO terms, obtained either with €14
or RLS, a list of properly selected variables is generated.
The following details are noted for each properly selected
variable: its corresponding probeset symbol, gene symbol
(verified on the ANNO and HGNC tables), its correspond-
ing Entrez Gene ID and Genbank record ID, as well as
the frequency checked across outer cross—validation loop
(if obtained with £1€5Fg). For £1£3Fs, the variables list is
generated for the GO term only if this term is consid-
ered significant for that particular £;€;ps p value. For
RLS, the details are similar, only frequency is omitted,
since variable selection is not performed. Note that some
corresponding external IDs may not be present. An abbre-
viated example output list of properly selected variables is
presented below:

223055_s_at XPO5 57510 AF271159 100
201475 x_at MARS 4141 NM_004990 100
215208 x_at RPL35A 6165 AK021571 100
200079_s_.at KARS 3735 AF285758 100
212160_at XPOT 11260 AI984005 100
204283_at FARS2 10667 NM_006567 75
223076_s_at NSUN2 54888 BC001041 75
223015_at EIF2A 83939 AF212241 50
201139 s_.at SSB 6741 NM_003142 50
202541 _at BF589679 25

238760_at YARS 8565 AW452122 25
201000_at AARS 16 NM_001605 25

Regarding variables, two histograms are also con-
structed. In the first case, for each variable present in
original data set, it is counted how many times that
variable was selected in data subsets correspoding to sig-
nificant GO terms. In the second case, also for each
variable in original data set, it is counted how many times
that variable was not selected in data subsets correspod-
ing to significant GO terms. In both cases, the following
details are recorded for each variable: its correspond-
ing probeset ID, gene symbol, and the respective count
for that variable. Also noted are: the total number of
entries in the histogram, the number of significant GO
terms, and the number of GO terms in the GO domain
considered. For ¢1¢;ps—related data subsets, we produce
one histogram for each p value. For RLS-related data
subsets, we produce single histogram for selected vari-
ables, since for corresponding significant GO terms all
variables are properly selected. An abbreviated sample
histogram of variables selected at least once is presented
below:

Selected at least once: 4334 Nodes passing
TS error: 154 Nodes in BP:18029

1767_s.at TGFB3 14

1852_at TNF 12
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2067_f_at BAX 10
1998_i_at BAX 10
448_s_at MEN1 9

33440_at ZEB1 9

Besides interpretable output, KDVS also collects techni-
cal output, such as binary files, additional diagnostic files
and logs.

KDVS: Framework Architecture

The architecture of the framework is presented in
Figure 3. All the involved applications work on a sin-
gle ensemble of information, that consists of a relational
database and filesystem objects. The ensemble is first
obtained by experiment.py, and then modified by subse-
quent applications.

The default relational database engine, available for
Python SQLite [53], is used due to its simplicity of usage,
low memory footprint and low maintenance needs. Each
database can contain many tables and is stored as sin-
gle file. Currently, a single database is created for each
experiment.

Applications in KDVS

Each application in KDVS is composed as a sequence of
actions that are executed within specified execution envi-
ronment. Actions are Python procedures. In this case,
actions can use shared variables, maintained by the envi-
ronment, to transfer their state to other actions. The
most basic execution environment provides uniform log-
ging and error handling; more complicated environments
can provide access to distributed resources, interface to
external applications etc.

Applications use KDVS API to perform their tasks:
some functionalities shared by all applications, as well as
some specific functionality considered stable are placed
into separate Python package kdvs.

experiment.py

The experiment.py application generates the ensemble,
performs local data integration and knowledge discovery.
The general activity schema is presented in Figure 4.

We used L1L2Py [54], a Python implementation of
£1€5Fs, that contains also an implementation of RLS (note
that we use RLS with regularization parameter equal to
0). Since £1£5Fg is quite time—consuming because it per-
forms a full model selection, experiment.py manages a
simple environment for distributed computations. The
environment consists of a group of multi—core machines,
connected over a local network, that accept and execute
computational tasks. Each split, performed by £1£5Fs, is
a single task that is distributed and executed. The envi-
ronment utilizes shared storage, a dedicated machine that
exposes storage device available over the local network.
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Figure 3 Schema of the architecture of KDVS. KDVS consists of applications that work on common ensemble of data. Each application uses the

The environment, as a whole, is managed by the PPlus
Python library [44], that encapsulates the access to shared
storage as simple file operations, and controls distribu-
tion and execution of computational tasks. PPlus was built
on top of Parallel Python (PP) [55], that provides a sim-
ple solution for managing local group of machines that
execute Python code in tasks.

To speed up the process of building the ensemble,
only the data that are crucial for execution of computa-
tional tasks are put on shared storage and accessed from
there. The relational database is managed uniquely on the
machine that started experiment.py application. Later, the

data from the shared storage are copied back to the same
location as database file and the ensemble is considered
complete.

postprocess.py
The postprocess.py application works on the completed
ensemble to identify the functional output of the frame-
work and to generate useful miscellaneous data for the
experiment. The general activity schema is presented in
Figure 5.

Since this application does not have high time require-
ments, it uses very simple execution environment.

>

Ensemble
experiment.py

Shared|
storag

Logging

Action Handling

External Resource Access

exper
data

Data storing

Local network B

Job Handling

Execution environment

Figure 4 Activity schema of experiment.py application. The experiment.py application creates ensemble of data, performs data integration and
transformation, manages distributed computational environment and performs knowledge discovery procedure.
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Filesystem Access

postprocess.py <

Logging
Action Handling

exper
data

Ensemble

Execution environment

(e.g. assembling final results, collecting useful statistics).

Figure 5 Activity schema of postprocess.py application. The postprocess.py application performs supplementary activities on ensemble of data

Additional scripts

Some independent R and Python scripts are used with
the KDVS framework, to perform functionalities that are
either not easily accomplished with Python alone or are
considered the standard in its domain.

To perform normalization of Affymetrix microarray
data, standalone R script is used (see Additional file 2
for an example). It uses standard BioConductor [33] nor-
malization methods (i.e. RMA, GCRMA, aroma) and is
tailored separately for each biological experiment.

A standalone R script is used (see Additional file 3
for an example) to perform visualization of the minimal
subgraph of GO graph. This script utilizes GOstat and
RGraphvViz packages and is tailored separately for the
specific list of GO terms obtained in the experiment.

To perform semantic clustering, the standalone
fastsemsim Python package script (see Additional
file 4 for an example) is used. It is tailored separately for
the specific list of GO terms obtained in the experiment.

Enrichment analysis

For comparison purposes, KDVS results were com-
pared to classic enrichment—based approaches [25,26].
To this aim, we used WebGestalt, an online gene set
analysis toolkit [56] taking as input a list of relevant
genes/probesets and performing an enrichment analysis
in KEGG and GO, identifying the most relevant pathways
and ontologies in the signatures.

Benchmark list
In order to evaluate the biological soundness of the
results, we identified two benchmark lists, namely genes
and corresponding GO terms, that refer to the current
state of knowledge for the disease of interest. Together,
they provide a reference way to evaluate the biological
consistency of our results.

The benchmark gene list is the union of three lists avail-
able from public repositories, namely KEGG PATHWAY

[57], KEGG DISEASE [57], and the Gene Prospector tool
[58]. The first two sources refer to experimentally vali-
dated results, while the last one contains also the results of
up—to—date literature mining of genetic association stud-
ies. We chose those prior knowledge sources because they
are explicitly associated with the investigated diseases.

The benchmark list of GO terms was obtained by iden-
tifying associated GO terms, according to Gene Ontology
Annotation (GOA) data [27], for each gene contained in
the benchmark gene list. We chose this method because,
to our knowledge, there are no established sources of GO
terms that correspond to specific diseases.

The results produced by enrichment—based approach
and KDVS are based on different methodologies, even if
the same discovery method — £;€yrg — is used. There-
fore, instead of comparing them directly, we chose to make
pairwise comparisons between the list of genes and list of
discriminant GO terms, produced by each approach, and
the respective benchmark lists.

In case of gene lists, the benchmark coverage is cal-
culated for all benchmark genes. In case of GO term
lists, however, it is necessary to acknowledge the fact that
KDVS produces the results only for single GO domain at
the time. Therefore, during the calculation of the bench-
mark coverage of GO terms, we recognize two cases. For
enrichment—based approach, we consider all benchmark
GO terms, while for KDVS we consider only the bench-
mark terms from that specific GO domain used in the
experimental setting.

All benchmark lists used in this work are available as
Additional file 5. The detailed description of the work-
flow followed to make the benchmark data is provided as
Additional file 6.

Results and discussion

Prostate cancer study

We applied KDVS to analyze the GSE6919 [59,60]
microarray dataset available in GEO. The dataset contains
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gene expression data from metastatic, primary tumor and
control prostate tissue samples processed on a platform
measuring the expression of about 10.000 genes. After
the normalization and the quality control steps, per-
formed using the aroma package and the arrayQuali-
tyMetrics R packages [33], we analyzed 25 metastatic,
63 primary tumor and 80 normal tissue samples. We
addressed two classification problems: one concerning
the characterization of metastasis and primary tumor
and one discriminating between primary tumor and
normal tissue.

In preliminary results [31], only the first classification
problem was addressed using Molecular Function (MF) as
source of GO domain knowledge.

Successively each classification problem was addressed
twice, considering as prior knowledge MF and Biologi-
cal Process (BP) GO domains. Those GO terms whose
classification error was below 30% were considered dis-
criminant for both GO domains. The genes associated
with these terms were merged and redundant genes were
discarded. For each classification problem, the framework
identified two lists of GO terms (one for MF and one
for BP) and two gene lists, respectively. In addition, we
addressed the same classification problems using classic
enrichment-based approach (see Table 1). In this case,
in the binary classification problem comparing primary
tumor and metastasis, the 4—fold cross—validation error
was 1%. In the other problem, the 5-fold cross—validation
error was 27%.

In order to evaluate the biological soundness of the
results, we identified two benchmark lists, namely genes
and the corresponding GO terms, that refer to the cur-
rent state of knowledge for prostate cancer (see Additional
files 5 and 6). The benchmark gene list consists of 851

Table 1 Results of the KDVS for Prostate cancer study
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elements. The benchmark GO term list consists of 2437
BP terms and 824 MF terms, 3593 terms in total.

The comparison of our results with the benchmark
lists shows the better performance of KDVS, as shown in
Table 1. High percentage of genes and GO terms identified
by KDVS were already known to be associated with the
disease. Therefore, these results increase the likelihood
that the remaining identified knowledge could be related
with the biological issue under investigation.

Parkinson’s disease study |

In another case study, first presented in [30], we analyzed
the microarray dataset GSE20295 [61,62], also available
from GEO. It is composed of Parkinson’s disease (PD)
samples in advanced stage of development and control
sample tissues, 40 and 53 cases respectively, measured
on a platform that includes about 33.000 genes. The MF
domain of GO was chosen as source of prior knowledge
to decompose GEDM into data subsets, associated with
their relative GO terms. The terms whose classification
error was below 30%, were considered as discriminant
between the two classes. As reported in [30], these terms
were found to be correlated with the disease under study,
and their representation as subgraph provided a way to
better visualize the results. In addition, we addressed the
same classification problem using the classic enrichment—
based approach (see Table 2). In this case, the 8—fold
cross—validation error was 21%.

Both the list of GO terms and the corresponding list
of genes were successfully compared with the benchmark
lists for PD, that contain 2121 GO terms and 444 genes
respectively. The benchmark lists were obtained following
the same procedure as described in Prostate cancer study
(see Additional files 5 and 6).

Kind Enrichment KDVS
Lists PTvsM PTvsN PTvsM PTvsM PTvsN PTvsN
MF BP MF BP
Discr. GO Terms 60 120 1115 2242 320 689
Discr. Genes 59 389 3619 4457 3118 3271
Comm. GO Terms 27 61 375 1000 158 378
Comm. Genes 7 51 418 504 334 371
Bench. Cov. GO Terms 1% 2% 46% 41% 19% 16%
Bench. Cov. Genes 1% 6% 49% 59% 39% 44%

In the first two rows, the table shows the discriminant gene and GO term lists identified by enrichment-based approach and KDVS for each classification problem
solved: Primary Tumor (PT) versus Metastasis (M) and Primary Tumor vs Normal (N). For KDVS, in addition, each classification task was addressed two times, based on
the GO domain utilized, Molecular Function (MF) or Biological Process (BP). Discr. stands for discriminant.

In the next two rows, the table shows the gene and GO term lists obtained as an intersection between respective discriminant lists and benchmark lists, built for
prostate cancer. Comm. means common.

In the last two rows, the table shows the coverage of benchmark gene and GO term lists with respective discriminant lists. For KDVS, the coverage was calculated only
for benchmark MF and BP terms, respectively, according to GO domain utilized in classification task. Benchmark gene list consists of 851 elements. Benchmark GO
term list consists of 2437 BP terms and 824 MF terms, 3593 terms in total. Bench. cov. means benchmark coverage.
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Table 2 Results of the KDVS for Parkinson disease study | &I
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Kind Enrichment KDVS

Lists PDvsN | PDvsN 11 PDvsN | PDvsN 11
Discr. GO terms 77 65 364 150
Discr. Genes 77 66 5705 4286
Comm. GO Terms 31 31 13 54
Comm. Genes 9 3 274 196
Benchmark Cov. GO Terms 2% 1% 25% 12%
Benchmark Cov. Genes 2% 1% 62% 44%

In the first two rows, the table shows the discriminant gene and GO term lists identified by enrichment-based approach and KDVS for Parkinson study I and II,
respectively. Both studies were performed on two different microarray datasets of Parkinson (PD) and Normal (N) tissue samples. Discr. means discriminant.
In the next two rows, the table shows the gene and GO term lists obtained as an intersection between respective discriminant lists and benchmark lists, built for

Parkinson’s disease. Comm. means common.

In the last two rows, the table shows the coverage of benchmark gene and GO term lists with respective discriminant lists. For KDVS, the coverage was calculated only
for benchmark MF terms, according to the nature of classification task. Benchmark gene list consists of 444 elements. Benchmark GO term list consists of 2121 terms in

total, including 446 MF terms. Bench. cov. means benchmark coverage.

As shown in Table 2, significant number of genes and
GO terms identified by KDVS were already known to be
associated with PD. In addition, the KDVS results show
greater coverage of benchmark data with respect to the
enrichment-based approach.

Parkinson’s disease study Il

The last case study regards the analysis of GSE6613, a
microarray dataset [63], available from GEO. The dataset
is composed of 33 early stage Parkinson samples and
22 controls, measured on a platform that includes about
33.000 genes. The MF domain of GO was chosen as source
of prior knowledge to decompose GEDM into data sub-
sets, associated with their relative GO terms. Also in this
study, the terms whose classification error was below 30%,
were considered as discriminant between the two classes.
In addition, we addressed the same classification prob-
lem using the classic enrichment—based approach (see
Table 2). In this case, the 8—fold cross—validation error
was 36%.

For comparison, we used the same benchmark lists as
for Parkinson’s disease study 1.

Table 2 shows that both approaches were able to
extract sound biological knowledge, nonetheless the
results obtained from KDVS underline a higher cover-
age of the benchmark knowledge, with respect to those
obtained by the classic enrichment—based approach.

KDVS conceptual framework

KDVS pipeline presented here is one instance of a con-

ceptual framework that integrates prior knowledge with

standard machine-learning-based selection procedures.
In [64] a similar method was proposed, evaluating the

predictive performance of functional categories based on

Leave-One-Out Regularized Least Squares (LOO-RLS).

The authors also aimed at assessing the statistical
significance of each predictor exploiting the closed form
solution for LOO-RLS and a multiple random validation
strategy. Despite presenting a very similar concept, KDVS
adds the feature selection phase combined with the pre-
diction assessment. This is particularly useful especially
when the number of variables is very high with respect to
the number of samples, which is a very common situation
for a large number of GO terms.

In particular, we considered £ ¢, s as selection method.
Nevertheless, KDVS is, by design, flexible to incorporate
the selection method of choice: £; €5 g could be replaced
by any other embedded or wrapper variable selection
method based on classification [65,66] or filter methods
combined with a prediction step [67].

Finally, it is worth remarking that KDVS aims at using
the existing knowledge as additional information to struc-
ture the data matrix before the analysis step, while enrich-
ment methods such as GSEA, Random sets, GLAPA
and others [13,68] incorporate the domain knowledge
a posteriori.

Conclusions

The KDVS framework has been developed to demonstrate
the advantages of using prior biological knowledge before
identifying the list of GO terms and genes statistically
discriminant between two classes in the analysis of high-
throughput data. Therefore it is presented as an alterna-
tive method to the most frequently used approaches that
use prior knowledge a posteriori, once the gene signature
has been identified. Its modular structure allows quick
adaptation to different HT data types, prior knowledge
sources, and different classification and variable selection
approaches. The usage of distributed resources overcomes
demanding computational requirements that are common
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in HT data analysis (microarray, NGS, etc.). Furthermore
the conceptual integration of the visualization approach
in the framework activities determines greater inter-
pretability of the results, especially for life science
researchers.

In the future, we plan to make tighter integration
with existing semantic clustering approach, to introduce
different sources of prior biological knowledge, to accept
different HT data, and to introduce wide range of classifi-
cation and variable selection techniques.

Additional files

Additional file 1: Source code of KDVS. Format: ZIP. It contains the
Python source code, the documentation, and the internal data files.

Additional file 2: Example script performing microarray data
normalization and quality check. Format: R. The proper input directory
and chip type must be provided. The script uses aroma folder structure to
identify input data.

Additional file 3: Example script producing visualization artifacts.
Format: R. The proper input directory and GO domain must be specified.
The script scans KDVS ensemble for postprocessing data and visualizes
minimal subgraphs for the list of selected GO terms.

Additional file 4: Example script performing semantic clustering.
Format: Python. The script accepts single DSV output files generated by
KDVS, containing list of significant GO terms, and performs semantic
clustering with fastsemsim Python library. Proper data files used by
fastsemsim, as well as clustering details, must be provided. The clustering is
performed with default settings, using scipy.cluster.hierarchy.fcluster. For
more details see fastsemsim documentation.

Additional file 5: Benchmark lists for Prostate Cancer and PD. Format:
XLS. The spreadsheet contains the benchmark lists of genes and GO terms,
considered trustable enough to use in comparisons between
enrichment-based results and KDVS results. See Additional file 6 for more
information.

Additional file 6: Detailed description of the construction of

benchmark data.

Abbreviations

HT: high-throughput; KDVS: Knowledge Driven Variable Selection; DEG:
differentially expressed genes; GO: Gene Ontology; API: Application
Programming Interface; GEDM: Gene Expression Data Matrix; DSV: Delimiter
Separated Values; GEO: Gene Expression Omnibus; DAG: Directed Acyclic
Graph; RDF: Resource Description Framework; XML, Extensible Markup
Language; HGNC: HUGO Gene Nomenclature Committee; RLS: Regularized
Least Squares; MCC: Matthews Correlation Coefficient; FS: Feature Selection;
PP: Parallel Python; GOA: Gene Ontology Annotations; MF: Molecular Function;
BP: Biological Process; PD: Parkinson's disease; LOO-RLS:
Leave-One-Out-Regularized Least Squares; NGS: next—generation sequencing.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

GZ conceived, designed, and implemented the KDVS framework. AB designed
the study, developed statistical methodology, and supervised KDVS
development. MS provided biological insight. TS and BDC contributed to the
ideas of prior knowledge usage and of semantic clustering. AV developed
statistical methodology and supervised the study. All authors have contributed
to the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank Salvatore Masecchia for the development of L1L2Py and PPlus.

Page 12 of 14

Author details

'DIBRIS, University of Genoa, via Dodecaneso 35, 1-16146 Genova, Italy.
2Information Engineering Department, University of Padova, via Gradenigo 6A
[-35131 Padova, Italy.

Received: 28 September 2012 Accepted: 13 December 2012
Published: 9 January 2013

References

1.

20.

21.

Brown P, Botstein D: Exploring the new world of the genome with
DNA microarrays. Nat Genet 1999, 21:33-37.

Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotech 2008,
26(10):1135-1145.

Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H,
Loh M, Downing J, Caligiuri M, Bloomfield C, Lander E: Molecular
classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 1999, 286(5439):531-537.

Guyon |, Weston J, Barnhill S, Vapnik V: Gene selection for cancer
classification using support vector machines. Mach Learn 2002,
46:389-422.

Bailey R: Design of Comparative Experiments. Cambridge Series in Statistical
and Probabilistic Mathematics. New York: Cambridge University Press; 2008.
Irizarry R, Wang C, Zhou Y, Speed T: Gene set enrichment analysis
made simple. Stat Methods Med Res 2009, 18(6):565-575.

Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M,
Paulovich A, Pomeroy S, Golub T, Lander E, Mesirov J: Gene set
enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci USA 2005,
102(43):15545-15550.

Nadon R, Shoemaker J: Statistical issues with microarrays: processing
and analysis. Trends Genet 2002, 18(5):265-271.

Cui X, Churchill G: Statistical tests for differential expression in cDNA
microarray experiments. Genome Biol 2003, 4(4):210.

Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J,
Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly M,
Patterson N, Mesirov J, Golub T, Tamayo P, Spiegelman B, Lander E,
Hirschhorn J, Altshuler D, Groop L: PGC-1«-responsive genes involved
in oxidative phosphorylation are coordinately downregulated in
human diabetes. Nat Genet 2003, 34(3):267-273.

Huang D, Sherman B, Stephens R, Baseler M, Lane C, Lempicki R: DAVID
gene ID conversion tool. Bioinformation 2008, 2(10):428-430.

van lersel M, Pico A, Kelder T, Gao J, Ho |, Hanspers K, Conklin B, Evelo C:
The BridgeDb framework: standardized access to gene, protein and
metabolite identifier mapping services. BMC Bioinformatics 2010,
11:5.

Huang D, Sherman B, Lempicki R: Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene
lists. Nucleic Acids Res 2009, 37:1-13.

Hung J, Yang T, Hu Z, Weng Z, Delisi C: Gene set enrichment analysis:
performance evaluation and usage guidelines. Brief Bioinforma 2011,
13:281-291.

. ChuangH, Lee E, Liu Y, Lee D, Ideker T: Network-based classification of

breast cancer metastasis. Mo/ Syst Biol 2007, 3(140).

Rapaport F, Zinovyev A, Dutreix M, Barillot E, Vert J: Classification of
microarray data using gene networks. BMC Bioinform 2007,

8:35.

Li C, Li H: Network-constrained regularization and variable selection
for analysis of genomic data. Bioinformatics 2008, 24(9):

1175-1182.

Yousef M, Ketany M, Manevitz L, Showe L, Showe M: Classification and
biomarker identification using gene network modules and support
vector machines. BVC Bioinform 2009, 10:337.

Tai F, Pan W: Incorporating prior knowledge of predictors into
penalized classifiers with multiple penalty terms. Bioinformatics 2007,
23(14):1775-1782.

Binder H, Schumacher M: Incorporating pathway information into
boosting estimation of high-dimensional risk prediction models.
BMC Bioinform 2009, 10:18.

Chen X, Wang L: Integrating biological knowledge with gene
expression profiles for survival prediction of cancer. J Comput Biol
2009, 16(2):265-278.


http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S1.zip
http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S2.r
http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S3.r
http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S4.py
http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S5.xls
http://www.biomedcentral.com/content/supplementary/1751-0473-8-2-S6.pdf

Zycinski et al. Source Code for Biology and Medicine 2013, 8:2
http://www.scfom.org/content/8/1/2

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Sanavia T, Aiolli F, Da San Martino G, Bisognin A, Di Camillo, B: Improving
biomarker list stability by integration of biological knowledge in
the learning process. BMC Bioinform 2012, 13(Suppl 4):522.

Hoheisel J: Microarray technology: beyond transcript profiling and
genotype analysis. Nat Rev Genet 2006, 7(3):200-210.

Ma S, Huang J: Penalized feature selection and classification in
bioinformatics. Brief Bioinform 2008, 9(5):392-403.

Fardin P, Barla A, Mosci S, Rosasco L, Verri A, Varesio L: The 11-12
regularization framework unmasks the hypoxia signature hidden in
the transcriptome of a set of heterogeneous neuroblastoma cell
lines. BMC Genomics 2009, 10:474.

Squillario M, Barla A: A computational procedure for functional
characterization of potential marker genes from molecular data:
Alzheimer’s as a case study. BMC Med Genomics 2011, 4:55.

Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski
K, Dwight S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S,
Matese J, Richardson J, Ringwald M, Rubin G, Sherlock G: Gene
Ontology: tool for the unification of biology. The Gene Ontology
Consortium. . Nat Genet 2000, 25:25-29.

Python Programming Language - Official Website. [http://www.
python.org]

Squillario M, Masecchia S, Zycinski G, Barla A: Uncovering Candidate
Biomarkers for Alzheimer’s and Parkison’s Diseases with
Regularization Methods and Prior Knowledge. Neuro-Degenerative
Diseases - Proc AD/PD 2011, Barcelona, Spain 2011, 8(Supp 1).

Zycinski G, Barla A, Verri A: SVS: Data and knowledge integration in
computational biology. In £ngineering in Medicine and Biology Society,
EMBC, 2011 Annual International Conference of the IEEE. Boston, MA: IEEE;
2011:6474-6478 .

Zycinski G, Squillario M, Barla A, Sanavia T, Verri A, Di Camillo B:
Discriminant functional gene groups identification with machine
learning and prior knowledge. In £SANN 2012. Edited by Verleysen M.
Louvain-la-Neuve, Belgium: Ciaco; 2012:221-226.

Draghici S: Statistics and Data Analysis for Microarrays Using R and
Bioconductor. New York: Chapman & Hall/CRC Mathematical &
Computational Biology, Chapman and Hall/CRC; 2011.

Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, lacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang J, Zhang J: Bioconductor: Open software development for
computational biology and bioinformatics. Genome Biol 2004,

5:R80.

Edgar R, Domrachev M, Lash A: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res
2002, 30:207-10.

Hastie T, Tibshirani R, Friedman J: The elements of statistical learning: data
mining, inference, and prediction. New York: Springer-Verlag; 2009.

Seal R, Gordon S, Lush M, Wright M, Bruford E: genenames.org: the
HGNC resources in 2011. Nucleic Acids Res 2011,

39(suppl 1):D514—D519.

De Mol C, De Vito E, Rosasco L: Elastic-net regularization in learning
theory. J Complex 2009, 25:201-230.

De Mol C, Mosci S, Traskine M, Verri A: A regularized method for
selecting nested groups of relevant genes from microarray data. J
Comput Biol 2009, 16:1-15.

Barla A, Mosci S, Rosasco L, Verri A: A method for robust variable
selection with significance assessment. In Proceedings of ESANN 2008 .
Edited by Verleysen M. Brussels, Belgium: D—side; 2008:83-88.

Di Camillo B, Sanavia T, Martini M, Jurman G, Sambo F, Barla A, Squillario
M, Furlanello C, Toffolo G, Cobelli C: Effect of size and heterogeneity of
samples on biomarker discovery: synthetic and real data
assessment. PLoS ONE 2012, 7(3):e32200.

Barrett J, Kawasaki E: Microarrays: the use of oligonucleotides and
cDNA for the analysis of gene expression. Drug Discov Today 2003,
8(3):134-141.

Jaksik R, Polanska J, Herok R, Rzeszowska-Wolny J: Calculation of reliable
transcript levels of annotated genes on the basis of multiple
probe-sets in Affymetrix microarrays. Acta Biochimica Polonica 2009,
56(2):271-277.

Zomaya A: Parallel Computing for Bioinformatics and Computational
Biology: Models, Enabling Technologies, and Case Studies. Hoboken, NJ,

44,
45,

46.

47.

48.

49.

50.

52.
53.
54.
55.
56.

57.

58.

59.

60.

62.

63.

64.

65.

Page 13 of 14

Wiley-Interscience: Wiley Series on Parallel and Distributed Computing;
2006.

PPlus Home Page. [http:/slipguru.disi.unige.it/Software/PPlus/]
Maglott D, Ostell J, Pruitt K, Tatusova T: Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Res 2005, 33(suppl 1):D54—D58.
Benson D, Karsch-Mizrachi |, Lipman D, Ostell J, Wheeler D: GenBank.
Nucleic Acids Res 2005, 33(suppl 1):D34—D38.

Herman I, Melancon G, Marshall M: Graph visualization and navigation
in information visualization: a survey. Vis Comput Graphics, IEEE Trans
2000, 6:24-43.

Katifori A, Halatsis C, Lepouras G, Vassilakis C, Giannopoulou E: Ontology
visualization methods-a survey. ACM Comput Surv 2007, 39(4). http://
dl.acm.org/citation.cfm?id=1287621.

Ellson J, Gansner E, Koutsofios L, North S, Woodhull G: Graphviz-open
source graph drawing tools. In Lecture Notes in Computer Science. Berlin
Heidelberg: Springer-Verlag ; 2001:483-484.

Lord P, Stevens R, Brass A, Goble C: Investigating semantic similarity
measures across the Gene Ontology: the relationship between
sequence and annotation. Bioinformatics 2003, 19(10):

1275-1283.

. Guzzi P, Mina M, Guerra C, Cannataro M: Semantic similarity analysis of

protein data: assessment with biological features and issues. Brief
Bioinforma 2012, 13(5):569-585.

FastSemSim Home Page. [http://sourceforge.net/projects/fastsemsim/]
SQLite Home Page. [http.//www.sglite.org/]

L1L2Py Home Page. [http://slipguru.disi.unige.it/Software/L1L2Py/]
Parallel Python Home Page. [http://www.parallelpython.com/]

Zhang B, Kirov S, Snoddy J: WebGestalt: an integrated system for
exploring gene sets in various biological contexts. Nucleic Acids Res
2005, 33(suppl 2):W741—W748.

Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for
integration and interpretation of large-scale molecular data sets.
Nucleic Acids Res 2012, 40(D1):.D109—D114.

Yu W, Wulf A, Liu T, Khoury M, Gwinn M: Gene Prospector: An evidence
gateway for evaluating potential susceptibility genes and
interacting risk factors for human diseases. BMC Bioinform 2008, 9:528.
Yu'Y, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R,
Dhir R, Finkelstein S, Michalopoulos G, Becich M, Luo J: Gene expression
alterations in prostate cancer predicting tumor aggression and
preceding development of malignancy. J Clin Oncol 2004,
22(14):2790-2799.

Chandran U, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W,
Michalopoulos G, Becich M, Monzon F: Gene expression profiles of
prostate cancer reveal involvement of multiple molecular pathways
in the metastatic process. BMC Cancer 2007, 7:64.

. Zhang Y, James M, Middleton F, Davis R: Transcriptional analysis of

multiple brain regions in Parkinson’s disease supports the
involvement of specific protein processing, energy metabolism, and
signaling pathways, and suggests novel disease mechanisms. AmJ
Med Genet Part B: Neuropsychiatric Genet 2005, 137B:5-16.

Zheng B, Liao Z, Locascio J, Lesniak K, Roderick S, Watt M, Eklund A,
Zhang-James Y, Kim P, Hauser M, Grinblatt E, Moran L, Mandel S, Riederer
P, Miller R, Federoff H, Wiillner U, Papapetropoulos S, Youdim M,
Cantuti-Castelvetri |, Young A, Vance J, Davis R, Hedreen J, Adler C, Beach
T, Graeber M, Middleton F, Rochet J, Scherzer C: the Global PD Gene
Expression (GPEX) Consortium: PGC-1«, A potential therapeutic
target for early intervention in Parkinson’s disease. Sci Trans/ Med
2010, 2(52):52-73.

Scherzer C, Eklund A, Morse L, Liao Z, Locascio J, Fefer D, Schwarzschild M,
Schlossmacher M, Hauser M, Vance J, Sudarsky L, Standaert D, Growdon J,
Jensen R, Gullans S: Molecular markers of early Parkinson'’s disease
based on gene expression in blood. Proc Nat/ Acad Sci 2007,
104(3):955-960.

Maglietta R, Piepoli A, Catalano D, Licciulli F, Carella M, Liuni S, Pesole G,
Perri F, Ancona N: Statistical assessment of functional categories of
genes deregulated in pathological conditions by using microarray
data. Bioinformatics 2007, 23(16):2063-2072.

Guyon |, Elisseeff A: An introduction to variable and feature selection.
JMach Learn Res 2003, 3:1157-1182.


http://www.python.org
http://www.python.org
http://slipguru.disi.unige.it/Software/PPlus/
http://dl.acm.org/citation.cfm?id=1287621
http://dl.acm.org/citation.cfm?id=1287621
http://sourceforge.net/projects/fastsemsim/
http://www.sqlite.org/
http://slipguru.disi.unige.it/Software/L1L2Py/
http://www.parallelpython.com/

Zycinski et al. Source Code for Biology and Medicine 2013, 8:2 Page 14 of 14
http://www.scfom.org/content/8/1/2

66. Furlanello C, Serafini M, Merler S, Jurman G: Entropy-based gene
ranking without selection bias for the predictive classification of
microarray data. BMC Bioinform 2003, 4(1):54.

67. Kohavi R, John GH: Wrappers for feature subset selection. ArtifIntell
1997,97:273-324.

68. Abatangelo L, Maglietta R, Distaso A, D'’Addabbo A, Creanza T, Mukherjee
S, Ancona N: Comparative study of gene set enrichment methods.
BMC Bioinform 2009, 10:275.

doi:10.1186/1751-0473-8-2

Cite this article as: Zycinski et al: Knowledge Driven Variable Selection
(KDVS) - a new approach to enrichment analysis of gene signatures
obtained from high-throughput data. Source Code for Biology and Medicine
2013 8:2.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit Bioled Central




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	KDVS: Framework Overview
	Input data
	Statistical analysis
	Postprocess phase
	Output data

	KDVS: Framework Architecture
	Applications in KDVS
	experiment.py
	postprocess.py
	Additional scripts

	Enrichment analysis
	Benchmark list

	Results and discussion
	Prostate cancer study
	Parkinson's disease study I
	Parkinson's disease study II
	KDVS conceptual framework

	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6

	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

