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Abstract
Background: We describe a computer program named Pspace designed to a) obtain a reliable
basis for the description of three-dimensional structures of a given protein family using homology
modeling through selection of an optimal subset of the protein family whose structure would be
determined experimentally; and b) aid in the search of orthologs by matching two sets of sequences
in three different ways.

Methods: The prioritization is established dynamically as new sequences and new structures are
becoming available through ranking proteins by their value in providing structural information
about the rest of the family set. The matching can give a list of potential orthologs or it can deduce
an overall optimal matching of two sets of sequences.

Results: The various covering strategies and ortholog searches are tested on the bromodomain
family.

Conclusion: The possibility of extending this approach to the space of all proteins is discussed.

Background
Recent advances in comparative structural modeling have
demonstrated that reasonably reliable model structures
can be built for proteins that share greater than 20–25%
sequence similarity to their template proteins whose
structures are determined experimentally [1]. As a conse-
quence, Vitkup and colleagues [2] have discussed the pos-
sible approaches to obtain three-dimensional structural
information of all known proteins based on structures of
a judiciously chosen subset of proteins from all protein
families that would be experimentally determined.

This approach begs the question how one can identify and
select these structures that are representative of large pro-
tein families. In general, target selection for structural
genomics is governed by the principle of trying to maxi-

mize the information from a selected target [3]. To this
effect a graph can be constructed whose vertices are pro-
teins and edges are placed between vertices whenever the
sequence similarity between them is such that compara-
tive modeling can provide a model of adequate accuracy.
A set of structures, from which models can be generated
for all members of the proteins forming the graph, will
correspond to a vertex set with the property that for all
other vertices in the graph there is an edge connecting it to
a member of this vertex set. Such a set is called a dominat-
ing set – an example is shown on Figure 1a. While the
determination of the smallest dominating set is consid-
ered among the so-called 'hard' problems in computer sci-
ence [4], it has been suggested that the so-called greedy
algorithm (that keeps picking the node with the most
neighbors) is nearly optimal [5]. On the graph shown on
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Figure 1a the greedy algorithm would have chosen an
other dominating set, shown on Figure 1b, that consists of
a single vertex – clearly an optimal choice. For the prob-
lem of covering the whole protein space, it has been
shown that the greedy algorithm is two to three-fold more
efficient than selecting structures randomly and in an
uncoordinated fashion [2].

This situation is, however, complicated by the fact that
new proteins are continuously added to a set of
unknowns, and the target selection is not guided exclu-
sively by the aim of optimizing the coverage of a protein
space. As such, there is no practical way to realize the
greedy algorithm. However, if the proteins with no exper-
imental structures are given a weight representing their
importance for the process of covering the protein space,
then the approach inherent in the greedy algorithm can be
reformulated to selecting proteins with probability pro-
portional to their weight. Such approach may yield an effi-
ciency that is close to that of the greedy algorithm while
providing additional flexibility in the target selection for
experimental structure determination. This weighting is
the conceptual basis for Pspace, a new computer program
that we are describing in this study.

In addition to providing a guide for the coverage of a pro-
tein space, Pspace also has a facility for the search of
ortholog candidates.

Methods
Strategies for covering a protein space
As discussed above, there may be other algorithms besides
the greedy algorithm that afford more freedom without
significantly lowering the efficiency of coverage. We
implemented into Pspace four different algorithms to
select proteins for structure determination in order to be
able to assess their relative efficiency. Upon selection of a
protein for structure determination each proceeds by
updating the weights that represent the respective infor-
mation content of the rest and stops when only structures
with zero weight remain:

1. Greedy and coordinated: Determine structures of pro-
teins with the highest weights in the set U.

2. Stochastic and coordinated: Determine structures of
proteins from the set U with a probability proportional to
a weight associated with each protein.

3. Random and coordinated: Determine structures of pro-
teins from the set U with uniform probability considering
only proteins whose weight is positive.

4. Random and uncoordinated: Determine structures of
proteins from the set U with uniform probability consid-
ering all proteins in the set U.

Vitkup et al [2] showed that for the entire protein space
the random and uncoordinated approach requires 2–3
times more structure determination than the greedy algo-
rithm.

General formalism for calculation of structural 
information
At any given time, let P be the set of all proteins with
known sequences, D be the set of all proteins with known
sequences and structures, and U = P\D, the set of proteins
with known sequence but unknown structure. For a pro-
tein i, let's define its 'sequence vicinity', VH(i), as the set of
proteins with unknown structure that are close to i in the
protein space, i.e., their measure of similarity exceeds a
threshold:

VH(i) = {j | hij > H} (1)

where hij is a similarity measure in the protein space (e.g.,
percent of sequence identity) and H is the threshold value
below which structure determination with comparative
modeling is considered unreliable – see Figure 2. For the
sequence identity as a measure, 30% has been suggested
as a reasonable choice [2].

Assume further, that there is a function I(i, S), giving the
amount of information one can gain from knowledge of
structures of the proteins in the set S about the structure of
the protein i. Then the utility of determining the structure
of a protein k, k ∈ U, is the total amount of information
gained when protein k is added to the set D. This utility
can be expressed as:

Thus, given P, D, the vicinities VH (i), for each sequence i
and assuming a reasonable form for I(i, S), ∆I(k) can be

∆I k I i D k I i D

i V kH

( ) ( ,{ , }) ( , ))

( )

= −

∈
(2)

Examples of dominating sets in a graphFigure 1
Examples of dominating sets in a graph. Vertices covered by 
black discs form the dominating set.
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calculated and used as a measure of the importance of
obtaining the structure of protein k.

Clearly, for k ∈D, ∆I(k) = 0. Furthermore, the paradigm
put forth above suggests that the knowledge of a structure
i provides information about the structure of all proteins
in its sequence vicinity VH(i). Also, the amount of infor-
mation will be assumed to be proportional to the number
of residues of the protein(s) whose structure can be
obtained by homology modeling. Formally, this can be
written as

where nrk is the number of residues in k and

i.e., the similarity between k and the protein in the set S
most similar to it.

Establishing the similarity measure hij
The two most common measures of sequence similarity
between two proteins are the percent of identical residues
and the alignment score – the latter being a function of the
similarity matrix and gap penalties used in the alignment.
The alignment score can be normalized by the maximum
possible score to make it commensurate with the percent

identity. Pspace considers both measures in a combined
manner:

I0(k, S) = min {Ip
0(k, S), Is

0(k, S)} (5)

Where the superscripts p and s refer to using the percent
identity or similarity score, respectively, in Equation 3.
The percent identity between two sequences is calculated
relative to the number of residues in the shorter sequence.
In this treatment, I0(k, S) will be nonzero only when both
measures fall above their respective thresholds. Recent
work quantified the accuracy of homology models [6] as
a function of sequence similarity and their result can be
used in selecting the threshold values used by Pspace.

The measures discussed above treat all residues equally.
Proteins, however, usually have a selected set of residues
that are directly involved in the protein's function. For any
single protein, the residues forming the binding site may
be known. For a family of proteins, conserved residues are
usually assumed to have special roles. It is thus reasonable
to assume that for such residues higher level of similarity
is required than for the rest. Pspace allows the specifica-
tion of such a selected set with corresponding thresholds
that can be different from the thresholds used for the rest
of the residues.

Higher order approximations to the utility function I(k, S)
The zeroth order approximation to I(i, S) described by
Equation 3 above is based on a discretized representation
of sequence similarity. In general, however, the amount
and reliability of information regarding the structure of
protein k that can be obtained from the knowledge of a set
of proteins S a continuous function of the extent of simi-
larities between k and the members of the set S, {hi, k|i = 1
,..., |S|} (|S| is the number of elements in the set S).
Besides increased sequence similarity, the reliability of a
homology model for k derived from the set S increases
with the number of proteins with significant similarity to
the protein k in question. Since all these effects are
ignored in writing Equations 3 and 4 we present here two
more general forms of I(i, S).

At the next level of approximation the step function used
for each measure could be replaced by a sigmoidal func-
tion p(h) multiplied by the number of residues nrk:

I1(k, S) = nrk* p(hk
max) (6)

where p(h) is zero below the threshold value and gets
close to one for h>H and reaches one at the measure of
perfect similarity (i.e., identity). Its actual form can be
established by the study of a large set of models whose
accuracy is reasonably well known – the work of Chakra-
varty et al., will be useful for this purpose as well [6].

I k S
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Schematics of the relation between the sets P, U, D, and VH(i)Figure 2
Schematics of the relation between the sets P, U, D, and VH(i).
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When multiple measures are used – such as in Pspace –
then I1(k, S) (as well as the further generalizations
described below) can be obtained as a weighted average:

I1(k, S) = ∑wkIk
1(k, S) (7)

where the superscript k indicates one of the measures and
the wk's sum up to one.

The effect of using more than one structure for the homol-
ogy-based estimation of the structure of the protein k can
be incorporated in the first approximation by multiplying
I1(k, S) with a function fN(|S|, p), representing the addi-
tional information the multiple reference structures repre-
sent:

I2(k, S) = fN(|S|, p(hk
max)) *I1(k, S). (8)

Clearly, fN(1, p) = 1.fN(|S|, p) should be monotonically
increasing as a function of |S| but level off at a value under
1/p when |S| reaches the number of structures that was
found to be sufficient to accurately determine an
unknown protein's structure.

At higher levels of approximation, instead of relying on
just the homology to the nearest structure, a weighted sum
of all p(hi, k)*nri, k could be used:

j ∈ S

A logical first choice for the weights w(i, k) would be fN(|S
∩ VD, l|)/|S ∩ VD, l| since for the case when all hi, k's are the
same it results in I3(k, S) = I2(k, S).

Updating I(k, S) with new sequences and/or structures
When a sequence k is added to the set U (i.e., the structure
is unknown) then we need to calculate the amount of
information its structure would yield, ∆I(k). This calcula-
tion requires the determination of its neighborhood.
When the structure corresponding to a known sequence is
determined (i.e., moved from the set U to the set D) then
all of the ∆I(k) values of sequences in its vicinity have to
be updated. Since the set U is in general quite large, the
algorithms for these updates have to be considered care-
fully.

Adding a new sequence to U requires the alignment of this
sequence with all members of the sets U and D. Given the
large number of sequences already determined and its
nearly exponential growth this is in itself a major task. It
has been addressed by several groups. Most recently, a
database of similarity scores of all known proteins was

made available that is now continually being updated as
new sequences are being determined [7].

However, for our purpose the results should only be
stored for those protein pairs that are within the threshold
of utility. The alignment results will give directly I(i, S) for
the new protein. We have to update the I(i, S) values 'just'
for the proteins in the set U that have high enough
sequence similarity to it that adding i to their neighbor-
hood will increase their I(i, S). This results in a limited
number of updates. Finally, the sum of weights derived
from the I(i, S)'s have also to be updated if the weights
have to be turned into probabilities for the sampling algo-
rithm.

Ortholog search
When proteins (or clusters of proteins) in two sets repre-
senting proteins in two organisms can be paired by
mutual relation of maximum similarity, then the determi-
nation of orthologs is straightforward [8]. Pspace, how-
ever, is prepared to treat cases when this is not necessarily
the case: it establishes a match between the two sets with
the best overall similarity. For this calculation, the so-
called Hungarian method of graph theory [9] is used that
establishes the match between two sets that maximizes
the overall similarity. In any event, the result of such
matching needs further verification based on the biologi-
cal roles of the proteins matched. The methods for detect-
ing orthologs in distant families (where the seqence
similarity of orthologs can be quite low) has recently been
reviewed by Wan and Xu [10].

Results
Comparison of coverage strategies
Pspace was tested on the sequences in the bromodomain
family, as extracted from the SmartEMBL [11] database.
Specifically, we selected the bromodomains from proteins
in yeast, rat, mouse and humans. For protein alignments
we used the PAM-120 scoring matrix, extracted from the
database AAindex, Version 3.0 [12,13]. The initial gap
penalty was set to 12 and the gap extension penalty was
set to 1. The distribution of the percent identities and
alignment score percentages in the human bromodomain
set are shown on Figure 3 as calculated by Pspace.

The input sequences were checked for redundancy by clus-
tering at near-identity level, using a hierarchical clustering
based on minimal cluster member distance [14]. This
resulted in a significant reduction in the number of
sequences. In the human bromodomain family, cluster-
ing at the 99.0, 99.5, or 99.9% similarity level reduces 248
sequences to 65, 70, and 79 sequences, respectively. No
redundancy was found at the 100% level, indicating that
there was some difference between any pair in the family.
The yeast bromodomain set was reduced from 16 to 14 at

I k S w i k nr p h
j S

i k i k3( , ) ( , ) ( )., ,= ∗
∈

∑  (9)
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the 99% similarity level. On the other hand, neither the
rat nor the mouse bromodomains had redundant mem-
bers at the 99% level.

We also used the bromodomains of this four sets (after
clustering at the 99% level) to compare the four strategies
for the covering of the set. After having aligned the
sequences, we determined the percent identity and align-
ment score percentage. For each protein we calculated
I0(k, S), using uniformly 25% for minimum percent iden-
tity and 40% for minimum similarity score. Different
powers of I0(k, S) were used for the selection weight. Also,
the various random and stochastic strategies were exe-
cuted 10 times with different random number seeds.
Table 1 provides the result for the different strategies.

These results clearly show that the stochastic and coordi-
nated approach performs close to the greedy algorithm if
the weights are 'strong' enough. It is also clear that the
large gain in the number of structures needed comes from
the coordination. This emphasizes the fact that the most
important step in reducing the number of structure deter-
minations is the coordination of efforts.

Test of the ortholog searches
The search for orthologs was run to match the rat and
mouse bromodomains. The matched sequences are
shown in Table 2. Most matches found are indeed
orthologs. There are several sequences in the set of rat bro-
modomains whose function is unknown thus the matches
found may be considered a prediction for their function.
Note also that for matches found that turned out not to be
orthologs, there were no true orthologs represented in this
sequence database.

We also compared the yeast and human sets remained
(after clustering at the 99% level). While the 14 yeast bro-
modomains were unequivocally matched to counterparts
in the human bromodomain set, none of the matches
found corresponded to actual orthologs. This is not sur-
prising since yeast and humans are very distant in the evo-
lutionary tree. This raises the question of how close the
score between true orthologs are to the score of the best
match. This can be tested by asking Pspace to list for each
yeast bromodomain all human bromodomains whose
matching score is within a certain percent of the best
score. For example, the score of the human ortholog of the
GCN5 is within 5% of the best score, but so are 6 other
bromodomains.

Discussion
Potential scope
Since structures of individual domains of complex multi-
domain proteins are often determined separately (as is the
case for the bromodomains discussed here) the current
implementation of Pspace is best suited for the treatment
of a specific family or a limited set of families. However,
the concept of dynamically assigning a weight to proteins
with unknown structure is applicable to the space of all
proteins and can be a valuable help in selecting proteins
for structure determination. This can be achieved by
implementing the calculation of these weights on a web-
based server. Since the results of this study clearly showed
that the major gain in the efficiency of covering a protein
space comes from coordination, the effect of creating such
a server would be a significant gain in the efficiency of cov-
ering the protein space. Note that effort of this scale has
already been undertaken: the SIMAP server [15] provides
the dynamically updated similarity matrix of all known
protein sequences.

Table 1: Results for the different strategies to cover the 
bromodomain space

Strategy Weight Mean number of 
structure determinations

S.D.

Greedy 35
Stochastic and coordinated [I0(k, S)] 41.2 2.0
Stochastic and coordinated [I0(k, S)]2 38.0 2.7
Stochastic and coordinated [I0(k, S)]3 36.4 2.0
Random and coordinated Const. 44.0 2.64
Random and uncoordinated Const. 86.8 3.6

Full line: distribution of pair-wise percent identity for the sequences in the human bromodomain set; Dotted line: dis-tribution of the pair-wise score percentage (the score for a perfect match represents 100%) for the sequences in the human bromodomain setFigure 3
Full line: distribution of pair-wise percent identity for the 
sequences in the human bromodomain set; Dotted line: dis-
tribution of the pair-wise score percentage (the score for a 
perfect match represents 100%) for the sequences in the 
human bromodomain set.
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Multi-domain proteins
A large number of eukaryotic proteins consist of multiple
domains, each of which can be homologous to different
domains of other proteins. This has led to the conclusion
by Liu and Rost [16] that 'there is no reasonable way of clas-
sifying proteins without dissecting proteins into structural
domain-like fragments'. Thus the current capabilities of

Pspace limit it to the treatment of single-domain proteins.
The formalism developed here, however, can be readily
extended to multiple domain proteins by separating the
proteins in the set D into its domains and calculating the
information content of each separately. The introduction
of nri, k into the formalism allows the proper account of
the domains' contribution. Fortunately, the decomposi-

Table 2: Mutually best matches between rat and mouse bromodomains

Rat bromodomain Mouse bromodomain OK? %score % id

ENSRNOP00000016581/43–153 ENSMUSP00000061312/43–153 O 99 99
ENSRNOP00000016581/175–289 ENSMUSP00000061312/175–289 O 100 100
ENSRNOP00000016581/379–489 ENSMUSP00000061312/379–489 O 99 99
ENSRNOP00000016581/516–627 ENSMUSP00000061312/516–627 O 100 100
ENSRNOP00000016581/651–765 ENSMUSP00000061312/651–765 O 100 100
ENSRNOP00000016581/775–881 ENSMUSP00000061312/775–881 O 98 97
Q6MGA9_RAT/71–181 Q7JJ13_MOUSE/71–181 O 100 100
Q6MGA9_RAT/345–454 Q7JJ13_MOUSE/345–454 O 100 100
Q75QC6_RAT/111–217 Q3UKS1_MOUSE/111–217 O 100 100
UPI00001813C2/129–237 BRD7_MOUSE/129–237 O 100 100
UPI0000182A85/235–342 ENSMUSP00000073649/279–386 U 91 85
UPI00001D014C/663–771 Q8CFP4_MOUSE/21–129 63 31
UPI00001D0817/1330–1438 UPI0000020C93/1333–1441 98 95
UPI0000250558/625–733 ENSMUSP00000071391/624–732 100 100
UPI0000250E9C/722–830 Q3TZ59_MOUSE/719–827 O 100 100
UPI000025122E/696–800 TIF1B_MOUSE/697–801 O 100 100
UPI0000500889/1036–1142 SMUSP00000033339/1171–1277 U 100 100
UPI0000500ABF/1387–1515 UPI000042B0CA/1391–1501 97 99
UPI0000500BE2/1085–1195 SMUSP00000087991/1085–1195 O 100 100
UPI0000500F2E/1000–1108 Q6P9L3_MOUSE/993–1101 U 99 98
UPI000050107F/1159–1272 UPI0000565734/1156–1267 O 98 98
UPI000050107F/1321–1426 UPI0000565734/1317–1422 O 99 99
UPI00005018FB/24–134 ENSMUSP00000031215/24–134 97 91
UPI00005018FB/268–377 ENSMUSP00000031215/268–377 97 93
UPI0000502201/158–266 UPI00001C60A3/153–261 O 99 98
UPI0000502202/784–892 BRD8_MOUSE/778–886 O 100 100
UPI000050282E/976–1099 UPI00004351D5/972–1095 97 95
UPI00005029F4/667–775 ENSMUSP00000004985/88–196 U 98 97
UPI0000502B77/30–140 Q5CCJ9_MOUSE/31–141 U 100 100
UPI0000502B77/306–415 Q5CCJ9_MOUSE/307–416 U 100 100
UPI0000502F4F/171–278 UPI0000566B4C/171–278 O 100 100
UPI0000503116/900–1005 TIF1A_MOUSE/902–1007 100 100
UPI0000503365/1–73 UPI0000564B4C/1047–1157 U 64 31
UPI0000503A1F/764–872 ENSMUSP00000039757/742–850 O 99 99
UPI0000503C43/1742–1850 UPI0000026135/1734–1842 U 99 99
UPI0000503CEB/56–166 ENSMUSP00000003726/56–166 O 100 100
UPI0000503CEB/351–460 ENSMUSP00000003726/351–460 O 100 100
UPI0000503EC8/965–1077 UPI00001C594E/955–1067 100 100
UPI00005040EC/1422–1533 Q6AXG8_MOUSE/1422–1533 O 100 100
UPI000050419C/1544–1678 UPI0000565818/1535–1669 U 99 98
UPI00005042C5/646–749 SMUSP00000034787/1158–1261 O 100 100
UPI00005042C5/806–911 SMUSP00000034787/1318–1423 O 99 99
UPI00005045CC/670–773 UPI000056580C/258–361 O 97 92
UPI00005049DA/1399–1507 Q80UV9_MOUSE/799–907 O 100 100
UPI00005049DA/1521–1630 Q80UV9_MOUSE/921–1030 O 99 99

O or U in the column headed with OK? marks matches that are actual orthologs and where the function of the rat sequence is unknown, 
respectively. The columns headed by %score and %id give the measure of similarity between the matched sequences as the percentage of the 
maximum possible score and of the identical residues, respectively.
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tion is only necessary for the proteins in the set D since the
knowledge of the structure allows, reasonably, reliable
establishment of domain boundaries.

Conclusion
Pspace is available at the URL http://inka.mssm.edu/
~mezei/pspace. The distribution includes the source code,
the matrices of the AAindex database and the (HTML)
documentation. A list of its currently implemented func-
tions is given in the Appendix.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
The project was jointly designed by both authors. MM
developed the algorithms and wrote the software.

Appendix: List of functionalities of Pspace
The current version of Pspace performs a following set of
functionalities:

1. Select and read a scoring matrix. The 66 matrices pro-
vided by the database AAindex, Version 3.0 [12] have
been included into the distribution [13].

2. Read a set of sequences (in FASTA format) either as first
or as second set (for possible ortholog search). Upon read-
ing a set Pspace generates a Postscript plot of the distribu-
tion of pairwise % identities and alignment scores within
the set.

3. Cluster the sequences in a set by % homology and select
the one in the 'middle' as the representative of the cluster.
The 'middle' is defined as the sequence whose lowest
homology with the rest of the cluster members is the high-
est.

4. Initialize the weight calculation, assuming that no
structure has been determined for the proteins repre-
sented by the sequences in the set.

5. Add sequences representing proteins with known struc-
ture to a set.

6. Add sequences representing proteins with unknown
structure to a set.

7. Find a subset of sequences that covers the whole set
using one of the four algorithms described above.

8. Match the sequences on the two sets using one of the
three optimization procedures described above.

9. Report the weights assigned to the sequences in a set.

10. Report the content of the whole database (sequences,
pairwise scores, weights).

11. Save the database.

12. Restore the database.
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