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Abstract

Background: MicroRNAs (miRNAs) constitute the largest family of noncoding RNAs involved in gene silencing and
represent critical regulators of cell and tissue differentiation. Microarray expression profiling of miRNAs is an effective
means of acquiring genome-level information of miRNA activation and inhibition, as well as the potential regulatory
role that these genes play within a biological system. As with mRNA expression profiling arrays, miRNA microarrays
come in a variety of platforms from numerous manufacturers, and there are a multitude of techniques available for
reducing and analyzing these data.

Results: In this paper, we present an analysis of a typical two-color miRNA microarray experiment using publicly
available packages from R and Bioconductor, the open-source software project for the analysis of genomic data.
Covered topics include visualization, normalization, quality checking, differential expression, cluster analysis, miRNA
target identification, and gene set enrichment analysis. Many of these tools carry-over from the analysis of mRNA
microarrays, but with some notable differences that require special attention. The paper is presented as a
“compendium” which, along with the accompanying R packageMmPalateMiRNA, contains all of the experimental
data and source code to reproduce the analyses contained in the paper.

Conclusions: The compendium presented in this paper will provide investigators with an access point for applying
the methods available in R and Bioconductor for analysis of their own miRNA array data.

Background
Much of the recent bioinformatics literature has focused
on the role small RNA molecules, termed microRNAs
(miRNAs), play in regulating gene expression within plant
and animal systems [1]. Mature miRNAs are typically
18-25 bases in length and have been found to execute
key functions in silencing expression of specific target
genes [2]. MicroRNAs regulate expression of genes post-
transcriptionally, by binding the target mRNA molecule
and either directly inhibiting translation or destabilizing
the target mRNA [3]. MicroRNA microarray technology
has been successfully exploited to generate microRNA
gene expression profiles of the cell cycle [4], cell differenti-
ation [5], cell death [6], embryonic development [7], stem
cell differentiation [8], different types of cancers [9,10],
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the diseased heart [11] and diseased neural tissue [12].
Thus, microRNA gene expression profiling offers an effec-
tive means of acquiring novel and valuable information
regarding the expression and regulation of genes, under
the control of miRNAs, in a variety of biological systems.
The R software programming language [13] has gained

wide popularity among the scientific research community,
along with its extension to the realm of genomics appli-
cations via the Bioconductor [14,15] software for bioin-
formatics project. The Bioconductor project contains a
variety of R packages for application to high-throughput
“omics” data, including array preprocessing and normal-
ization, identification of differentially expressed genes,
clustering, classification, gene-set enrichment analysis,
and other down-stream analysis methods. Hence, the R
packages available at Bioconductor can provide a com-
plete suite of tools for analyzing array data from the
initial preprocessing steps through the final determination
of interesting genes and gene sets. Several publications
have addressed how to perform and reproduce an analysis
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of mRNA expression array data using software from R
and Bioconductor [16-18]. An integrated way to present
the analysis from these experiments is in the form of
a compendium [17,18], which encapsulates the primary
data, supporting software, statistical analysis, and docu-
ment text in a manner that allows other investigators to
completely reproduce the results of the experiment.
While many of the same tools for analyzing mRNA

expression arrays can be applied to the analysis of
miRNA data, there are distinct differences between
the two platforms which necessitate special use of
some methods (see overviews by Sarver [19] and
Thomson et al. [20]). In particular, miRNA arrays typ-
ically have far fewer genes that are spotted on the
array compared to mRNA arrays and require care-
ful consideration of the assumptions behind array pre-
processing methods prior to their application. Several
recent publications have compared various normaliza-
tion methods for microRNA microarray data [21-23],
while others have developed novel methods specifically
for miRNA data [24-27]. Though certain methods were
found to outperform others in each case, in general there
is still no consensus on the best normalization method.
Therefore, investigators are encouraged to perform their
own assessments to determine an appropriate normaliza-
tion method for their data. A second unique aspect of
miRNA analysis relative to mRNA analysis is that differ-
entially expressed miRNAs are subsequently evaluated for
potential gene targets that are regulated by the miRNAs.
A number of databases can be used for this purpopse, and
many of these have been ported to R in the form of Bio-
conductor packages. It is these putative regulatory targets
that are typically evaluated for biological and molecular
functionality, e.g. by gene set enrichment analysis.
In this article, we illustrate how to analyze a two-color

miRNA experiment using available packages from Bio-
conductor and the Comprehensive R Archive Network
(CRAN). Example code is provided for the complete
analysis including preprocessing of arrays, normalization,
identification of differentially expressed miRNAs, cluster-
ing, miRNA target identification, and gene set enrichment
analysis. The analysis presented here follows closely to
what was presented by Mukhopadhyay et al. [28]. Aspects
of miRNA analysis which require special attention are
highlighted, as are particular advantages of using specific
R and Bioconductor packages. Although the analysis is
specific to the Miltenyi Biotech miRXplore platform [29],
the general steps outlined here can easily be extended to
other platforms as well. To ensure reproducibility of the
results, the entire analysis is presented as a compendium
[17,18], in the form of an accompanying R package called
MmPalateMiRNA [30], which has beenmade freely avail-
able on Bioconductor. The package also includes several
functions to produce diagnostic plots for evaluating probe

intensity distributions on miRNA microarrays, as dis-
cussed in Sarkar et al. [26]. The experimental data used
in this manuscript are freely available as part of the com-
pendium package (GEO DataSets [31], accession number
GPL10179).

Methods
In the following subsections, we discuss the methodolo-
gies used for the analysis of the miRNA data in this
compendium. We refer the reader to the original papers
for detailed methods, here just providing an overview.

Preprocessing
An important first step in the analysis of microarray
data is to check the array quality by inspecting for out-
liers, spatial artifacts, and for differences in array intensity
distributions which may require normalization. Several
software packages exist for this purpose; in particular, the
arrayQualityMetrics package [32] available from Biocon-
ductor provides a comprehensive report for both one and
two-color microarray data. However, the diagnostic plots
in that package for two-color arrays are constructed from
ratios of the two channels (M values), and for miRNA
data plots focused solely on the control / reference chan-
nel may be more relevant. Specifically, Sarkar et al. [26]
introduced novel diagnostic plots for miRNA data for
the purpose of evaluating and comparing different nor-
malization methods, which serve as useful indicators for
array quality and outlyling arrays. In addition to evalu-
ating array quality, other important pre-processing steps
include identifying outlying values for specific probes,
performing non-specific filtering of probes, and imputing
probes that are missing or are extreme outliers.

Normalization
Several recent publications have drawn attention to the
normalization of miRNA data as distinct from that of
mRNA data. In particular, methods that assume some
level of symmetry in differential expression, such as
loess and quantile normalization, may be inappropri-
ate when global changes associated with phenotypes are
present [20]. As such, normalization methods that use
a set of invariant probes [23,26], or use single-channel
normalization methods [21] may outperform so-called
“global” normalization methods. Recent comparisons of
normalization methods for miRNA microarray data have
resulted in differing conclusions [21-23], with top per-
forming methods ranging from quantile normalization
for single-channel array data [22] to print-tip loess for
two-channel data [21]. However, Sarkar et al. [26] evalu-
ated several different normalization methods, incluuding
variance stabilizing normalization (VSN) [33], spike-in
VSN, and print-tip loess, and found no statistically signif-
icant differences between them based on correlation with
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qRT-PCR measurements. As is typical with array data in
general, investigators are encouraged to try several differ-
ent normalization methods and evaluate the differences
betweeen them on the basis of diagnostic plots [26].

Differential expression
A variety of methods exist to determine differential
expression between two or more groups of expression
data, including the classic t-test and the more recent
‘moderated’ variants. Members of the latter category
include the Significant Analysis of Microarrays (SAM)
[34], and empirical Bayes methods [35,36]. In particular,
the methodology developed by Smyth [36] extends these
concepts to apply to general microarray experiments with
arbitrary numbers of treatments and samples, in the con-
text of a hierarchical linear model. A model is fitted to
the expression values for each gene/transcript, and used
to evaluate differential expression for contrasts (compar-
isons between treatment groups) of interest. A ‘shrinkage’
estimate of the variability is obtained by a weighted aver-
age of the a pooled estimate of variation and the per-gene
estimate of variation. This lessens the occurrence of large
t-statistics due to exceptionally small variance estimates,
and effectively introduces a “fold-change” criterion into
the statistic. The methods are available in the Bioconduc-
tor package limma [37].

Clustering
Clustering of array profiles is helpful for determining
underlying structure in the changes of gene expression,
especially for time course data. Commonmethods include
hierarichical clustering, divisive hierarchical clustering
(DIANA), K-means, self-organizingmaps (SOM), the self-
organizing tree algorithm (SOTA), partitioning around
medoids (PAM), and model-based clustering [38-40].
With the diversity ofmethods available for the investigator
to try, a commonly encountered difficulty is determining
which clustering algorithm to use for a particular data set.
This problem can be partially overcome using clustering
validation measures, as found in the clValid package [41].
The clValid package allows the user to select from among
ten different clustering algorithms and uses three different
sets of validation measures (internal, stability, and biolog-
ical) to evaluate the performance of each algorithm for a
range of cluster numbers.

Identification of miRNA target genes
After a subset of miRNAs of interest has been determined,
e.g by differential expression or clustering, the next step
is to determine the potential regulatory targets of the
miRNAmolecules. Algorithms for predicting miRNA tar-
get molecules are fundamentally based on sequence com-
plimentarity (between the mature miRNA transcript and
the 3’-untranslated regions of potential target mRNAs),

species conservation, thermodynamic stability, and site
accessibility (see Alex et al. [42] for an overview). The
Bioconductor packageRmiR.Hs.miRNA [43] contains six
databases for human miRNA targets, while the database
of targets in miRBase [44] is available through the Bio-
conductor packagesmirbase.db [45] andmicroRNA [46].
The TargetScan database of miRNA targets [47] is also
available in targetscan.Hs.eg.db [48] for humans and
targetscan.Mm.eg.db [49] for mouse.

Gene set analysis
Once putative regulatory targets of the differentially
expressed miRNAs have been identified, a logical next
step is to identify what biological or functional path-
ways the targets have in common with each other. This
can be accomplished by gene set analysis, or gene set
enrichment analysis [50]. The regulatory targets are com-
pared with predefined gene sets such as GO classifi-
cations [51], KEGG pathways [52], chromosome bands,
and protein complexes. Gene set analysis is based on
the hypergeometric test and identifies which biologi-
cal gene sets have an under- and over-representation
of the identified miRNA targets. Bioconductor packages
which provide gene set analysis include GOstats [53] and
Category [54].

Results and discussion
Preliminaries
R packages that are needed for running the example code
in this manuscript are MmPalateMiRNA [30] and its
dependencies, and the additional packages latticeExtra
[55], clValid [41], targetscan.Mm.eg.db [49],microRNA
[46], org.Mm.eg.db [56], and GOstats [53]. The full list
of dependencies is given in the Availability and require-
ments. To begin, we download and install all of the needed
packages for running the code in this compendium. In the
following, text after the R> prompt denotes an R com-
mand, and a “+” denotes a continuation in code. The R
code from this compendium is available as Additional
file 1 (“MmPalateMiRNA SCBM.R”).

R> cran.pkgs <- c("lattice",
+ "latticeExtra", "xtable", "cluster",
+ "RSQLite", "DBI", "class",
+ "statmod", "RColorBrewer",
+ "clValid")
R> install.packages(cran.pkgs, repos =
+ "http://lib.stat.cmu.edu/R/CRAN/")
R> bioc.pkgs <- c("Biobase", "limma",
+ "vsn", "GOstats", "Category",
+ "org.Mm.eg.db", "microRNA",
+ "targetscan.Mm.eg.db", "graph",
+ "AnnotationDbi",
+ "multtest", "MmPalateMiRNA")
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R> source("http://bioconductor.org/
+ biocLite.R")
R> biocLite(bioc.pkgs)

Next, we load the MmPalateMiRNA package, which
additionally loads the required packages Biobase [14],
limma [37], vsn [33], statmod [57], lattice [58], and
xtable [59]. Further, we load the remaining needed pack-
ages for running the code in this compendium.

R> library("MmPalateMiRNA")

R> library("latticeExtra")

R> library("clValid")

R> library("targetscan.Mm.eg.db")

R> library("microRNA")

R> library("org.Mm.eg.db")

R> library("GOstats")

miRNA data
ThemicroRNAmicroarray data in this compendiumwere
obtained as previously described in Mukhopadhyay et al.
[28], and the data are publicly available from GEO [31]
(accession number GPL10179). Briefly, mouse embryonic
tissue was obtained on gestational days (GD) 12, 13, and
14, which represents the critical period of palate devel-
opment in the mouse. Total RNA (containing miRNAs)
was isolated using standard RNA extraction protocols.
RNA samples (1 μg) isolated from mouse embryonic oro-
facial tissues (GD-12 - GD-14) as well as the miRXplore
Universal Reference (UR, control channel) were fluores-
cently labeled with Hy5 (red) or Hy3 (green), respectively,
and hybridized to Miltenyi Biotec miRXplore Microar-
rays using the a-Hyb Hybridization Station [29]. For each
gestational day, three distinct pools of RNAwere indepen-
dently processed and applied to microarray chips. Probes
for a total of 1336 mature miRNAs (from human, mouse,
rat and virus), including positive control and calibration
probes, were spotted in quadruplicate on eachmicroarray.
Each array included probes for 588 murine miRNAs. The
miRXplore Universal Reference (UR) controls, provided
byMiltenyi, represent a defined pool of synthetic miRNAs
for comparison of multiple samples. Fluorescence signals
of the hybridized miRXplore Microarrays were detected
using a laser scanner from Agilent Technologies. Mean
andmedian signal and local background intensities for the
Hy3 and Hy5 channels were obtained for each probe on
each of the nine microarray images using the ImaGene
software [60]. The experimental data is included in the
MmPalateMiRNA package in a compiled format, as an
RGList object (a class in package limma [37] for two-
color microarray data) called PalateData. The data is
loaded into the R session using the code below. To see

how PalateDatawas created from the source data files,
see Additional file 2 (“ReadingTwoColorData.pdf”) and
the corresponding R code in Additional file 3 (“Read-
ingTwoColorData.R”). For more information on the data
in PalateData, use ?PalateData or see Additional
file 2.

R> data("PalateData")

Preprocessing
Outlying arrays
Sarkar et al. [26] described several diagnostic plots for
miRNA data that can be used to evaluate the need and
effectiveness of normalization procedures. These plots
can also serve as aids to determine outlying arrays and
batch effects. One such plot is the kernel density esti-
mate for each array, for different types of probes. Figure 1
plots the density estimates of the log2 intensity values
in the control channel for the unnormalized data, sep-
arated into “MMU miRNAs” (MMU = Mus musculus,
i.e. mouse), “Other miRNAs”, and “Control” probes (other
probes were non-informative). The plot requires use of the
lattice package, and the MmPalateMiRNA package con-
tains methods to produce plots for RGList objects based
on the generic functions in lattice. The code below illus-
trates the use of the function densityplot to produce
Figure 1. To access the documentation file for this func-
tion, use ?densityplot (in general, the documentation
file for function fun is accessed through ?fun, and the
documentation file for S4 class obj is accessed through
class?obj).

R> res <- densityplot(PalateData,
+ channel="G", group="probe.type",
+ subset = c("Other miRNAs",
+ "MMU miRNAs", "Control"),
+ col=rep(1:3, each=3),
+ lty=rep(1:3, 3),
+ key = list(lines=list(col=rep(1:3,
+ each=3), lty=rep(1:3, 3)),
+ text=list(colnames(PalateData)),
+ columns=3))
R> print(res)

Figure 1 indicates three possible outlying arrays, GD
12-1, 13-2, and 14-3. A second figure (Figure 2) can be
constructed based on the pairwise “distance” between
arrays, as measured by the median of the absolute differ-
ences in log2 intensity values for miRNAs in the green
channel [26]. The plot is created using the levelplot
method for RGList objects, which is included in the
package. Here we separate the plots according to the type
of probe, and the arrays are reordered so that the outlying
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Figure 1 Estimated density of reference channel before normalization. Estimated density of the log2 intensity values of the reference (control)
channel in the PalateDatamiRNA data from theMmPalateMiRNA package. Separate panels are provided for “MMUmiRNAs”, “Other miRNAs”,
and “Control” probes. Lines are color-coded according to gestational day (GD 12 = black, GD 13 = red, GD 14 = green), and different line types
represent replicates within each GD.

arrays are grouped together. The three arrays are clearly
outliers based on the control probes, but to a lesser extent
based on the other types of probes.

R> res <- levelplot(PalateData[,
+ c(1,5,9,2:4,6:8)],
+ channel="G",
+ group="probe.type",
+ subset=c("MMU miRNAs",
+ "Other miRNAs",
+ "Control",
+ "Empty"),
+ scales =
+ list(rot=c(45, 45)))
R> print(res)

Figures 1 and 2 demonstrate the potential need for nor-
malization or removal of several of the arrays. In the

Normalization subsection, we will evaluate the effective-
ness of several normalization methods in correcting these
systematic differences between the arrays.

Outlying values
In addition to checking for outlying arrays, it is impor-
tant to check for outlying values on individual probes.
To accomplish this, we evaluated for each probe whether
there were any extreme values (greater than 2.665 stan-
dard deviations above the mean). The checkOutliers
function checks this for each of the red and green chan-
nels in an RGList object and returns the indices of array
probes with extreme values.

R> outliers <- checkOutliers(PalateData)

The probes with outlying arrays can be visualized using
boxplots with the code below.
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Figure 2 Distance between arrays prior to normalization. Distance between arrays in the PalateDatamiRNA data from the
MmPalateMiRNA package. Distance was based on the median of the absolute differences in unnormalized log2 intensity values of the reference
channel. Separate panels are provided for “MMUmiRNAs”, “Other miRNAs”, “Control”, and “Empty” probes. Arrays have been reordered so that the
outlying arrays (12-1, 13-2, and 14-3) are grouped together.

R> boxplot(as.data.frame(t(PalateData
+ $R[outliers$Rout, ])))

The figure is omitted but clearly shows that the iden-
tified outlying values are nearly two orders of magnitude
above the rest of the intensity values. Rather than omit-
ting these values, we exploit the replicated design of the
arrays and substitute the mean of the other replicates on
the array for the extreme values using the fixOutliers
function.

R> PalateData$R <-
+ fixOutliers(PalateData$R,
+ outliers$Rout, PalateData$genes$Gene)
R> PalateData$G <-
+ fixOutliers(PalateData$G,
+ outliers$Gout, PalateData$genes$Gene)

Missing values
In addition to checking for outlying values, we also check
for any missing values in the two channels using the

checkMVs function. Here, we only find two probes on the
array with missing values in the background channels, so
we again impute these values using the means of the back-
grounds from the other three replicates on the chip using
the fixMVs function.

R> mvs <- checkMVs(PalateData)
R> PalateData$Rb <-
+ fixMVs(PalateData$Rb, mvs$Rb.na,
+ PalateData$genes$Gene)
R> PalateData$Gb <-
+ fixMVs(PalateData$Gb, mvs$Gb.na,
+ PalateData$genes$Gene)

Filtering probes
Prior to running the normalization methods, we filter the
probes and keep only those which correspond to miR-
NAs and calibration probes. Additionally, probes that
are not sufficiently above the background intensity level
may be unreliable and represent noise that can interfere
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with subsequent analysis, including normalization [26].
Prefiltering also reduces the number of statistical compar-
isons being performed and improves overall power [61].
Here, we filter probes whose foreground intensity val-
ues are below 1.1 times their background intensity level.
To allow for probes which may be expressed for a par-
ticular experimental condition (here, gestational day), we
keep all probes which have at least 3 samples above the
filtering threshold. Lastly, only those genes with all four
replicates passing the filtering step are retained. After all
pre-processing steps, a total of 956 probes, correspond-
ing to 175 mouse miRNAs, 42 other miRNAs, and 22
calibration probes each replicated 4 times, remain.

R> reducedSet <- filterArray(PalateData,
+ keep = c("MIR", "LET",
+ "POSCON", "CALIB"), frac = 1.1,
+ number = 3, reps = 4)

Normalization
Based on the literature [21-23,26], we evaluated several
normalization procedures on the filtered data, includ-
ing none, median, loess, quantile, VSN, and spike-
in VSN. The limma package [62] includes various
options for both within (normalizeWithinArrays)
and between (normalizeBetweenArrays) array nor-
malization, and the vsn package [33] has functions for
performing VSN and spike-in VSN. In all cases, a sim-
ple background correction was performed by subtracting
background from the foreground intensities.

R> ndata.none <- normalizeWithinArrays
+ (reducedSet, method = "none")
R> ndata.median <-
+ normalizeWithinArrays(reducedSet,
+ method = "median")
R> ndata.loess <- normalizeWithinArrays
+ (reducedSet, method = "loess")
R> ndata.quantile <-
+ normalizeBetweenArrays(reducedSet,
+ method = "quantile")
R> ndata.vsn.limma <-
+ normalizeVSN(reducedSet)
R> idx.control <- which(reducedSet
+ $genes$probe.type == "Control")
R> spikein.fit <- vsn2(reducedSet
+ [idx.control, ], lts.quantile = 1,
+ backgroundsubtract = TRUE)
R> ndata.spikein.vsn <-
+ predict(spikein.fit, newdata =
+ reducedSet)

Diagnostic plots
Several diagnostic plots can be used to contrast the
effectiveness of each normalization procedure. The

MmPalateMiRNA package contains several methods
to produce these plots for lists of class MAList or
NChannelSet objects, based on functions in the lat-
tice package. Figure 3, rows one through five, plots
the intensity distribution for the reference channels
after each of the normalization procedures (use of the
useOuterStrips function requires the latticeExtra
package). Note that the order of panels in lattice plots is
from the bottom left panel to the right and up, according
to the rules used for graphs. The quantile normalization
procedure is clearly the most successful in removing the
intensity bias that was apparent for three of the arrays (12-
1, 13-2, and 14-3), while loess and median normalization
appear to be the least successful. Notably, normalization
based on the spike-in probes was unsuccessful, perhaps
since these probes were shifted differently in the reference
channel relative to the other probe types.

R> ndata.all <- list(ndata.none,
+ ndata.median, ndata.loess,
+ ndata.quantile, ndata.vsn.limma,
+ ndata.spikein.vsn)
R> names(ndata.all) <- c("None",
+ "Median", "Loess", "Quantile",
+ "VSN", "Spike-in VSN")
R> dplot <- densityplot(ndata.all,
+ channel="G", group="probe.type",
+ subset = c("Other miRNAs", "MMU
+ miRNAs", "Control"),
+ col=rep(1:3, each=3),
+ lty=rep(1:3, 3),
+ par.strip.text=list(cex=0.7),
+ key = list(lines=list(col=rep
+ (1:3, each=3),
+ lty=rep(1:3, 3)),
+ text=list(colnames(ndata.none)),
+ columns=3))
R> dplot <- useOuterStrips(dplot) ##
+ from the latticeExtra package
R> plot(dplot)

An additional plot based on the median absolute dif-
ference between probes in the reference channel can
be used to compare relative success of the normaliza-
tion procedures in removing the array effect (Figure 4).
Here again, quantile normalization appears to be the
best, while loess and median normalization are the least
effective.

R> res <- levelplot(ndata.all,
+ channel="G",
+ order=c(1,5,9,2:4,6:8),
+ scales = list(rot=c(45, 45)))
R> print(res)
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Figure 3 Density of reference channel after normalization. Estimated density of the log2 intensity values of the reference channel in the
PalateDatamiRNA data from theMmPalateMiRNA package, both before (“None”) and after normalization by various normalization
procedures. Separate panels are provided for “MMUmiRNAs”, “Other miRNAs”, and “Control” probes. Lines are color-coded according to gestational
day (GD 12 = black, GD 13 = red, GD 14 = green), and different line types represent replicates within each GD.

To investigate the effect of the normalization proce-
dure on the experimental channel, plots of the spread
(median absolute deviation) versus the location (median)
of all probes can be used. Plots of this type can be pro-
duced using the MADvsMedianPlot function in the
MmPalateMiRNA package. Probes of different types are
highlighted, with particular focus on the spike-in probes,
which should have low variability across all the arrays. In
Figure 5, spike-in VSN has the lowest variability among
the spike-in probes, compared to the other normaliza-
tion methods. However, spike-in VSN has also dramati-
cally decreased the variation among all the probes in the
experimental channel, making the normalization proce-
dure questionable in this case. Quantile normalization has
resulted in large variations for some of the probes with
lower intensity values.

R> res <- MADvsMedianPlot(ndata.all,
+ channel = "R", group = "probe.type",

+ pch = 20, subset = c("MMU
+ miRNAs", "Other miRNAs",
+ "Control"),
+ key = list(points = list(pch =
+ rep(20, 3),
+ col = trellis.par.get()
+ $superpose.symbol$col[1:3]),
+ text = list(c("MMU miRNAs",
+ "Other miRNAs", "Control")),
+ columns = 3))
R> print(res)

Plots of the log2 intensity ratios (M values) versus the
mean log2 intensity values (A values) for each probe can
be used to evaluate whether there is a bias associated with
overall intenstity level for each array. This so-called “MA”
plot is illustrated in Figure 6 for quantile normalization.
MA plots for the other normalization methods are not
shown, though code to produce the plots is available in
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Figure 4 Distance between arrays in reference channel after normalization. Distance between arrays in the PalateDatamiRNA data from
theMmPalateMiRNA package, both before (“None”) and after normalization by various normalization procedures. Distance was based on the
median of the absolute differences in log2 intensity values of the reference channel, for all probes remaining after filtering. Arrays have been
reordered so that the outlying arrays (12-1, 13-2, and 14-3) are grouped together.

the accompanying R script “MmPalateMiRNA SCBM.R”.
Quantile normalization has removed any association
between theM and A values, while for VSN normalization
there is still a trend which is similar to the unnormalized
data. The MA plot for spike-in VSN shows a dramatic
effect on the intensity ratios.

R> res <- MAplot(ndata.quantile, pch =
+ 20)
R> print(res)

As a final evaluation, we inspected heatmaps along with
hierarchical clustering of the arrays. Figure 7 displays the
heatmap after quantile normalization and reveals that the
previously identified outlying arrays (samples 12-1, 13-2,
and 14-3) still do not cluster with the other replicates for
that day.

R> heatmap(ndata.quantile$M, col =
+ cm.colors(256), labRow = FALSE)

Table 1 gives the correlations between each pair of
arrays, based on the log2 intensity ratios. Since the other
two replicates for each day were highly correlated (r ≥
0.95), we decided to use only those two replicates from
each day for subsequent statistical analysis. Normalization

was redone omitting the arrays 12-1, 13-2, and 14-3, using
quantile normalization.

R> omit <- which(colnames(reducedSet$R)
+ %in% c("12-1", "13-2", "14-3"))
R> ndata <- normalizeBetweenArrays
+ (reducedSet[, -omit], method =
+ "quantile")

Imputation
Sixteen probes from the six arrays exhibited negative
intensities after the background procedure and resulted
in missing values for subsequent calculation of the log2
intensity ratios. A significant percentage of missing val-
ues can have a substantial impact on downstream analysis
of array data [63], and in such cases choice of a imputa-
tion procedure should be carefully considered. Here, with
a relatlively small percentage of missing values, the impact
on data analysis will be relatively minimal. Hence we use
the K-nearest neighbor imputation scheme [64] as a fast
and effective approach, implemented in the imputeKNN
function included in packageMmPalateMiRNA.

R> ndata$M <- imputeKNN(as.matrix
+ (ndata$M), dist = "cor")
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procedures. Points are color-coded by type of probe (“MMUmiRNAs”, “Other miRNAs”, and “Control”).

R> ndata$A <- imputeKNN(as.matrix
+ (ndata$A), dist = "cor")

Determining differentially expressed miRNAs
To test for differential expression of miRNAs between dif-
ferent gestational days (GD-12, 13, and 14), the limma
package [36,37] was used. Use of the limma pack-
age requires the user to create a design matrix, which
defines the possible levels for each experimental fac-
tor, and is used to construct a model matrix and con-
trasts to test for differential expression between factor
levels. The model matrix consists of indicator variables
for the levels of each experimental factor in our design,
which in our case corresponds to each of the gestational
days.

R> design <- data.frame(grp = c(1, 1,
+ 2, 2, 3, 3), rep = c(1, 2,
+ 1, 2, 1, 2))

R> design$grp <- factor(design$grp,
+ labels = c("Day12", "Day13",
+ "Day14"))
R> mmat <- model.matrix(∼0 +
+ design$grp)
R> colnames(mmat) <- c("Day12",
+ "Day13", "Day14")

Estimates of gene expression are based on the log2
Red/Green intensity ratios, hereafter referred to as
‘expression values’. Contrasts defined here estimate the
differences in mean expression between each gestational
day. The makeContrasts function in limmawill gener-
ate these for you.

R> contrast.matrix <-
+ makeContrasts(Day13 - Day12, Day14
+ - Day12, Day14 - Day13,
+ levels = mmat)
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Some advantages of using limma over other methods
include the ability to incorporate probe quality weights
and to handle duplicate probes for each miRNA on the
chip via the duplicateCorrelation function [62].
These advantages are particularly evident in small sam-
ple sizes, as in this experiment. To make use of the
duplicated probes, we first order the normalized data
so that replicated probes are adjacent to each other.
The probe quality weights are incorporated in the cal-
culation of the correlation matrix for the duplicated
probes.

R> idx <- order(ndata$genes$Gene)
R> ndata <- ndata[idx, ]
R> idx.rm <- which(ndata$genes$probe.
+ type == "Control")
R> ndata <- ndata[-idx.rm, ]
R> corfit <- duplicateCorrelation(ndata,
+ mmat, ndups = 4, weights =
+ ndata$weights)

Next, the lmFit function is used to fit the hierar-
chical linear model, and the contrasts.fit function
used to get contrast estimates. The eBayes function
generates the moderated (empirical Bayesian) t-statistics
corresponding to each of the contrast estimates.

R> fit <- lmFit(ndata, mmat, ndups=4,
+ correlation=corfit$consensus)
R> fitc <- contrasts.fit(fit,
+ contrast.matrix)
R> fitc <- eBayes(fitc)

The topTable function calculates and reports fold
change, moderated t-statistics, unadjusted and adjusted
p-values for the comparison of interest. P-values are
adjusted by the method of Benjamini & Hochberg [65],
which controls the expected false discovery rate. Code
below shows the calculation for the comparison between
gestational days 13 and 12, and the results are given
in Table 2. Results for comparisons between the other
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Table 1 Correlation between arrays after quantile
normalization

12-1 12-2 12-3 13-1 13-2 13-3 14-1 14-2 14-3

12-1 1.00 0.86 0.86 0.85 0.86 0.84 0.82 0.83 0.88

12-2 0.86 1.00 0.97 0.96 0.86 0.96 0.92 0.93 0.89

12-3 0.86 0.97 1.00 0.96 0.85 0.94 0.91 0.93 0.87

13-1 0.85 0.96 0.96 1.00 0.86 0.95 0.94 0.94 0.90

13-2 0.86 0.86 0.85 0.86 1.00 0.85 0.83 0.84 0.90

13-3 0.84 0.96 0.94 0.95 0.85 1.00 0.95 0.95 0.87

14-1 0.82 0.92 0.91 0.94 0.83 0.95 1.00 0.96 0.90

14-2 0.83 0.93 0.93 0.94 0.84 0.95 0.96 1.00 0.88

14-3 0.88 0.89 0.87 0.90 0.90 0.87 0.90 0.88 1.00

gestational days are omitted but code to calculate them is
included in the R script “MmPalateMiRNA SCBM.R”.

R> top13v12 <- topTable(fitc, coef = 1,

+ number = nrow(ndata)/4,

+ adjust = "fdr", sort.by = "P")

R> top13v12$FC <- 2ˆ(top13v12$logFC)

R> sig13v12 <- top13v12[top13v12

+ $adj.P.Val < 0.05]

R> colNames <- c("miRNA Name",
+ "Organism", "Fold Change", "T-stat",
+ "Adj p-value")
R> names(sig13v12)[c(9, 10, 17, 13,
+ 15)] <- colNames
R> res <- xtable(sig13v12[, colNames],
+ digits = c(0, 0, 0, 2, 2,
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Table 2 Significantly differentially expressedmiRNAs for
GD 13 versus 12

miRNA Name Organism Fold Change T-stat Adj p-value

LET-7B MMUmiRNAs 1.78 7.72 ¡ 0.001

MIR-193A-3P MMUmiRNAs 2.94 6.85 ¡ 0.001

LET-7C MMUmiRNAs 1.50 5.74 0.001

MIR-140-5P MMUmiRNAs 1.46 5.31 0.001

MIR-342 Other miRNAs 0.56 -5.18 0.001

MIR-31 MMUmiRNAs 1.56 4.98 0.002

MIR-193B MMUmiRNAs 1.66 4.86 0.002

MIR-301 Other miRNAs 0.78 -4.44 0.005

MIR-20B Other miRNAs 0.75 -4.37 0.006

MIR-543-3P MMUmiRNAs 0.69 -3.91 0.015

MIR-301B Other miRNAs 0.71 -3.83 0.015

MIR-342-3P MMUmiRNAs 0.58 -3.83 0.015

MIR-22 MMUmiRNAs 1.34 3.78 0.015

LET-7I MMUmiRNAs 1.35 3.75 0.015

MIR-152 MMUmiRNAs 1.25 3.75 0.015

MIR-298 MMUmiRNAs 0.77 -3.45 0.030

MIR-148A MMUmiRNAs 1.34 3.41 0.030

MIR-210 MMUmiRNAs 1.33 3.40 0.030

MIR-422A Other miRNAs 1.67 3.34 0.033

MIR-23A MMUmiRNAs 1.29 3.32 0.033

MIR-20A MMUmiRNAs 0.79 -3.30 0.033

MIR-347 Other miRNAs 1.19 3.18 0.042

Table 2: miRNA name, organism, fold change, moderated t-statistic, and
adjusted p-values for comparisons in miRNA expression between gestational
days 13 and 12. miRNAs which are up-regulated on GD 13 are indicated by
fold-changes above one. P-values are adjusted by the method of Benjamini &
Hochberg [65], which controls the expected false discovery rate.

+ 3), caption = "Significantly
+ differentially expressed miRNAs
+ for GD 13 versus 12",

+ label = "tab:contrast13v12",
+ caption.placement = "top")

R> print(res, include.rownames = FALSE)

A nice summary of the results for the comparisons
between gestational days is a Venn diagram, which gives
the number of up- and down-regulated genes for each
comparison, along with the number in the intersection of
these sets (Figure 8).

R> res <- decideTests(fitc)

R> vennDiagram(res, include = c("up",
+ "down"), counts.col = c("red",

+ "green"), cex = 1.25)

Day13 − Day12 Day14 − Day12

Day14 − Day13 171

3

17
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1
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171

1

18

19

1

0

2

5

down
Figure 8 Venn diagram for comparisons between gestational
days. Venn diagram illustrating the number of up- and
down-regulated miRNAs for each comparison between gestational
days, along with the number in the intersection of these sets. Includes
all miRNAs from the PalateDatamiRNA data with an adjusted
p-value ¡ 0.05 for at least one of the comparisons.

Although we have focused on the calculation of test
statistics corresponding to pairwise comparisons between
gestational days, it is easy to obtain estimates for other
contrasts of interests between the experimental condi-
tions. For example, the the contr.poly function will
provide contrasts to test for linear and quadratic trends,
and the contr.helmert function gives the Helmert
contrasts. To illustrate, we calculate analysis of variance
(ANOVA) F-statistics for testing for differential expres-
sion between all three gestational days by combining two
orthogonal contrasts, here using the contr.helmert
function.

R> contr.helmert(3)
[,1] [,2]

1 -1 -1

2 1 -1

3 0 2

R> contrast.helmert <-
+ makeContrasts(Day13 - Day12, Day14 -
+ 0.5 *

+ Day12 - 0.5 * Day13, levels =
+ mmat)

R> fitc.helmert <- contrasts.fit(fit,
+ contrast.helmert)



Brock et al. Source Code for Biology andMedicine 2013, 8:1 Page 14 of 20
http://www.scfbm.org/content/8/1

R> fitc.helmert <- eBayes(fitc.helmert)
R> Fstats <- topTable(fitc.helmert,
+ coef = c(1, 2), number =
+ nrow(ndata)/4,
+ adjust = "fdr", sort.by = "F")

Next, the miRNAs with significant F-statistics (adjusted
p < 0.05) are identified for follow up examination, e.g. by
clustering. The duplicates are averaged prior to further
analysis.

R> avedata <- avedups(ndata, ndups =
+ 4, spacing = 1)
R> sigFgenes <- Fstats$Gene.ID[which
+ (Fstats$adj.P.Val < 0.05)]
R> mat <- as.matrix(avedata[match
+ (sigFgenes, avedata$genes$Gene),
+ ])
R> colnames(mat) <- c("GD-12-1",
+ "GD-12-2", "GD-13-1", "GD-13-2",
+ "GD-14-1", "GD-14-2")
R> rownames(mat) <- sigFgenes

Clustering expression profiles
After identifying the differentially expressed miRNAs,
clustering analysis can be performed to group genes with
similar trends over time. A common difficultly is deciding
which clustering algorithm to use and how many clus-
ters to create. Cluster validation measures, as contained
in the R package clValid [41], can help in this regard.
Below, the clValid function is used to evaluate hierar-
chical clustering, SOTA, DIANA, and K-means clustering
algorithms, for a range of one to six clusters in each case.
The expression values for each day are averaged over the
two replicates prior to clustering (object aveExpr). The
internal validation measures (connectivity, Dunn Index,
and Silhouette Width) are used with a correlation metric.
A summary of the result indicates that hierarchical clus-
tering with six clusters provides the optimal connectivity
and Dunn Index measures, while DIANA with six clusters
gives the optimal Silhouette Width.

R> aveExpr <- t(apply(mat, 1,
+ function(x) tapply(x, c(1, 1, 2, 2,
+ 3, 3), mean)))
R> clRes <- clValid(aveExpr, 6,
+ clMethod = c("hierarchical", "diana",
+ "sota", "kmeans"), validation =
+ c("internal"), metric =
+ "correlation")
R> summary(clRes)

Clustering Methods:
hierarchical diana sota kmeans

Cluster sizes:
6

Validation Measures:
6

hierarchical Connectivity 20.2599
Dunn 0.0132
Silhouette 0.7144

diana Connectivity 20.9897
Dunn 0.0033
Silhouette 0.7719

sota Connectivity 182.4349
Dunn 0.0000
Silhouette -0.7568

kmeans Connectivity 195.3556
Dunn 0.0000
Silhouette -0.2477

Optimal Scores:

Score Method Clusters
Connectivity 20.2599 hierarchical 6
Dunn 0.0132 hierarchical 6
Silhouette 0.7719 diana 6

The results from hierarchical clustering with six clus-
ters was subsequently selected for visually displaying
the data, using the clustPlot function available
in package MmPalateMiRNA. The expression val-
ues for each miRNA are scaled to mean zero and
standard deviation one for ease of visualization. The
display is given in Figure 9. The two predominant
clusters are cluster one and cluster two, which cor-
respond to those miRNAs which exhibit a linear
upward and downward trend over the time course,
respectively.

R> clusters <- cutree(clRes@clusterObjs
+ $hierarchical, 6)
R> aveExpr <- t(scale(t(aveExpr)))
R> colnames(aveExpr) <- c("GD-12",
+ "GD-13", "GD-14")
R> clustPlot(clusters, aveExpr, 3, 2)

Determining miRNA target genes
To follow-up the results from the differentially expres-
sion and clustering analysis, the next step is to deter-
mine putative regulatory targets of the differentially
expressed miRNAs. To illustrate, we identify the puta-
tive targets of the miRNAs contained in the first clus-
ter in Figure 9. The miRNAs in the first cluster are
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Figure 9 Clustering of differentially expressedmiRNAs. Plot of clustering results for all significant (adjusted p-value for F-statistic ¡ 0.05)
differentially expressed miRNAs from the PalateDatamiRNA data. Profiles are based on hierarchical clustering with six clusters, with expression
values for each miRNA scaled to mean zero and standard deviation one.

evaluated for putative targets using the databases Tar-
getScan [47] (package targetscan.Mm.eg.db [49]) and
miRBase [44] (package microRNA [46]). The mouse spe-
cific miRNA names are first extracted and then con-
verted to the standard nomenclature using the function
miRNames, which is included in the accompanying R
script.

R> ids1 <- names(clusters[which(clusters

+ == 1)])

R> miRs1 <- miRNames(ids1,

+ avedata$genes$Name, avedata$genes
+ $"Gene ID")

Targetscan targets are obtained using the code below.
The objects in the targetscan.Mm.eg.db package are
Bimap objects, which are mappings from one set of
keys (the left keys or Lkeys) to another (the right
keys or Rkeys). We start by mapping the miRBase
identifiers to their miRNA family names, then map
the miRNA families to Entrez Gene identifiers of the
targets in the TargetScan database. Several of the
miRNAs of interest required slight modifications to
their names prior to their mapping. The TargetScan
database identifies 4,640 unique Entrez Gene identifiers as
putative targets.

R> res01 <- miRs1 %in%
+ ls(targetscan.Mm.egMIRNA)

R> miRs1[!res01]

[1] "mmu-miR-126" "mmu-let-7b*"

R> miRs1[!res01] <- c("mmu-miR-126-3p",
+ "mmu-let-7b")

R> miRs1 <- unique(miRs1)

R> miRs1.list <- mget(miRs1,
+ targetscan.Mm.egMIRNA)
R> miRs1.fams <- mget(miRs1,
+ targetscan.Mm.egMIRBASE2FAMILY)
R> miRs1.targets <-
+ mget(as.character(miRs1.fams),
+ revmap(targetscan.Mm.egTARGETS))
R> targets.tscan <-
+ unique(unlist(miRs1.targets))
R> length(targets.tscan)

[1] 4640

Mouse miRNA targets in the miRBase database are
in the data frame mmTargets within the microRNA
package and can be obtained using the code below. The
targets are stored as Ensembl transcript identifiers. A total
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of 13,126 Ensembl transcripts are identified as putative
targets.

R> data(mmTargets)
R> targets.miRB <-
+ mmTargets$target[which(mmTargets$name
R> targets.miRB <- unique(targets.miRB)
R> length(targets.miRB)

[1] 13126

Lastly, we take the intersection of the targets from
TargetScan and miRBase as our set of putative targets.
Ensembl transcript identifiers are firstly converted to
Entrez Gene identifiers using the org.Mm.eg.db [56] Bio-
conductor package. The final list contains 2,080 Entrez
Gene identifiers.

R> idx.miRB <-as.character(targets.miRB)
+ %in% ls(revmap(org.Mm.egENSEMBLTRANS))
R> targets.miRB.list <-
+ as.character(targets.miRB)[idx.miRB]
R> targets.miRB.entrez <-
+ unlist(mget(targets.miRB.list,
+ revmap(org.Mm.egENSEMBLTRANS)))
R> targets.intsect <-
+ intersect(targets.tscan,
+ targets.miRB.entrez)
R> length(targets.intsect)

[1] 2080

Gene set analysis
As a final step in our analysis, we take the puta-
tive miRNA targets from the intersection of the Tar-
getScan and miRBase databases and perform gene set
enrichment analysis on them, using the hypergeometric
test from the GOstats package [66]. Terms in the GO
hierarchy are analyzed for over-representation of genes
from our miRNA target list, relative to the total num-
ber from the mouse genome having that annotation. A
GOHyperGParams object is created which contains the
list of targets (selectedEntrezIds), the gene “uni-
verse” (entrezUniverse), the annotation database to
use, the GO ontology, and direction and significance level
of the test.

R> selectedEntrezIds <- targets.intsect
R> entrezUniverse <-
+ unlist(ls(org.Mm.egENSEMBLTRANS))
R> hgCutoff <- 0.001
R> GOparams <- new("GOHyperGParams",
+ geneIds = selectedEntrezIds,
+ universeGeneIds = entrezUniverse,

+ annotation = "org.Mm.eg",
+ ontology = "BP", pvalueCutoff =
+ 0.001, conditional = TRUE,
+ testDirection = "over")

After the GOHyperGParams object has been created,
the test can be conducted using the hyperGTest func-
tion. An html file summarizing the results can be created
using the htmlReport function, which is available as
Additional file 4 (“hgResult.pdf”). Particular categories
of interest include GO:0060021 (palate development),
GO:0048008 (platelet-derived growth factor receptor sig-
naling pathway), GO:0060429 (epithelium development),
GO:0030855 (epithelial cell differentiation), GO:0016331
(morphogenesis of embryonic epithelium), GO:0016055
(Wnt receptor signaling pathway), GO:0060828 (regu-
lation of canonical Wnt receptor signaling pathway),
GO:0008277 (regulation of G-protein coupled receptor
protein signaling pathway), and GO:0007179 (transform-
ing growth factor beta receptor signaling pathway).

R> hgOver <- hyperGTest(GOparams)
R> htmlReport(hgOver, file =
+ "hgResult.html")

As a final step, we evaluate the mature miRNA
sequences and seed regions of the miRNAs which tar-
get the genes in a particular GO category. To illustrate,
the GO category 0007179, transforming growth factor
beta receptor signaling pathway, is used. Entrez Gene IDs
belonging to this category are identified and intersected
with the selected Entrez Gene IDs corresponding to clus-
ter one of Figure 9. This results in 21 identified Entrez
Gene IDs.

R> egIdsAll <- get("GO:0007179",
+ org.Mm.egGO2ALLEGS)
R> egIds <- intersect(egIdsAll,
+ selectedEntrezIds)
R> length(egIds)

[1] 21

Next, these Entrez Gene IDs are reverse mapped back
to the set of miRNAs which putatively target these genes.
This produces a total of 19 identified miRNAs.

R> miRs.BetaR.TS <- mget(egIds,
+ targetscan.Mm.egTARGETS)
R> miRs.BetaR.fams <-
+ intersect(miRs1.fams,
+ unlist(miRs.BetaR.TS))
R> miRs.BetaR.list <-
+ mget(miRs.BetaR.fams,
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+ revmap(targetscan.Mm.egMIRBASE2FAMILY))
R> miRs.BetaR.mmu <- grep("mmu",
+ unlist(miRs.BetaR.list), value = TRUE)

R> miRs.BetaR.clust1 <-
+ intersect(miRs1, miRs.BetaR.mmu)

R> length(miRs.BetaR.clust1)

[1] 19

Lastly, the mature sequences and seed regions of these
miRNAs are determined, using the mmSeqs database and
seedRegions function in package microRNA. These
sequences can be evaluated for any commonalities, to
be used in determining potential targets for follow-up
luciferase assays and other functional experiments [67].
In this case, the sequences are rather heterogeneous,
although the seed region “GAGGUA” does show up in four
of the nineteen identified miRNAs.

R> data(mmSeqs)
R> idx.betaR <- which(names(mmSeqs)
+ %in% miRs.BetaR.clust1)

R> table(seedRegions(mmSeqs[idx.betaR]))

AACACU ACUGGC AGCACC AGCAGC AGCUGC
1 2 1 1 1

CAGUGC CCCUGA GAGGUA GGAAUG GGCUCA
1 1 4 1 1

GUAAAC
1

UCAAGU UCCAGU UUGGUC

1 1 2

Session information
It is important to note that some of the presented results
may depend on the versions of the software packages
that were used to produce them. The following gives the
complete information of the R session under which the
presented results were obtained.

R> sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: x86 64-w64-mingw32/x64
(64-bit)

locale:

[1] LC COLLATE=English United
States.1252

[2] LC CTYPE=English United States.1252

[3] LC MONETARY=English United
States.1252

[4] LC NUMERIC=C

[5] LC TIME=English United States.1252
attached base packages:
[1] stats graphics grDevices

utils datasets methods base

other attached packages:
[1] GO.db 2.8.0 GOstats 2.24.0
[3] graph 1.36.0 Category 2.24.0
[5] org.Mm.eg.db 2.8.0

microRNA 1.16.0
[7] targetscan.Mm.eg.db 0.6.0

RSQLite 0.11.2
[9] DBI 0.2-5 AnnotationDbi 1.20.2
[11] clValid 0.6-4 class 7.3-5
[13] cluster 1.14.3 latticeExtra 0.6-24
[15] RColorBrewer 1.0-5

MmPalateMiRNA 1.6.0
[17] vsn 3.26.0 lattice 0.20-10
[19] statmod 1.4.16 limma 3.14.1
[21] xtable 1.7-0 Biobase 2.18.0
[23] BiocGenerics 0.4.0

loaded via a namespace (and not
attached):
[1] affy 1.36.0 affyio 1.26.0

annotate 1.36.0
[4] AnnotationForge 1.0.2

BiocInstaller 1.8.3
Biostrings 2.26.2

[7] genefilter 1.40.0 grid 2.15.2
GSEABase 1.20.0

[10] IRanges 1.16.4 parallel 2.15.2
preprocessCore 1.20.0

[13] RBGL 1.34.0 splines 2.15.2
stats4 2.15.2

[16] survival 2.36-14 tools 2.15.2
XML 3.95-0.1

[19] zlibbioc 1.4.0

Conclusions
In this paper, we present a complete analysis of miRNA
data using R and Bioconductor, including preprocessing,
normalization, differential expression, clustering, identifi-
cation of target genes, and gene set enrichment analysis
of putative miRNA gene targets. Though there are sev-
eral papers in the literature which give an overview of
the analysis of miRNA data, theMmPalateMiRNA pack-
age is unique in presenting a comprehensive analysis of
miRNA data which is completely reproducible. Further,
while the number of packages for analyzing miRNA array
data in Bioconductor is continuing to expand (see, e.g.,
packages LVSmiRNA [68], miRNApath [69], RmiR [70],
and ExiMiR [71]), the distinguishing characteristic of
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this package is that it integrates many of these recent
advances into one central document. Thus, this article
can serve as a template for other investigators to con-
duct their own analysis. Important aspects of selecting
a normalization algorithm for miRNA data are illus-
trated, along with code for producing useful diagnos-
tic plots to select an appropriate procedure [26]. These
functions are not readily accessible to users other than
through the MmPalateMiRNA package. Advantages of
using the limma package to fit advanced hierarchical
models for testing differential expression are documented,
along with code for testing comparisons between experi-
mental groups of interest. Lastly, we illustrate the use of
miRNA target databases which have been recently ported
to Bioconductor for identifying putative gene targets of
selected miRNAs, as well as how to test for enrichment
in biological and functional categories among the puta-
tive miRNA targets. While the analysis we present here
is fairly comprehensive, it is straightforward to use other
software, such as Ingenuity Pathway Analysis [72] to build
from the results presented in this article (see [28] as an
example). The complete analysis in this article is freely
available as a compendium in the form of an R pack-
age (MmPalateMiRNA, downloadable from Bioconduc-
tor [15]), along with accompanying documentation, code,
and functions to perform all of the analysis.

Availability and requirements
Project name: MmPalateMiRNA: An R package com-
pendium for murine palate miRNA expression analysis
Project home page: http://www.bioconductor.org/pack-
ages/release/bioc/html/MmPalateMiRNA.html
Operating system(s): Platform independent
Programming language: R
Other requirements: R version 2.13.1 or higher [13],
R packages lattice, latticeExtra, xtable, cluster,
RSQLite, DBI, class, statmod, RColorBrewer, and
clValid (available from CRAN [13]), and Bioconduc-
tor packages Biobase, limma, vsn, GOstats, Category,
org.Mm.eg.db, microRNA, targetscan.Mm.eg.db,
graph, AnnotationDbi, and multtest (available from
Bioconductor [15])
License: GNU GPL-3

Additional files

Additional file 1: “MmPalateMiRNA SCBM.R”. R source code for
running all of the analysis document in this manuscript.

Additional file 2: “ReadingTwoColorData.pdf”. Documentation
detailing how to prodcue the detail how to produce the PalateData
miRNA data available in R packageMmPalateMiRNA from the source
data files available on GEO DataSets [31] (accession number GPL10179).

Additional file 3: “ReadingTwoColorData.R”. R code to accompany
Additional File 3 3, “ReadingTwoColor.pdf”.

Additional file 4: “hgResult.pdf”. Significantly enriched GO biological
process (BP) categories, based on the putative set of targets of differentially
expressed miRNAs. P-value was based on the hypergeometric test, with all
murine Entrez Gene ID entries used as the gene “universe” for comparison.
For more details on how to obtain the results, see the subsection Gene
Set Analysis under Results and Discussion.
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