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Abstract
Background: We present a C++ class library for Monte Carlo simulation of molecular systems,
including proteins in solution. The design is generic and highly modular, enabling multiple
developers to easily implement additional features. The statistical mechanical methods are
documented by extensive use of code comments that – subsequently – are collected to
automatically build a web-based manual.

Results: We show how an object oriented design can be used to create an intuitively appealing
coding framework for molecular simulation. This is exemplified in a minimalistic C++ program that
can calculate protein protonation states. We further discuss performance issues related to high
level coding abstraction.

Conclusion: C++ and the Standard Template Library (STL) provide a high-performance platform
for generic molecular modeling. Automatic generation of code documentation from inline
comments has proven particularly useful in that no separate manual needs to be maintained.

Background
Molecular simulation has become a standard tool for
investigating molecular systems such as proteins, polymer
solutions and other colloidal particles. It is safe to say that
for biological applications Molecular Dynamics (MD) is
by far the most popular method as it provides both static
and dynamic properties of the system. Metropolis Monte
Carlo (MC) simulation [1], on the other hand, is less uti-
lized and relatively few software packages exists [2-4].
One advantage of MC simulation is that it allows
"unphysical" particle moves, enabling a more creative
sampling of the configurational space [5]. The tradeoff for
this freedom to move particles is the loss of all dynamic
information and, in addition, MC programs tend to
become less general. However, if one is interested in equi-
librium properties only – binding constants, free energy

changes, pKa values etc. – MC simulation may be a good
option.

Using a standard, pre-compiled software package should
require no prior knowledge of programming and as such
can be a fast and practical approach for solving a specific
scientific problem. On the other hand, the underlying
physical theory is somewhat hidden and there is always a
risk that the application is regarded as a "black box" pro-
ducing numbers. It becomes even worse if new features
are to be implemented. The alternative is for researchers to
create their own programs. This approach of course
requires some programming skills and writing an
advanced simulation program from scratch may be an
overwhelming -and likely error prone – task. Instead the
programmer may resort to existing libraries, thus
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approaching the black box situation described above.
However, the abstraction level will typically be lower
which has several advantages that allows the researcher to
(i) have a high level of control, and (ii) experience high
performance due a minimalistic design. In this text we
present a modular C++ [6] framework or class library that
can be used to construct MC simulation programs in an
expeditious manner. Other C/C++ libraries for molecular
simulation do exist: MDAPI [7], OOMPAA [8], Glotzilla,
for example, albeit none of these target Monte Carlo sim-
ulation specifically. Due to the common language, faunus
can easily interweave these libraries to broaden the intrin-
sic feature set with additional well-proven code. A success-
ful example of incorporating features from an external
library, Gromacs GMX [9], is presented in the text.

Implementation
Object oriented design
The object oriented capabilities of C++ have enabled us to
create a more appealing interface than traditional proce-
dural approaches. For example, the handling of particles –
a key undertaking of all classical simulations – is provided
by a class hierarchy:

class point {

public:

double x, y, z;

double dist(point &);

...

};

class particle : public point {

public:

double charge, radius;

...

};

The Standard Template Library (STL) is subsequently used
to construct a vector of particles, vector<particle>, that
allows for easy access and manipulation. For instance, p
[i].radius will return the size of the i'th particle.

Polymorphic classes – Virtual functions
One of the unique features of C++ is polymorph classes that
allows for very generic and intuitively appealing code. To
demonstrate this, we outline the design of our framework

for handling the simulation container – see Figure 1.
Essentially, the end programmer will want to select
among different geometries -a box, sphere, cylinder etc.
For each geometry we need functions that can calculate
the volume, generate a random point or decide whether a
given point falls within the boundaries. We now construct
a polymorph class, container, that defines the unimple-
mented virtual functions. Derived classes – box, cylinder
etc. -then implement specialized versions of the functions
and the container class hence acts as an interface to the
various geometries. This means that we can construct
functions that accept any geometry derived from the con-
tainer class. For example:

double concentration(container &c)

{ return N/c.volume(); }

Due to a large overhead, virtual functions may, however,
negatively impact performance and are generally avoided
in critical, inner loops.

Performance aspects
Function inlining via templates
The most computationally demanding step in most
molecular simulations is the evaluation of configura-
tional energies. Hence the applied pair potential must be
highly optimized and preferably inlined in all inner
loops. This is accomplished by passing a pair potential
class as a template parameter that creates a local instance
inside the inner loop template,

class coulomb {

 float energy(particle &a, particle &b)

 {

return a.charge*b.charge/a.dist(b);

}

};

template<class T_pairpot>

class innerloop {

T_pairpot pair;

float sum(vector<particle> &p) {

for (i = 0; i<N-1; i++)

for (j = i+1; j<N; j++)
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Graphical class hierarchyFigure 1
Graphical class hierarchy. Schematic representation of class inheritance used for the container class. Intuitive inheritance is 
used whenever possible. For example, a container contains particles, it can have a shape etc. The graphical representation is 
produced using Doxygen.
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u = u+pair.energy(p [i], p
[j]);

...

};

This so-called Expression Template technique [10] ena-
bles the programmer to arbitrarily invoke various pair
potential functions, re-cycling the inner loop implemen-
tation,

innerloop<coulomb> elec;

innerloop<lennardjones> lj;

elec.sum(p);

...

Passing arguments as references
In C++ standard argument passing is done by creating a
new copy of the object. Working with large, aggregate
structures such as particle vectors, this will negatively
impact performance. To circumvent this we pass all com-
plex objects as references, for example: void func-
tion(someclass &).

Minimize memory consumption
Computer simulations of classical mechanical systems are
usually not memory intensive and by minimizing the
memory requirements there is a good chance that the exe-
cuting code will stay in the local cache. Code re-cycling via
class enheritage is extensively utilized to reduce the mem-
ory imprint as well as assist efficient development. In this
regard C++ templates are a concern since code will be gen-
erated for each template type. We therefore stride to avoid
extensive use of multiple template types – for example it
would seem silly to instantiate both a float and a double
version of an elaborate template class.

Only for systems with tens of thousands of atoms the par-
ticle coordinate vector may extend beyond the local cache
– for example, one megabyte of cache can encompass
10242/8/3 ≈ 43700 double precision three dimensional
particle coordinates. List methods and additional single
particle information may decrease this number and, while
not yet implemented in faunus, sophisticated methods do
exist for cache efficient bookkeeping of many particle sys-
tems [11].

Parallelization
In systems that equilibrate fast, Monte Carlo simulations
can be linearly parallelized using the "embarrassingly sim-
ple technique" – that is start several independent runs

with different random seeds, combining the results after-
wards. Tightly coupled parallelization is incorporated in
parts of the code by threading the energy evaluation into
two processes: before and after a trial move. For systems
with particles in the order of hundreds, this scales well on
dual-core computers, whereas the overhead becomes
unacceptable for small systems. To enable threading, the
appropriate compiler flag for OpenMP [12] must be set; as
of writing the GNU, Intel and IBM C++ compilers all sup-
port OpenMP.

Code documentation
We provide a class library and as such need to describe
both what the classes do as well as how to use them. This
can be conveniently achieved using a code documenta-
tion system – here we have chosen Doxygen[13] since (i)
the documentation appears as normal code comments
and (ii) the output is highly configurable, allowing LaTeX
equations to be inserted etc. In Figure 2 we show how
commented code is used to construct a web based manual
of the available classes and functions in the code library.
Another very useful feature of Doxygen is the ability to
generate a graphical view of the class hierarchy. This ena-
bles the end programmer to visually see how a class is con-
structed as shown in Figure 1.

Results and discussion
General features
The class library provides simulation routines for ions,
macromolecules and polymers in solution with a strong
focus on electrostatic interactions using the primitive
model of electrolytes where the solvent is treated as a
structureless dielectric continuum [14]. It is, however,
completely possible to expand the library to other sys-
tems, include explicit solvent etc. The routines have been
developed over several years in connection with a number
of scientific investigations, including proteins in solution
[15]. As of writing, the code library contains general
classes for the following,

• Explicit treatment of ions, including ion-ion correlation
effects.

• Macromolecules – Proteins, flexible chains, charged sur-
faces.

• Charge regulation of molecules [16].

• Particle distribution functions and other statistical
mechanical averages.

• Standard file formats are supported: PQR, Gromacs
(GRO, XTC), Povray, XYZ.
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An example of protein ionization will be presented later
in the text. We stress that the project is under ongoing
development and encourage interested users and develop-
ers to contribute.

"Trajectory" output
Molecular Dynamics simulation packages often save the
time propagated particle trajectory to disk which is subse-
quently analyzed. In order to adopt this strategy we
include an export routine that can write the simulated par-
ticle configurations to a compressed Gromacs XTC file [9].
This (sizable) file can be analyzed using the extensive set
of tools provided in the Gromacs package, or visualized
using VMD [17], for example. As an example of the latter,
we have simulated lysozyme interacting with a fab-H frag-
ment and, using VMD, plotted the spatial mass center dis-
tribution as shown in Figure 3.

An example: Proton titration
Figure 4 shows – in 50 lines of code – a complete MC pro-
gram for simulating the protonation state of a protein in
a salt solution at a given pH value. Experimentally this

corresponds to a standard potentiometric titration experi-
ment where the net-charge is measured as a function of
pH [18]. We will not go through all the lines in the code
as the comments should be more or less self-explanatory.
The overall program structure is

1. Set up the simulation cell (line 12)

2. Add protein(s) and ions (line 17–25)

3. Main loop with salt- and proton moves (line 32–49)

4. Print results and (line 50)

Results and comparisons with experimental data for such
calculations can be found in a recent article [19]. The par-
ticles in the systems are clustered into groups and derived
classes; there is a general group class (line 23) and a class
for macromolecules (line 17). Note that we have also
incorporated a general polymorphic class for markov
moves and data analysis so that all derived classes have a
common interface. For example, both the salt move class

Source code manualFigure 2
Source code manual. Code documentation through code comments. All code is commented with special keywords that are 
eventually collected into a web based manual.
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(line 36) and titration class (line 39) will store informa-
tion about energy changes, if the move was a success etc.
Data and analysis about each type of move is automati-
cally shown by calling the respective information func-
tions (line 51).

The source code for this and other examples are included
with the class library and should serve as good starting
points for developing new programs.

Conclusion
A general class library for (macro-)molecular simulation
is presented. We focus on Monte Carlo methods and the
primitive model of electrolytes, although we see no tech-
nical limitations in expanding the project to cover other
methods and molecular levels. The software design is
object oriented, meaning that the code is extensively re-
cycled which has several advantages:

• Programs can be developed in a modular manner (à la
"Lego" bricks).

• Development and debugging is reduced.

• Memory requirements are minimized.

The class library is documented through extensive use of
inline code comments. These comments are subsequently
collected by a third party program (Doxygen) that will
automatically construct a code manual and, hence, obso-
lete a separately maintained instruction book. In 50 lines
of C++ code we demonstrate how to construct a complete
MC program that can simulate protein protonation states
in an aqueous salt solution. High performance in inner
loops is established using Expression Templates, com-
pletely compatible with the flexibility and intuitive appeal
of an object oriented design.

Graphical analysisFigure 3
Graphical analysis. Lysozyme interacting with a fab-fragment – a simulation containing more than 340 amino acid residues as 
well as salt particles. The probability of finding lysozyme's mass-center around the the fab fragment is illustrated by the pink 
iso-surface. VMD [17] and Povray [20] was used to visualize the generated output from Faunus.
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Availability and requirements
Project name: faunus

Project home page: http://faunus.sourceforge.net

Operating systems: MacOS X, Linux, "Cygwin"

Programming language: C++

Other requirements: C++, Doxygen (optional)

License: GNU GPL

Restrictions to use by non-academics: GNU GPL

The latest version can be downloaded using the version-
ing control system "subversion" (SVN). On most UNIX
type operating systems this is done by invoking the fol-
lowing shell command,

$ svn checkout

http://faunus.svn.sourceforge.net/

svnroot/faunus/trunk faunus

Prospective developers are welcome to contact the authors
for write access to the online code repository, currently
hosted by Sourceforge, Inc.
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Source code exampleFigure 4
Source code example. Example of a Monte Carlo simulation program to calculate protein ionization states in an aqueous 
salt solution using explicit ions and the detailed three-dimensional protein structure.

1: #include <iostream>

2: #include "analysis.h"

3: #include "container.h"

4: #include "potentials.h"

5: #include "countdown.h"

6: typedef pot_coulomb T_pairpot; // Specify pair potential

7: #include "markovmove.h"

8:

9: using namespace std;

10:

11: int main() {

12:   cell::cell con(100.); // Use a spherical container

13:   canonical nvt; // Use the canonical ensemble

14:   pot_setup cfg; // Setup pair potential (default)

15:   interaction<T_pairpot> pot(cfg); // Functions for interactions

16:   countdown<int> clock(10); // Estimate simulation time

17:   macromolecule protein; // Group for the protein

18:   ioaam aam(con); // Protein input file format is AAM

19:   protein.add( con, aam.load(

20:         "calbindin.aam" ) ); // Load protein from disk

21:   protein.move(con, -protein.cm); // ..translate it to origo (0,0,0)

22:   protein.accept(con); // ..accept translation

23:   group salt; // Group for salt and counter ions

24:   salt.add( con, particle::NA, 34+19); //   Insert sodium ions

25:   salt.add( con, particle::CL, 34 ); //   Insert chloride ions

26:   saltmove sm(nvt, con, pot); // Class for salt movements

27:   aam.load(con, "confout.aam"); // Load old config (if present)

28:   chargereg tit(nvt,con,pot,salt,7.6); // Prepare titration. pH 7.6

29:   systemenergy sys(pot.energy(con.p)); // System energy analysis

30:   cout << con.info() << tit.info(); // Some information

31:

32:   for (int macro=1; macro<=10; macro++) { // Markov chain

33: for (int micro=1; micro<=1e3; micro++) {

34:       switch (rand() % 2) { // Randomly chose move

35: case 0:

36:           sys+=sm.move(salt);               // Displace salt particles

37: break;

38:         case 1:

39:           sys+=tit.titrateall();            // Titrate protein sites

40:           protein.charge(con.p); // Re-calc. protein charge

41:           protein.dipole(con.p); // Re-calc. dipole moment

42: break;

43:       }

44:     }                                       // END of micro loop

45:     sys.update(pot.energy(con.p)); // Update system energy

46:     aam.save("confout.aam", con.p); // Save config. to disk

47:     cout << "Macro step " << macro

48:          << " completed. ETA: " << clock.eta(macro);

49:   }                                         // END of macro loop

50:   cout << sys.info() << sm.info() // Print results

51:        << tit.info() << salt.info() << protein.info();

52: }
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