
Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5
http://www.scfbm.org/content/7/1/5
SOFTWARE REVIEW Open Access
Automatic Fortran to C++ conversion with FABLE
Ralf W Grosse-Kunstleve1*, Thomas C Terwilliger2, Nicholas K Sauter1 and Paul D Adams1,3
Abstract

Background: In scientific computing, Fortran was the dominant implementation language throughout most of the
second part of the 20th century. The many tools accumulated during this time have been difficult to integrate with
modern software, which is now dominated by object-oriented languages.
Results: Driven by the requirements of a large-scale scientific software project, we have developed a Fortran to C++
source-to-source conversion tool named FABLE. This enables the continued development of new methods even while
switching languages. We report the application of FABLE in three major projects and present detailed comparisons of
Fortran and C++ runtime performances.
Conclusions: Our experience suggests that most Fortran 77 codes can be converted with an effort that is minor
(measured in days) compared to the original development time (often measured in years). With FABLE it is possible to
reuse and evolve legacy work in modern object-oriented environments, in a portable and maintainable way. FABLE is
available under a nonrestrictive open source license. In FABLE the analysis of the Fortran sources is separated from the
generation of the C++ sources. Therefore parts of FABLE could be reused for other target languages.
Keywords: Fortran, C++, Source-to-source conversion, Python, Test-driven development
Background
The work presented here grew out of the development of a
software suite for the determination of macromolecular
structures using crystallographic methods [1]. Crystallo-
graphic computing has been connected to language devel-
opment from the earliest days of scientific software when
David Sayre, who is mainly known for his contributions to
crystallography [2], was also a member of the original For-
tran development team [3]. This early influence is still evi-
dent in a substantial amount of crystallographic software
implemented in Fortran 77 [4]. At the same time, develop-
ments in computer science have led to the wide-spread use
of object-oriented languages.[a] Integrating time-tested For-
tran implementations into modern object-oriented software
environments is often problematic (see below), yet in many
cases it would be prohibitively expensive to replace existing
Fortran implementations with a new object-oriented imple-
mentation. This is because scientific algorithms tend to be
highly specialized and their understanding usually requires
complex domain-specific knowledge. Often only a relatively
small fraction of a development effort is spent on coding. If
a new developer has to acquire domain-specific knowledge
* Correspondence: fable@cci.lbl.gov
1Lawrence Berkeley National Laboratory, Cyclotron Road, BLDG, 64R0121,
Berkeley, CA 94720-8118, USA
Full list of author information is available at the end of the article

© 2012 Grosse-Kunstleve et al; licensee BioMe
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
for a rewrite in another language, the project completion
time can be very similar to the initial one. This problem
worsens over time as the complexity of scientific methods
is steadily increasing.
Integrating existing Fortran implementations into

object-oriented environments is often problematic be-
cause most Fortran programs of significant size make
extensive use of global variables, which means that
they cannot safely be used as building blocks in modu-
lar or multithreaded systems [5]. Another problem is
that many Fortran programs rely on the file system for
communicating intermediate data between different
parts of a workflow. On modern clustered multi-core
systems this can easily lead to I/O congestion. Typical
Fortran programs can only be used as coarse-grain
modules, usually through scripts that create the input,
run the program, and harvest the output. Such systems
tend to be difficult to install and maintain. Some For-
tran libraries, notably LAPACK [6], are written in a
style that makes them suitable for fine-grained use in a
modular system. However, using Fortran implementa-
tions from another programming language significantly
reduces portability since the procedures for compil-
ation, linking, and distribution become highly environ-
ment specific, in particular on platforms that lack a
native Fortran compiler (for example Windows and
d Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:fable@cci.lbl.gov


Figure 1 Qualitative graph of runtime performance vs.
programmer productivity for selected programming languages.

Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 2 of 11
http://www.scfbm.org/content/7/1/5
Mac OS X). This is a hindrance especially for dynamic
collaborative projects supporting multiple platforms. In
such situations it is often necessary to rebuild the en-
tire package from sources in a variety of environments.
For example, our PHENIX package [1] is developed in
a number of geographically spread-out research groups
and released very frequently with sources. In our ex-
perience the mix of Fortran and C++ [7] was the root
cause of numerous portability issues for developers and
users. In addition we were confronted with the prac-
tical inability to use our own C++ libraries [8] from
Fortran, because adding Fortran interfaces to a C++ li-
brary is involved, difficult to maintain, and tends to
compromise the C++ interfaces. The many difficulties
of working with a mixed-language Fortran/C++ system
motivated us to develop a tool for the automatic con-
version of Fortran 77 code to C++, named FABLE.[b]

Our goal for FABLE was to generate C++ code suitable
for continued development, by being human-readable,
and integration into modern modular systems, by
avoiding global variables.
We also found it important to generate C++ code

similar to the original Fortran code so that it continues
to appear familiar to the original authors.
Conceptually FABLE is similar to the F2C program

developed two decades ago [9], but the C code generated
by F2C was never intended to be human-readable. The
F2CPP [10] script helps by automatically rewriting the F2C
output using C++ syntax. However, both F2C and F2CPP
convert Fortran global variables to C global variables,
which has the drawbacks mentioned above. Commercial
Fortran-to-C++ conversion services are offered by a num-
ber of companies, and although a full listing is beyond the
scope of this article, we did engage such services for a pre-
decessor project [11]. One major issue identified in this
project was a dependence on laborious manual changes
after the automatic Fortran-to-C++ conversion but prior to
testing. During the period of manual changes we could not
avoid the continued development of the Fortran sources,
therefore these new developments later had to be labori-
ously converted and merged with the C++ code. FABLE
avoids this situation by permitting the converted code to be
immediately tested. A second major issue was that the C++
code generated in the conversion preserved Fortran global
variables as C++ global variables. It was therefore necessary
to develop a series of ad-hoc scripts to automatically rewrite
the C++ code, moving Fortran global variables to C++
structs. The result of these automatic rewrites is similar to
the approach now used by FABLE, as described below.
We decided to release FABLE as open source, with the

goal of making it attractive for open research projects, par-
ticularly when a number of diverse small conversions are
needed from time to time, for which repeated use of a com-
mercial service may be impractical.
Implementation
The Python [12] scripting language was chosen as the
implementation language for FABLE. The rationale for
this choice is illustrated qualitatively by Figure 1, which
reflects two decades of experience working with Fortran,
C/C++ and Python, and some limited experience work-
ing with assembly and machine code. In our work we
observe a clear negative correlation between program-
mer productivity and the degree to which a program-
ming language emphasizes runtime performance.
Implementing new algorithms is most quickly achieved
using Python, but Python’s dynamic typing and the fact
that it is an interpreted language lead to a relatively low
runtime performance. Machine code at the other end of
the spectrum is very time-consuming to write but will
most likely be the fastest to execute. The other lan-
guages fall in between these extremes. We anticipated
that the execution times for transforming source code
with Python would be sufficiently short to be able to
take advantage of this highly productive language. Im-
portantly, compared to other languages, Python scripts
are usually very amenable to future developments by
new contributors.
The C++ code generated by FABLE depends on the

FEM Fortran EMulation library which we developed
along with the FABLE code generator. The FEM library
in turn depends only on ISO standard C/C++ libraries.
During development we used some Boost libraries [13]
to accelerate the development process. In the final stages
of FABLE development, when it was clear what was ac-
tually needed, we removed the dependency on the Boost
libraries by writing a small amount of C++ code with
minimal replacements.
A test-driven approach was adopted during FABLE

and FEM development. For each development step, we
generated a small file with Fortran code to be converted,



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 3 of 11
http://www.scfbm.org/content/7/1/5
implemented the corresponding new processing steps,
and added tests to exercise the new features. As the
number of tests grew during development, we paralle-
lized the execution of the tests. In this way it was pos-
sible to keep the time for a full test cycle below one
minute, using hardware with 48 processor cores. To en-
sure that existing functionality is not destabilized by new
developments, the FABLE tests are automated and run
routinely in nightly multi-platform builds (follow links
from cctbx.sourceforge.net).

FABLE design
Preliminary remark
In the text below we frequently use the term “C++ struct”.
We note that a “C++ struct” is similar to a C++ “class”.
The difference between a C++ struct and a class is that full
“public” access to members is the default for a struct, and
restricted “private” access is the default for a class. Such
access restrictions do not exist in Fortran 77; all global
variables can be accessed for reading and writing from any
procedure. To reflect this, and to keep the FABLE- gener-
ated C++ code simple, we chose to work with structs.

Overall conversion workflow
We had previous experience converting a certain part of
the PHENIX Fortran sources using a commercial service
[11]. From this work we had learned that the success of a
conversion project critically depends on the amount of
manual work required before the automatically converted
source code can be compiled and tested. For FABLE, our
highest priority was therefore to eliminate the need for
manual work between automatic conversion and testing.
We had also learned that making minor modifications

to the Fortran code prior to conversion can significantly
improve the resulting C++ code. Therefore our second
major decision was to design FABLE as a tool to be ap-
plied iteratively. The third major decision was to make
FABLE open-source so that it can also be a dynamic

component in the development process of any conver-
sion project. The conversion workflow then consists of
convert-build-test cycles in which both the Fortran code
and the FABLE code generator can be modified to auto-
matically obtain the final C++ sources.
The next major design decision was to emulate the

Fortran I/O system. This decision had several motiva-
tions. The most important was to help with our highest
priority, the elimination of manual work between auto-
matic conversion and full testing. The next motivation
was to help with the goal of making the generated C++
code similar to the original Fortran code, as stated in the
introduction. The third motivation was to provide a
foundation for the complete encapsulation of all I/O
operations performed by the original Fortran code. For
example, opening a new file could be re-directed to
initializing a buffer in memory, writing to the file could
add to the buffer, and closing the file could trigger any
procedure using the buffered output, without ever lead-
ing to interactions with the file system. This mechanism
is designed to help eliminate I/O bottlenecks on modern
machines with a large number of processor cores, with-
out, importantly, having to change the design of the ori-
ginal implementation.
Another major design decision was to fully encapsu-

late the state of a Fortran program in a single C++ ob-
ject. For this, all Fortran 77 global (COMMON) and
persistent (SAVE) variables are converted to C++ struct
members. Each common block becomes a C++ struct.
Another struct is generated for each Fortran procedure
(PROGRAM, BLOCKDATA, SUBROUTINE, and FUNC-
TION) containing SAVE variables. All COMMON and
SAVE structs are combined into one potentially large cmn
object that also contains the state of the I/O system. In
this way an entire Fortran program is rendered a reusable
building block for a modular system. We note that mul-
tiple cmn objects can exist in the same process; under
favorable conditions (a thread-safe C++ new implementa-
tion, with no conflicting I/O) they may even be used con-
currently. Each cmn object can be made to persist after
the (virtual) end of the original Fortran program, for ex-
ample to extract results directly from arrays. It is also pos-
sible to change the state of the cmn object and to
arbitrarily call the converted Fortran functions. This
organization opens an evolutionary path to an object-
oriented re-organization after the automatic conversion
is finished.

FABLE implementation
The main components of FABLE are a read module and
a cout code generation module. The read module is sup-
ported by a tokenization module that handles both gen-
eral fixed-form Fortran 77 syntax and Fortran FORMAT
specifications. (A small subset of Fortran 90 extensions
is also supported, to enable conversion of LAPACK [6]).
Fortran reading and C++ code generation are clearly
separated, with the idea that the read module can be
reused by code generators for other target languages.
The FABLE read module builds a call graph of all the in-

put sources. It then performs a topological sort with hand-
ling of dependency cycles, followed by an automatic
determination of variables that are const [7], even tracing
through function pointers. FABLE can be directed to ex-
tract only a subset of the Fortran procedures (along with all
its dependencies). Unused procedures are not converted.

Major features of FABLE-generated C++ code
Historically Fortran was the first compiled language and it
has clearly influenced the generations of languages that
followed, including the C/C++ language family. Therefore



Figure 2 Essence of Fortran multi-dimensional array emulation
in C++. We note that the array type is noncopyable in the actual
implementation, since this both emulates Fortran behavior and is a
simple way to ensure matching new/delete calls.

Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 4 of 11
http://www.scfbm.org/content/7/1/5
Fortran assignments and expressions translate directly to
C++, except for the power operator. The Fortran control
statements are an approximate subset of the C++ control
statements, with minor syntactic differences that are
straightforward to translate. Fortran procedures corres-
pond directly to C++ functions, and Fortran scalar types
can be mapped directly to C++ types, although a few
assumptions have to be made. For example FABLE
assumes that the Fortran types INTEGER, REAL and
DOUBLE PRECISION map to the C++ types int, float,
and double, respectively. On most current computing plat-
forms, the sizes of the C++ types should be identical to the
sizes of the corresponding Fortran types. The only excep-
tion is the mapping of the Fortran LOGICAL type to the
C++ bool type. In this case we found it more important to
map the concept rather than the implementation detail
that a LOGICAL occupies four bytes on most platforms
while the size of a C++ bool is one byte on most platforms.
This small asymmetry has to be kept in mind when calling
external libraries from FABLE-generated C++. The Fortran
COMPLEX and CHARACTER types are mapped to C++
template classes, std::complex in the C++ Standard Tem-
plate Library [7] and fem::str in the FEM library, respect-
ively. The storage patterns in memory are identical to
Fortran in both cases. More details about the mappings
from Fortran types to C++ types can be found in the
FABLE documentation.
In the following subsections we highlight other selected

features of FABLE-generated C++ code and present the
underlying rationale. We believe that the approaches
below should work for all conversion projects, but note
again that the code generator is openly available and could
be customized for unusual situations.

Array types
A major shortcoming of C/C++ compared to Fortran 77
is the absence of an intuitive multi-dimensional array
type. The syntax for built-in C/C++ multi-dimensional
arrays is more verbose (requiring a series of square-
bracket pairs), the origin for each dimension is fixed at
zero, and when passing multi-dimensional array refer-
ences the sizes of the fast dimensions have to be com-
pile-time constants. This alone makes C/C++ built-in
arrays unsuitable as a substitute for Fortran 77 arrays,
but in addition the Fortran storage order in memory is
transposed compared to the storage order of C/C++
built-in arrays. Many existing Fortran algorithms depend
critically on the storage order and would have to be re-
written in major ways to work with the C/C++ storage
order. We believe such intricate algorithmic changes will
be beyond the reach of automatic conversion tools in
the foreseeable future; but we also believe that such
changes have little or no practical value, except that it is
more difficult for software developers to switch between
two conventions. We decided to accept this drawback
and emulate Fortran 77 multi-dimensional arrays using
the object-oriented features of C++. This decision is also
motivated by the previously stated goal of making the gen-
erated C++ code similar to the original Fortran code.
The principle for emulating Fortran arrays in C++ is

very simple. The full implementation in the FEM library,
which includes comprehensive handling of DIMENSION
statements, is approximately 1,500 lines of C++, but a
compilable essence is contained in less than twenty lines
in Figure 2. The example struct manages a pointer
(elems) to a dynamically allocated block of memory for
the array elements and also stores the sizes of the two
dimensions; for simplicity the origin is fixed at one. The
C++ constructor of the example struct allocates the
memory, the destructor frees it, and the call-operator
performs the two-dimensional index calculation to ob-
tain a reference to a particular array element. In the
FEM library the array element type and the number of
dimensions are C++ template parameters. An overview
of the full family of FEM C++ array and dimensioning
types can be found in the FABLE documentation.

Common and save variables
Fortran common blocks are used to share data between
procedures, but Fortran 77 lacks features that formally as-
sociate common blocks with particular procedures. All
common variables are global to the entire program. A
possible mapping of a Fortran common block to C++
would be to introduce a C++ namespace (with the name
of the common block) that contains the variables. How-
ever, this does not solve the problem of having global



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 5 of 11
http://www.scfbm.org/content/7/1/5
variables [5]. Therefore FABLE maps a common block to
a C++ struct, an approach introduced in [11]. This is a
first step towards an object-oriented re-organization of
the converted code. If the common structs are closely
associated with certain procedures, these procedures can
manually be turned into C++ member functions to
formalize the dependencies. C++ inheritance is used
to combine all common structs, by adding them as
base classes to the cmn struct. Variables can then be
accessed via cmn.varname. This approach leads to
concise and obvious code in most practical cases, but
has the problem of potential naming conflicts. Fortran
common blocks that are only used in disjoint sets of
procedures are joined by FABLE into the C++ cmn ob-
ject. If the same variable name is used for members of two
distinct common blocks, in two different procedures, ac-
cess in C++ must be disambiguated. FABLE solves this
problem by analyzing naming conflicts and selectively
Figure 3 Example illustrating the handling of common variants by em
runtime in C++. (a) Two Fortran subroutines with variant uses of common
placeholders for the all common variant and bookkeeping variables for the
object). (c) Fragment from FABLE-generated C++ code defining function su
variables. The latter manages both original Fortran SAVE variables and the f
are temporary objects collecting information about variable types and arra
memory. The all.bind calls define array references to the memory area of th
against improper allocations that could invalidate existing references in oth
is meant to provide a general approach for obtaining a first working C++ v
code in the example highlights why it can be important to incrementally m
section 3.1.
inserting C++ up-casts from the cmn object to specific
common structs.[c]

Certain common blocks cannot be mapped to C++
structs. Many existing Fortran programs, including the pro-
grams we converted for PHENIX, reuse some common
blocks for variables of different types and array sizes. We
call such situations common variants. The motivation for
common variants goes back to times of more limited mem-
ory resources and the lack of dynamic memory allocation
in Fortran 77. It is, in general, difficult to re-organize the
Fortran code to avoid common variants; the danger of acci-
dentally introducing subtle critical errors is large. Another
consideration is that C++ offers far more versatile tools for
re-organizing the code after the automatic conversion is
finished. Therefore we decided to emulate the Fortran com-
pile-time allocation of common variants in C++ at runtime,
with support code added to the FEM library. A small ex-
ample is shown in Figure 3. The advantage is that the
ulating the Fortran compile-time allocation mechanism at
block all. (b) Fragment from FABLE-generated C++ code adding
two subroutines to the common struct (which is the type of the cmn
b1. The FEM_CMN_SVE macro defines the is_called_first_time and sve
unction-specific bookkeeping for common variants. The mbr objects
y sizes. This information is used by all.allocate to allocate the required
e common block for local use in the function. (The FEM library guards
er functions.) The common-variant mechanism shown in the example
ersion of a program. The disproportional length of the generated C++
odify the Fortran sources in convert-build-test cycles, as described in



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 6 of 11
http://www.scfbm.org/content/7/1/5
Fortran code can be automatically converted and tested as-
is. A disadvantage apparent from Figure 3 is the relatively
large volume of generated C++ code. However, if the C++
code is further developed in the future, it is straightforward
to remove the code related to common variants and to use
dynamically allocated C++ container types in its place.
SAVE variables are local to a procedure, but persist be-

tween calls. Based on considerations similar to those out-
lined for common variables, for each Fortran procedure
with save variables, FABLE generates a C++ struct with
the variables as the members. The save structs are added
to the cmn object via proxy objects similar to boost::any
[13]. Save variables are allocated and initialized the first
time the associated procedure is called. The indirection
through proxy objects makes the cmn object independent
of the save structs. The save struct definitions can there-
fore be kept in separate files, together with the corre-
sponding C++ function definitions. This organization
improves readability of the C++ code and was found to
greatly reduce compile times for large projects.
Equivalence statements
Some of the Fortran codes in our sphere of interest make
pervasive use of EQUIVALENCE statements. Many uses
could be mapped to simple C++ references, but equiva-
lences can also lead to rather complex situations. For ex-
ample, equivalences can increase the size of a COMMON
block. Changing the Fortran code to remove equivalences
can be very difficult and also carries a high risk of introdu-
cing subtle critical errors. Therefore we took the approach
of automatically covering all features of equivalences, in-
cluding equivalences with mixed types and equivalences
that change the size of a common block. This approach is
related to our handling of common variants and has the
same drawback in that the corresponding volume of gen-
erated C++ code is relatively large. However, most import-
antly, the generated C++ code can be compiled and fully
tested. FABLE can be directed to generate more compact
C++ code making simplifying assumptions under user dir-
ection. The simplifying assumptions can then be validated
by retesting. Equivalences involving SAVE and local vari-
ables are handled by reusing the tools developed for
COMMON equivalences. However, support for applying
simplifying assumptions in these cases is not implemen-
ted, mainly because the reduction in generated C++ code
size would be minor in the projects we have worked on.
Figure 4 Example illustrating the design of the FEM I/O
emulation. (a) Fortran code. (b) C++ code. Each Fortran statement
is converted to a C++ building block. The size of the C++ code is
relatively large due to the err labels. Most write statements in real
code do not make use of err labels, in which case the corresponding
C++ code is nearly identical to the original Fortran code.
Input/output statements
Emulation of the Fortran 77 Input/Output system constitu-
tes the largest part of the FEM library. The I/O emulation
localizes the effort required to convert uses of the Fortran
I/O system. The alternative would be to use the C++ I/O
system directly and to have a looser correspondence
between original Fortran code and generated C++ code. In
our experience [11] this is far more difficult to achieve
automatically and the generated code lends itself less to
continued development. Furthermore, while the I/O emu-
lation is the largest part of the FEM library, it is small com-
pared to the standard C/C++ libraries. The compilation
and maintenance overhead associated with the I/O emula-
tion is therefore relatively minor. Another advantage of
localizing the I/O activity is the potential for full encapsula-
tion as outlined before.
The I/O emulation makes it possible to map each of the

Fortran I/O statements independently to a building block
of C++ code. Figure 4 shows an instructive example. The
most difficult Fortran constructs to convert are implied-do
lists, since there is no direct correspondence in C++.
FABLE solves this problem via C++ objects implemented in
the FEM library that manage the state of an implied-do list.
These read_loop and write_loop objects appear in regular
loops as shown in Figure 4. FABLE can convert arbitrarily
deeply nested implied-do lists. Fortran end and err labels
are handled via the C++ exception handling system (try
and catch).



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 7 of 11
http://www.scfbm.org/content/7/1/5
DATA statements
Scientific source codes tend to include significantly large
sections with Fortran DATA statements, for example to
store tables with reference data. Mapping DATA state-
ments to C++ is complicated by three features unique to
Fortran: the item repeat syntax, implied-dolists, and mixed
variable types. FABLE, with support from the FEM library,
can convert any Fortran 77 DATA statement to C++.
However, to support item repeat counts and item lists
with mixed variable types, all C++ items have to be objects
similar to boost::any [13]. This leads to relatively long
compile times and increased sizes of machine code. To
simplify the generated C++ code if possible, FABLE ana-
lyzes each DATA statement. If a particular statement does
not use the item repeat syntax and if all items are of the
same type, FABLE generates C++ code using basic array
initialization mechanisms. DATA implied-do lists are con-
verted in the same way as I/O implied-do lists, using ex-
plicit C++ loops and a C++ object in the FEM library that
manages the state of each loop.

Dynamic parameters
The lack of dynamic memory allocation in Fortran 77
forced many authors to code array size limits into their
programs. Users of Fortran 77 programs will be familiar
with error messages instructing them to change the
source code and recompile. In most cases the size limits
are coded as Fortran PARAMETER statements. FABLE
can be directed to automatically replace parameters of a
certain name with dynamic values that can be changed
from the command line. For simplicity, the parameter
name is assumed to be global to the program. For each
parameter name specified by the user, FABLE adds a
variable to the cmn object, which is then used as a re-
placement for the original Fortran constant in all related
C++ functions. FABLE also generates the C++ code for
inspecting the command line. Integer options are
assigned to the dynamic parameter variables in the order
given. Therefore, instead of having to recompile, users
or higher-level automatic procedures can simply call the
converted program with different arguments.

Results and discussion
Our initial goal was to convert the program SOLVE [14].
The SOLVE Fortran code consists of about 83,000 lines
total, with about 61,000 non-empty, non-comment lines.
The type of most SOLVE variables is declared implicitly.
SOLVE makes use of 86 C functions from the CCP4 li-
brary [15]. Most of the SOLVE-specific conversion effort
was spent on handling these external library calls. We
wrote a set of Fortran “stub” procedures with empty bod-
ies as substitutes for the external procedures. These
enabled FABLE to derive the correct const information
and generate compilable C++ code. The next step was to
direct FABLE to write the C++ functions corresponding
to the library calls to separate files. These files were modi-
fied manually to insert calls to the C library functions. At
this stage the C++ version could be compiled, linked
against the CCP4 library, and fully tested with an existing
suite of 32 tests. The initial size of the generated C++ code
was about 180,000 lines. A large portion of the generated
code was due to the fully-general default handling of
COMMON equivalences. We applied the incremental ap-
proach outlined above, directing FABLE to assume simple
equivalences (that do not increase the size of the common
block) for certain common blocks. This work was guided
by conversion reports produced by FABLE. Each trial
cycle consisted of re-converting, compiling, linking, and
testing, which could be completed in about two minutes
on current hardware with 48 processor cores. We made a
limited number of changes to the Fortran code that
allowed FABLE to generate more compact C++ code.
Each of the changes was validated with the test suite. The
final size of the C++ code is 127,000 lines, including all
comment lines automatically transferred from the Fortran
code. The increased size compared to the Fortran code is
partially due to the wide- spread use of implicit variable
declarations in Fortran, which must appear explicitly in
the C++ code; for clarity those declarations appear on sep-
arate lines, one for each variable. For completeness we
mention that the generated C++ code was automatically
split into several files, which necessitated generating an
additional header file with about 2,600 lines of C++ func-
tion declarations. The C++ version of SOLVE has been in
production use in PHENIX since July 2010. The final For-
tran code used in the conversion is still available for
reference.
Current C++ compilers produce an executable that is

about 30–40% slower than the corresponding best avail-
able Fortran executable on the same machine (see also
the following section). However, as a by-product of the
conversion we found a few simple optimization oppor-
tunities, which were implemented in the Fortran version.
The net result is that the final C++ version is generally
as fast as the initial Fortran version. The final Fortran
code and the Python scripts directing the conversion
with FABLE are included in the PHENIX distributions,
available at http://phenix-online.org. The main FABLE
conversion script is solve_resolve/solve/run_fable.py,
supported by the utility script solve_resolve/fable_utils.
py.

Our second goal was to convert selected algorithms
from the LAPACK library (version 3.2.1, [6]). FABLE
generates C++ code for the entire library, but a very
small subset of the converted C++ code cannot be com-
piled, due to the use of function pointers in the Fortran
code for which there is no caller; FABLE needs at least
one caller to generate compilable C++ code for such

http://phenix-online.org


Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 8 of 11
http://www.scfbm.org/content/7/1/5
Fortran code. As we did not have an interest in using
this subset, we used the automatic dependency analysis
of FABLE to extract only certain eigenvalue (DSYEV)
and SVD (DGESVD, DGESDD) algorithms.[d] The size
of the selected Fortran code is 26,876 lines. The size of
the corresponding C++ code including all comments is
29,592 lines. The moderate 10% increase reflects the ab-
sence of COMMON and EQUIVALENCE statements in
the LAPACK sources and that all LAPACK Fortran vari-
ables are declared explicitly. Systematic runtime compar-
isons are shown in the following section. A standalone
package with the selected Fortran sources and the con-
verted C++ sources, each combined into a single file for
easy compilation, are available at http://cci.lbl.gov/
lapack_fem/. The package also includes the small shell
script that was used for the conversion.
The third major FABLE-based project was the conversion

of parts of the MOSFLM program for processing of raw
crystallographic data [16-18]. The MOSFLM Fortran
sources comprise about 268,000 lines total, with about
126,000 non-empty, non-comment lines. Like SOLVE,
MOSFLM makes use of the CCP4 library. Additionally it
links to C interfaces of a windowing system and a C library
with crystallographic indexing algorithms [18,19]. Our
interest is restricted to the computational core of
MOSFLM, which we wish to eventually use through Py-
thon extension modules, for incorporation into LABELIT
[20] and PHENIX. Our first step towards this goal was to
reduce the dependencies. For this we needed to analyze
which parts of the MOSFLM sources are involved in the
computational core of interest. We approached this empir-
ically by developing a set of tests exercising all the function-
ality needed for our purposes (knowing that these tests
would be useful again later for validating the generated C+
+ code). Then we used FABLE to automatically insert write
statements as the first statement into all Fortran proce-
dures.[e]After running all tests we harvested the names of
all the procedures called during their execution from the
output of these write statements. Then we reverted to the
original Fortran sources, without the additional write state-
ments. FABLE was then instructed not to convert the bod-
ies of the unused procedures. The remainder of the
conversion project was similar to the SOLVE conversion
described before, except that we needed to supply stub pro-
cedures not only for the CCP4 library calls, but also for
calls into the additional C libraries. Since the MOSFLM
conversion was the third major FABLE application, we
needed to make only very few adjustments to the FABLE C
++ code generator. The size of the generated C++ code is
about 185,000 lines total; the execution time for the auto-
matic conversion with FABLE is about 54 s, using Python
2.7.1 and one AMD 6174 core (2.2 GHz clock speed) under
Fedora 13 Linux. The total effort required for reaching our
milestone where the C++ sources passed all tests was
approximately three person weeks; this includes the time
spent developing the tests. For comparison we note that
MOSFLM is the result of over 25 years of development, in-
volving several people. We are planning to continue our
MOSFLM related developments by refactoring the current
standalone C++ executable as a Python extension module.
The Python scripts used in the conversion are available
upon request. The scripts are similar to the ones used in
the SOLVE conversion.

Runtime comparisons
Table 1 shows absolute and relative runtimes of the
LAPACK DSYEV procedure (see previous section) and a
simplified structure factor calculation implementation as
introduced in [11], which can also be found in the FABLE
source tree (fable/test/sf_times.py). The DSYEV procedure
was chosen as an example of a typical linear algebra algo-
rithm that spends very little time in math library functions.
In contrast, the structure factor calculation is dominated by
calls to math library functions, namely the exp(), sin(), and
cos() functions. The structure factor calculation was imple-
mented with both double precision and single precision
floating-point arithmetic. All test programs were compiled
and run on the same machine (IntelW XeonW CPU X7350
@ 2.93 GHz, 4×4 cores, running the 64-bit version of the
Fedora 8 operating system) using various versions of the
IntelW Fortran and C++ compilers (software.intel.com), the
gfortran and g++ compilers in the GNU Compiler Collec-
tion (GCC, gcc.gnu.org), and a recent development version
of the CLANG C++ compiler (clang.llvm.org). The –O
optimizer option was used for all IntelW compilers. The
–O3 –ffast- math options were used for all GCC compilers
and CLANG. In addition, the –march=native option was
added for these compilers if available. We note that the
optimizer options enable auto-vectorization for all compi-
lers that support this feature. Each executable was run eight
times. The shortest runtime is reported in Table 1. For
compilers that support the –march=native option, the
shortest runtime of eight runs with this option and eight
runs without is reported. All runs except those reported in
the last row of Table 1 made use of the IntelW C++ Version
11.1 math libraries (by setting the LD_PRELOAD environ-
ment variable; for further details inspect the fable/test/
sf_times.py script).
We observe that the runtime performance of the IntelW

Fortran Version 12.1 executable is generally the best or
nearly the best. To ease the interpretation of the runtimes
shown in Table 1, the numbers shown in bold are the run-
times relative to the IntelW Fortran Version 12.1 reference
executable. The DSYEV executable obtained with the GCC
4.3.6.
C++ compiler is the fastest C++ executable. It is 36%

slower than the IntelW Fortran reference executable. This
is similar to our observations reported in the previous

http://cci.lbl.gov/lapack_fem/
http://cci.lbl.gov/lapack_fem/


Table 1 Systematic runtime comparisons

LAPACK 3.2.1
DSYEV double
precision

Structure factors
double precision

Structure factors
single precision

Fortran C++ Fortran C++ Fortran C++

Intel 12.1 1.00 2.51 1.00 0.99 1.00 0.97

1.82 s 4.56 s 2.09 s 2.07 s 1.55 s 1.51 s

Intel 11.1 1.03 2.30 1.01 1.01 1.09 1.06

1.88 s 4.18 s 2.12 s 2.11 s 1.69 s 1.65 s

Intel 10.1 not 1.43 not 1.06 not 1.05

installed 2.60 s installed 2.21 s installed 1.62 s

Intel 9.1 1.32 1.75 1.07 1.19 1.03 1.17

2.41 s 3.19 s 2.24 s 2.49 s 1.60 s 1.82 s

gcc 4.6.1 1.21 1.68 1.00 1.02 1.04 1.05

Intel math library 2.20 s 3.05 s 2.10 s 2.14 s 1.61 s 1.63 s

gcc 4.5.3 1.25 1.42 1.56 1.00 1.70 1.05

Intel math library 2.27 s 2.59 s 3.27 s 2.10 s 2.63 s 1.63 s

gcc 4.4.6 1.19 1.56 1.54 1.00 1.67 1.04

Intel math library 2.17 s 2.84 s 3.22 s 2.10 s 2.59 s 1.61 s

gcc 4.3.6 1.22 1.36 1.61 1.07 1.72 1.10

Intel math library 2.22 s 2.48 s 3.37 s 2.24 s 2.67 s 1.70 s

gcc 4.2.4 1.35 1.46 1.61 1.21 1.74 1.39

Intel math library 2.45 s 2.65 s 3.37 s 2.52 s 2.69 s 2.15 s

gcc 4.1.2 1.33 1.50 1.61 1.22 1.75 1.30

Intel math library 2.42 s 2.73 s 3.37 s 2.55 s 2.71 s 2.01 s

clang 3.1 r142719 not 1.37 not 1.09 not 1.27

Intel math library applicable 2.49 s applicable 2.27 s applicable 1.97 s

clang 3.1 r142719 not 1.40 not 3.03 not 10.19

System math library applicable 2.55 s applicable 6.34 s applicable 15.79 s

Systematic runtime comparisons using various IntelW and GCC Fortran and C++ compilers, and a recent development version of CLANG++ (LLVM/CLANG SVN
revision 142719). Runtimes relative to that of executables compiled with IntelW Fortran Version 12.1 are shown in bold. The corresponding absolute runtimes in
seconds are shown below the bold numbers. See text for further details.

Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 9 of 11
http://www.scfbm.org/content/7/1/5
section. Somewhat surprisingly, the IntelW C++ Version
11.1 and 12.1 executables show outstandingly poor perfor-
mance, while the performance of the IntelW C++ Version
9.1 and 10.1 executables is more comparable to that of the
GCC and CLANG executables. In our experience, such
surprises are rather common. A particular algorithm
may perform surprisingly well or poorly when com-
piled with a particular compiler or particular optimizer
options. If this is a concern, small manual code optimiza-
tions can make a significant difference for a particular set
of compilers. (We did not have a sufficiently strong motiv-
ation to attempt this for the DSYEV implementation.)
The structure factor calculation C++ executables using

the IntelW math libraries are mostly nearly as fast as the
Fortran reference executables, or even marginally faster.
It is striking to see that older g++ executables clearly
outperform the corresponding gfortran executables. The
g++/gfortran performances are on par only with the
latest GCC release (4.6.2). The relative runtimes com-
paring pairs of double precision versus single precision
executables are generally very similar.
The last row of Table 1 was added to highlight the im-

portance of the math libraries used.
Instead of the IntelW math libraries used in all other

cases, the system math libraries are used, in combination
with the same CLANG executable used in the second-
to-last row of Table 1.
A comparison of the last two rows in Table 1 shows

that the DSYEV performance is hardly affected by the
choice of math libraries, but the structure factor cal-
culation runtimes increase by a factor of 2.8 for the
double precision version and even 8.0 for the single
precision version. Detailed inspection [11] revealed
that this is mostly due to the particularly poor per-
formance of the single-precision exp() function in the
system math libraries.



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 10 of 11
http://www.scfbm.org/content/7/1/5
Outline of unit tests
The system of FABLE unit tests can be best understood
by considering the way it was built up. We expect that
an understanding of the incremental development and
testing approach will help guide users seeking to adapt
FABLE for their purposes.
The first major step developing FABLE was the imple-

mentation of a read module (tokenizer and parser) that
builds an internal representation of the Fortran sources.
The development was strictly test-driven. Based on in-
formal reviews of the target Fortran codes, small Fortran
fragments were added as separate files in the fable/test/
valid directory. For each file added, the FABLE read and
tokenization modules were developed to support the
required Fortran features. The process of identifying
new Fortran features to implement, distilling them into
a new file in fable/test/valid, and implementing the
required support in the read module was repeated many
times until all target Fortran codes could be read suc-
cessfully. The fable/tst_read.py script automatically exer-
cises reading of all Fortran sources in fable/test/valid. In
addition, the script systematically exercises the FABLE
error diagnostics, covering syntax errors (Fortran sources
in fable/test/syntax_error), semantic errors (fable/test/
semantic_error), and unsupported Fortran features (fable/
test/unsupported).
The second major step developing FABLE was the im-

plementation of the cout code generator, simultaneously
with the development of the C++ FEM library. The basic
approach was very similar to that used in the development
of the reader, incrementally implementing new cout fea-
tures targeting a particular file in fable/test/valid; this
includes files added while developing the read module
and additional files to specifically exercise the cout mod-
ule. The generated C++ code is exercised at two levels.
The fable/tst_cout.py script systematically exercises the
generated code at the text level, with complete test cover-
age of the cout module. This script finishes very quickly
(< 1 s) and can therefore be rerun very frequently during
development work, for example when refactoring the
cout module. The fable/tst_cout_compile.py script
exercises.

C++ code generation, automatic compilation and link-
ing with a C++ compiler (e.g. GCC, Visual C++, or
CLANG), and running the resulting executable. The
script can also be directed to compile the original For-
tran code with a Fortran compiler. The output produced
by the C++ or Fortran executables is compared with
expected output tabulated in the file test/valid/file_na-
mes_and_expected_cout. This ensures that the numer-
ical results and the emulation of the Fortran text-format
I/O are fully compatible with the results from a particu-
lar Fortran compiler. We chose to use the results
obtained with the IntelW Fortran compiler as a reference
(all IntelW Fortran versions shown in Table 1 lead to
identical results processing our test suite; we note that
the text-format I/O results using the gfortran compiler
are not fully compatible). The internal consistency of
Fortran binary-format I/O is also exercised, through bin-
ary-format write-read cycles. For completeness we note
that we did not have an interest in emulating a particular
binary file format and chose to implement our own bin-
ary format for simplicity.
The fable/tst_cout_compile.py script can be directed to

run the test executables with the valgrind tool (valgrind.
org). Valgrind detects many memory access problems, for
example uninitialized reads or writes past the end of an
array. This was found to be invaluable for guarding against
problems in the FEM library. Another highly important
feature of the fable/tst_cout_compile.py script is the op-
tion to run the tests in parallel on multi-core machines,
with the additional option to use precompiled header files.
This greatly reduces the time for running the script, for
example from 267 to 14 s on current hardware using 48
processor cores. It is therefore possible to re-test fre-
quently during development, which enables a highly dy-
namic but safe development approach.
Conclusions
Our initial motivation for developing FABLE was to en-
able the conversion of the SOLVE program, but the
FABLE implementation is designed to be reusable and ex-
tensible. The additional work required to also enable auto-
matic conversion of the bulk of LAPACK and the
computational core of MOSFLM was minimal. Our ex-
perience with the MOSFLM conversion suggests that
most Fortran 77 codes can be converted with an effort
that is minor (measured in days) compared to the original
development time (measured in years). Handling calls to
external libraries for which no Fortran source is available
is likely to be the most time-consuming part of a conver-
sion effort. FABLE could be further automated to ease
dealing with external library calls and equivalences. We
also note that the emulations in the FEM library may have
to be further completed for specific projects. To allow the
scientific community to participate in future develop-
ments, FABLE is released under a nonrestrictive open
source license. A comprehensive set of unit tests ensures
that FABLE and the FEM library can be improved without
destabilizing existing functionality.
With current compilers, the runtime of C++ executables

is typically 30–55% longer than that of corresponding For-
tran executables. Algorithms that spend a significant frac-
tion of the runtime in the math libraries are less affected,
provided that the same math libraries are used. The
results in Table 1 indicate that there is still a significant
potential for improvement in C++ optimizer technology,



Grosse-Kunstleve et al. Source Code for Biology and Medicine 2012, 7:5 Page 11 of 11
http://www.scfbm.org/content/7/1/5
because the structure factor calculation C++ executable
performance with recent compilers is nearly as fast as the
best Fortran performance, but the DSYEV C++ perfor-
mance still lags behind the Fortran performance. However,
our applications suggest that already with current C++
compilers the performance difference can be inconse-
quential in practical situations. Additionally, modern tools
can enable performance gains that are much more difficult
to realize in Fortran, for example through hash-based
lookups or by building object hierarchies that cache com-
plex intermediate results. Of course, there are many more
motivations to work with object-oriented languages. With
FABLE it is possible to reuse and evolve legacy work in
modern object-oriented environments, in a portable and
maintainable way.
Endnotes
a See for example http://langpop.com/.
b The name “FABLE” is short for “Fortran ABLEitung”.

“Ableitung” is a german word which can mean both “de-
rivative” and “branching off”.

cThe output of the command fable.cout fable/test/
valid/common_name_clash.f illustrates how C++ up-
casts are used to resolve naming conflicts, for example
static_cast < common_cmn1& > (cmn).num2 and sta-
tic_cast < common_cmn2& > (cmn).num2.

dUsing the fable.cout –top-procedure option. The full
command can be found in the FABLE documentation
(file cout_selected.csh under http://cci.lbl.gov/fable/
sources/lapack_fem/).

e Using the command fable.insert_write_at_start_of_
each_procedure.
Availability and requirements
Project name: FABLE
Project home page: http://cci.lbl.gov/fable/ (public

SVN hosted under http://cctbx.sourceforge.net/ as part
of the CCTBX [8] project)
Operating systems: Platform independent
Programming languages: Python, C++
Other requirements: Python version>= 2.3 and< 3
License: CCTBX license (nonrestrictive open source)
Any restrictions to use by non-academics: None
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
RWGK developed the design, implementation, unit tests, documentation,
and automated multi-platform tests for FABLE. TCT developed the SOLVE
tests and adjusted the SOLVE Fortran code to aid the conversion. NKS
developed the MOSFLM tests and FABLE Python scripts directing the
conversion. PDA proposed the SOLVE conversion, secured the funding, and
directed the project. All authors read and approved the final manuscript.
Acknowledgments
We thank MOSFLM authors Andrew Leslie and Harry Powell for useful
discussions. We thank Richard J. Gildea and Monarin Uervirojnangkoorn for
critical reading of the manuscript and useful suggestions. This work was
supported by supplemental funding from the American Recovery and
Reinvestment Act (ARRA) to NIH/NIGMS grant number P01GM063210, by
NIH/NIGMS grant numbers R01GM077071 and R01GM095887, and by the US
Department of Energy under Contract No. DE-AC02-05CH11231.
This work is dedicated to the memory of the late David Sayre. We greatly
admire his many contributions to science.

Author details
1Lawrence Berkeley National Laboratory, Cyclotron Road, BLDG, 64R0121,
Berkeley, CA 94720-8118, USA. 2Los Alamos National Laboratory, Los Alamos,
NM 87545, USA. 3Department of Bioengineering, University of California
Berkeley, Berkeley, CA 94720, USA.

Received: 25 April 2012 Accepted: 28 May 2011
Published: 28 May 2012

References
1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ,

Hung LW, Kapral GJ, Grosse-Kunstleve RW, et al: PHENIX: a comprehensive
Python-based system for macromolecular structure solution. Acta
Crystallogr D 2010, 66:213–221.

2. David Sayre awarded the eighth Ewald Prize [http://www.iucr.org/iucr/
ewald08.html/8th- ewald-prize].

3. Backus JW, Beeber RJ, Best S, Goldberg R, Haibt LM, Herrick HL, Nelson RA,
Sayre D, Sheridan PB, Stern H, et al: The FORTRAN automatic coding
system. In In Proceedings of the Western Joint Computer Conference. Los
Angeles, California:; 1957:188–198.

4. Programming languages—FORTRAN: International Organization for
Standardization; 1980. vol. ISO 1539:1980.

5. Wulf W, Shaw M: Global variable considered harmful. SIGPLAN Notices
1973, 8:28–34.

6. LAPACK: A Portable Linear Algebra Library for High-Performance
Computers [http://www.netlib.org/lapack/].

7. Programming languages – C++: International Organization for
Standardization, 1998. vol. ISO 14882:1998.

8. Grosse-Kunstleve RW, Sauter NK, Moriarty NW, Adams PD: The
Computational Crystallography Toolbox: crystallographic algorithms in a
reusable software framework. J Appl Crystallogr 2002, 35:126–136.

9. Feldman SI, Gay DM, Maimone MW, Schryer NL: A Fortran to C Converter.
In AT&T Bell Laboratories technical report. Edited by. 1990.

10. F2CPP: a Python script to convert Fortran 77 to C++ code. [http://sourceforge.
net/projects/f2cpp/].

11. Grosse-Kunstleve RW, Terwilliger TC, Adams PD: Experience converting a
large Fortran-77 program to C++. Newsletter of the IUCr Commission on
Crystallographic Computing 2009, 10:75–84.

12. Python programming language. [http://python.org/].
13. Boost C++ libraries. [http://boost.org/].
14. Terwilliger TC, Berendzen J: Automated MAD and MIR structure solution.

Acta Crystallogr D 1999, 55:849–861.
15. Collaborative Computational Project Number 4: The CCP4 Suite—Programs

for Protein Crystallography. Acta Crystallogr D 1994, 50:760–763.
16. Leslie AGW, Brick P, Wonacott A: Recent changes to the MOSFLM package

for processing film and image plate data. Daresbury Lab Inf Q Protein
Crystallogry 1986, 18:33–39.

17. Leslie AGW: The integration of macromolecular diffraction data. Acta
Crystallogr D 2006, 62:48–57.

18. Powell H: The Rossmann Fourier autoindexing algorithm in MOSFLM.
Acta Crystallographica Section D 1999, 55:1690–1695.

19. Steller I, Bolotovsky R, Rossmann MG: An algorithm for automatic indexing
of oscillation images using Fourier analysis. J Appl Crystallogr 1997,
30:1036–1040.

20. Sauter NK, Grosse-Kunstleve RW, Adams PD: Robust indexing for automatic
data collection. J Appl Crystallogr 2004, 37:399–409.

doi:10.1186/1751-0473-7-5
Cite this article as: Grosse-Kunstleve et al.: Automatic Fortran to C++
conversion with FABLE. Source Code for Biology and Medicine 2012 7:5.

http://langpop.com/
http://cci.lbl.gov/fable/sources/lapack_fem/
http://cci.lbl.gov/fable/sources/lapack_fem/
http://cci.lbl.gov/fable/
http://cctbx.sourceforge.net/
http://www.iucr.org/iucr/ewald08.html/8th-%20ewald-prize
http://www.iucr.org/iucr/ewald08.html/8th-%20ewald-prize
http://www.netlib.org/lapack/
http://sourceforge.net/projects/f2cpp/
http://sourceforge.net/projects/f2cpp/
http://python.org/
http://boost.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation

	link_Fig1
	FABLE design
	Preliminary remark
	Overall conversion workflow
	FABLE implementation
	Major features of FABLE-generated C++ code
	Array types
	Common and save variables

	link_Fig2
	link_Fig3
	Equivalence statements
	Input/output statements

	link_Fig4
	DATA statements
	Dynamic parameters

	Results and discussion
	Runtime comparisons

	link_Tab1
	Outline of unit tests

	Conclusions
	Endnotes
	Availability and requirements
	Competing interests
	Acknowledgments
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20

