
BRIEF REPORTS Open Access

Parallel biocomputing
Kenneth S Kompass†, Thomas J Hoffmann†, John S Witte*

Abstract

Background: With the advent of high throughput genomics and high-resolution imaging techniques, there is a
growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now
cost-effective for even small labs or individuals to build their own personal computation cluster.

Methods: Here we briefly describe how to use commodity hardware to build a low-cost, high-performance
compute cluster, and provide an in-depth example and sample code for parallel execution of R jobs using MOSIX,
a mature extension of the Linux kernel for parallel computing. A similar process can be used with other cluster
platform software.

Results: As a statistical genetics example, we use our cluster to run a simulated eQTL experiment. Because eQTL is
computationally intensive, and is conceptually easy to parallelize, like many statistics/genetics applications, parallel
execution with MOSIX gives a linear speedup in analysis time with little additional effort.

Conclusions: We have used MOSIX to run a wide variety of software programs in parallel with good results. The
limitations and benefits of using MOSIX are discussed and compared to other platforms.

Background
With the widespread use of high-throughput genomic
technologies, there is currently a great interest in run-
ning these computations in parallel. The last few years
have seen a sharp increase in the number of both freely
and commercially available packages for parallel com-
puting. For a good overview of parallel computing in R
see [1] and the R task page for parallel computing [2].
These packages generally run across a single CPU with
multiple cores [3], multiple CPUs or cores (e.g., snowfall
and sfCluster [4]), and there is also progress on using
graphics processors for parallelization with gputools [5].
Some of these try to automate the parallelization pro-
cess, but generally still require some setup, and require
no modification to shared variables. They also require
you to have cluster software installed, such as LSF [6],
or Rocks [7], to name a few. Here we report good suc-
cess on building and running a cluster with a more
universal and mature tool, MOSIX [8]. MOSIX is a
linux kernel patch that, once compiled and installed on
a cluster, provides single system image (SSI) parallel
computation.

The steps required by the user to use MOSIX are con-
ceptually the same as for parallel computing on a wide
variety of platforms, e.g., MPI-based [9]. That is, within
a session, data objects are created, saved to disk, and
sent out to other nodes for parallel processing. Results
are transmitted back to, and aggregated at, the originat-
ing node. Generally, no modifications to existing code
are necessary other than to the calling script.

Methods
We assembled a small compute cluster and tailored it
for computing a wide variety of statistical genetics pro-
blems. Our compute cluster contains 14 commodity
quad-core computers (for a total of 56 simultaneous
parallel jobs) with varying amounts of memory (two
boxes have very large amounts of memory to handle
some problems), and a fast hard drive. However, one
can tailor the specs of each node to one’s own needs, as
long as the computer supports the modern Linux kernel,
which most will. Communication between nodes is
through the fastest commodity type ethernet switch/rou-
ter available (we used a router to have one fixed IP
address with port forwarding to each of the nodes).
Installation instructions for MOSIX are available online
[10]. Briefly, we configured the first machine by instal-
ling a Linux operating system, setting up a fixed local IP
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address, installing a kernel patch, setting a passphrase,
and opening up a range of IP addresses through
MOSIX. We then used the open source drive imaging
software [11] to clone this image to each of the other
nodes, and then changed the fixed IP address for each
node. Our installation of MOSIX on 64-bit openSUSE
linux v11.1 was simple with the MOSIX binary kernel
rpm installer. Other linux distributions took more effort
and were not as successful as openSUSE when building
the patched kernel.
Rather than keeping users’ files on the compute nodes’

disks, we had a separate network disk storage array.
Transfers are typically done via scp, sftp, sshd, or rsync.
We found sshd to be the simplest and most convenient
for accessing the networked disk from the compute
nodes, although better performance can be achieved
through setting up a network file system. Alternatively,
one can simply have one node with a larger storage
capacity, and run jobs from that node and/or use sshd
to mount it on all other nodes.

Results and Discussion
In the previous section we described how to build a
cluster from commodity hardware. Next, we show how
to run a statistical genetics problem in parallel across a
cluster with MOSIX to reduce the computation time by
the total number of cores in a cluster for a computa-
tionally intensive statistical genetics problem.

A genetics case study example
Higher resolution and lower cost genotyping arrays
have ushered in large studies in humans called Gen-
ome Wide Association Studies, or GWAS [12]. A pop-
ular GWAS goal is the identification of single
nucleotide polymorphisms, or SNPs, which are vari-
able bases in DNA sequences, that might predispose
or alter the progression of disease. This is done by
statistically associating disease phenotypes with SNPs.
A GWAS can also link many other phenotypes to
SNPs. One commonly studied, continuous phenotype
is the messenger RNA expression level of a gene. An
eQTL (for expression quantitative trait locus) study
can identify SNPs that affect the messenger RNA
levels (so-called expression traits) of protein-coding
genes [13]. eQTL may propose a mechanism when
SNPs associated with disease have no known function,
which is often the case with SNPs in noncoding DNA
regions. Such SNPs have been shown to affect expres-
sion levels of genes with key pathological roles [14].
Thus, an adequately-powered eQTL study could deter-
mine whether a SNP associated with disease also
affected the expression levels of any known protein
coding genes, and suggest a mechanistic link for
further wet-laboratory experimentation. Because an

eQTL experiment generally involves thousands of
expression traits as the phenotypes of interest, it is
generally more computationally intensive than single-
phenotype designs.
Here we provide an example eQTL analysis with

simulated data using code in the popular open source
language R [15]. This is a scalable method for paralleliz-
ing many tasks on a MOSIX-enabled computing net-
work. Together, this example has approximately 25 lines
of extra R code to parallelize the eQTL testing on a
MOSIX-enabled system, and can be easily adapted to
run other tasks or be coded in other languages. Other
utilities, such as ‘batch’ [16], can be used to streamline
parallel execution via MOSIX. In our example, we first
simulate a dataset with 100 samples, 1000 genotyped
loci, and 1000 genes for eQTL association testing.
g.calls = data.frame(matrix(sample(c(rep(0,500), rep

(1,500), rep(2,500)), 100*1000,
replace = TRUE), nrow = 1000)) ## row: genotype

calls, column: samples
exprs <- matrix(rnorm(100*1000, 0, 1), nrow = 1000) #

row: expression, column: sample
In this code, we first simulate a matrix of single

nucleotide polymorphism (SNP) calls in g.calls with
an additive coding, i.e., a count of the number of minor
alleles an individual has at a locus. We then simulate a
matrix of random mRNA expression data (a quantitative
trait).
Next, we evenly split the job into batches to be run

across the nodes via the function chopper. This helper
function creates a string of the beginning and ending
indices to the SNPs, starting at beg.index (1 in our
example), ending at end.index (the number of geno-
typed loci in our example), for batches jobs (the num-
ber of cores in the cluster).
chopper = function(beg.index, end.index, batches){

a = seq(beg.index, end.index, round((end.index-beg.
index)/batches))

b = unique(append(a[2:length(a)]-1, end.index))
return(paste(a, b, sep = “_”))
}
The chopper function is important because each

node should process only a small portion of the geno-
type calls from g.calls. In real examples, one may
also wish to chop the dataset into pieces as well. Next,
we create a function that will process each of these
datasets on each remote node.
par.fx = function(o.file) {

o.f = file(paste(o.file, “_p_val.temp”, sep = “”), ‘w’) #
output file

gcr = sort(as.integer(unlist(strsplit(o.file, ‘_’)))) #
start/stop

apply(g.calls[(gcr[1]:gcr[2]),], 1,
function(x){
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p.vector = apply(exprs, 1, function(y){summary
(lm(y ~as.integer(x)))$coeff[2, 4]})

cat(as.character(p.vector), file = o.f, sep = ‘\n’)
})

}
The function par.fx accepts one parameter telling it

what portion (i.e., which rows) of g.calls to process,
creates an intermediate p-value file, does the actual
association testing (an ANOVA of gene expression on
genotype), and prints p-values to the intermediate file.
Then we write out the dataset g.calls and the func-
tion to analyze the dataset par.fx out to disk.
save(g.calls, exprs, par.fx, file="Image.RData”)
The amount of output typically generated by our com-

putations (e.g., p-values) usually cannot be kept in mem-
ory and must be written to a file connection during
computation.
Our next piece of code creates the start/stop indices

for analysis, and then creates R script files that will be
subsequently batched off. These scripts load in the
“Image.RData” file created in the code above, and pro-
cess part of it.
batch.subsets <- chopper(beg.index = 1, end.index =

nrow(g.calls), batches = 56)
r.scripts = sapply(batch.subsets,
function(x) {

batch.script = file(paste("batch”, “_”, x, “.R”, sep =
“”), “w”)

cat("load(”, “\’”, “Image.RData”, “\’ “, “)\n”, sep =
“”, file = batch.script)

cat("par.fx(o.file=”, “\’”, x, “\’”, “)\n”, sep = “”, file
= batch.script)

return(summary(batch.script)$description)
close(batch.script)

})
Once these R script files are created, we then create a

shell script for the MOSIX jobs, and run them with the
command system.
shell.script <- file(paste(getwd(), “/”, “Main.sh”, sep =

“”), “w”)
for(i in 1:(length(r.scripts)))

cat("mosrun -e -b -q20 R –vanilla < “, r.scripts[i], “
&\n”, sep = “”, file = shell.script) quiet = system(paste
("source “, summary(shell.script)$description, sep = “”),
intern = TRUE)
Lastly, once all of these scripts have finished running,

we read in the intermediate files used, combine them
into one, and clean up with the following code.
p.file = file("p.values.txt”, “w”)
t.p.files = list.files(getwd(), pattern="_p_val.temp”) #

files with ANOVA p-values
t.r.files = list.files(getwd(), pattern="batch_”) # inter-

mediate scripts for(i in 1:length(t.p.files)) {

cat(readLines(t.p.files[i]), file = p.file, sep = “\n”) #
input p-values, output to p.file file.remove(t.p.files[i], t.r.
files[i]) # delete intermediate files
}
file.remove("Image.RData”, “Main.sh”)
While there is relatively little penalty for I/O of paral-

lel jobs with MOSIX across a gigabit network switch
when compared to running locally, we found it wise to
estimate the I/O required for each process when the
per-core files to be transferred exceeded 20 MB, as
MOSIX does not monitor I/O when batching jobs. This
can be easily accomplished by doing a trial run with one
batch and observing the transfer time for the image to
be loaded into memory of the executing node. Once a
delay time is known, adding the sleep = N (where N is
the number of seconds to delay before executing the
next line) shell command to the main shell script before
each mosrun call will force a delay between the start of
MOSIX jobs. We have found this to be adequate in pre-
venting I/O overloads for loading a large R image.
Because adding a simple short delay to our script pre-
vented any I/O overload, there was no need to resort to
higher-throughput technologies for I/O between nodes.
Although MOSIX jobs migrate away to be executed on
free nodes, output files exist only on the originating
node, making collection of results very easy.

Discussion
In the example, we used commodity hardware with
MOSIX to efficiently adapt our existing R code for sta-
tistical genetics and run it in parallel. How to parallelize
depends on the exact task. Generally, it is best to divide
up the jobs such that each node actually processes mul-
tiple batches; in the example, each node was assigned
only one job, but g.calls could have been divided up
into more groups than 56, with fewer genotypes pro-
cessed per batch. This is mandatory when batches may
take varied or unknown periods of time for completion,
as once a job has been sent to a node, it remains there
unless it crashes, finishes, or a faster node becomes
available.
Analyzing eQTL is computationally intensive due to

the high density of the genotyping arrays, which are
capable of genotyping, or calling, hundreds of thousands
or even millions of SNPs, and large number of pheno-
types for association with each SNP. Gene expression
microarrays can detect mRNA levels of most known
genes, with newer technologies able to discriminate
between exons or splice variants, and a typical expres-
sion microarray might successfully measure 30,000
expression traits in Homo sapiens. eQTL associations
can be identified by ANOVA, where the expression level
of a gene is compared across genotypes at each
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individual genotyped locus. Thus, if 500,000 SNPs have
been genotyped, and 30,000 expression traits are tested
at each SNP, 15 billion ANOVAs must be computed.
Given even a small cohort of 100 individuals, this would
take over one year on a single, high-end PC processor.
By running the tests in parallel, the time to complete
this analysis can be reduced linearly to hours. Using
multi-core processors aids efficiency; both the linux ker-
nel and MOSIX can utilize each core, greatly reducing
equipment footprint, cost, and power consumption.
MOSIX can also be used within a single computer with
a multi-core processor(s) to distribute jobs across the
cores. In this case, as before, all cores have access to the
available system memory within the computer.
Several aspects of MOSIX make it well-suited for par-

allel biocomputing; perhaps most attractively, it is stable,
free for academic use, and easy to set up. Other
strengths are its maturity, active development, and pro-
cess migration (e.g., crashed jobs are automatically
migrated to another node with no intervention required
by the user). Depending on configuration, e.g., if pro-
grams will not be run natively, they need only be
installed on a single node to run on the entire cluster,
simplifying administration. In our experience, MOSIX
was quite easy to install, had little penalty for moderate
disk I/O between nodes, and was generally transparent
to R and other commonly used genetics programs, such
as plink [17]. For heavy I/O jobs, each node can still be
used directly. Because it requires no special hardware
and is compatible with low-cost, multi-core PCs, it is
possible to start with a small cluster and expand as
needs grow. As for any cluster, it is wise to be aware of
power and cooling requirements before expanding.
If extra hardware is not available, a group of user

workstations can also be linked together, which may be
useful if those machines have processors which are
otherwise underutilized. It is possible to have different
processor architectures within the same MOSIX cluster,
within certain limits. Even if most users within a group
are not comfortable running linux, the more common
commercial operating systems can generally be easily
installed on openSUSE by the use of virtualization soft-
ware like Xen [18], VirtualBox [19], or VMware [20], for
example. This allows the user transparent access to their
operating system of choice while allowing MOSIX
access to their excess processing power. The security,
free cost, and increased scientific utility of a modern
POSIX operating system are side benefits.
Our cluster frees members of our lab from having to

maintain their own computers and software installa-
tions. We have one faster box within the cluster, allow-
ing us to exploit a very handy feature of MOSIX,
especially when running a smaller number of jobs; inter-
active processes (as well as non-interactive ones) will

run automatically on the fastest node regardless of the
originating node where the user is logged in. This is
done by adding the -b parameter when starting a pro-
gram. In the case of R, typing
mosrun -eb R –vanilla
from the shell will start an interactive R process on

the fastest available node.
There are some drawbacks to MOSIX, and many are

certainly strengths of other platforms, so MOSIX will
not fit everyone’s needs. For example, MOSIX cur-
rently has only a basic job scheduler that queues jobs
with different priorities. Higher priority jobs cannot
pre-empt currently running lower priority jobs, and
there is no ability to enforce user-specific limits, as in,
e.g., LSF [6]. We also experimented with overclocking
the processors in our cluster, but found that the
MOSIX scheduler was unable to correctly batch our
jobs when even one node was overclocked. MOSIX is
commercial software; although at the time of writing,
it is free for academic use. With MOSIX, memory can-
not be shared across different jobs; each job has access
to as much memory as can be allocated on the
machine it is running on, and must allow for enough
free memory for other jobs on that machine to run.
Careful batching of data into reasonable chunks and
writing efficient R code are still required (e.g., it would
be inefficient to assemble a cluster and utilize its
resources interpreting R code contained within large
for loops). While MOSIX cannot benefit from the
marginal performance gain of hyperthreading-enabled
processors, it does utilize multiple cores of modern
CPUs, allowing a linear increase in computing power
with the number of cores.

Conclusions
We have described the implementation of a very effi-
cient and scalable system for parallel execution of scien-
tific computing jobs. At the center of this is the MOSIX
kernel patch, which we have used successfully for queu-
ing various jobs with minimal overhead and nearly zero
downtime. Because of the growing need for parallel
computing in diverse areas of biology and medicine,
many others would likely benefit from implementing
similar systems running MOSIX.
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