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Abstract

Background: High-throughput systems are powerful tools for the life science research
community. The complexity and volume of data from these systems, however, demand special
treatment. Graphical tools are needed to evaluate many aspects of the data throughout the analysis
process because plots can provide quality assessments for thousands of values simultaneously. The
utility of a plot, in turn, is contingent on both its interpretability and its efficiency.

Results: The shivplot, a graphical technique motivated by microarrays but applicable to any
replicated high-throughput data set, is described. The plot capitalizes on the strengths of three well-
established plotting graphics — a boxplot, a distribution density plot, and a variability vs intensity
plot — by effectively combining them into a single representation.

Conclusion: The utility of the new display is illustrated with microarray data sets. The proposed
graph, retaining all the information of its precursors, conserves space and minimizes redundancy,
but also highlights features of the data that would be difficult to appreciate from the individual
display components. We recommend the use of the shivplot both for exploratory data analysis and
for the communication of experimental data in publications.

Background

Microarrays [1] have provided a wealth of gene expression
data for the biological community to interpret. The tech-
nology presents a snapshot of cellular transcription at an
unprecedented level of detail, with certain array designs
containing probes to assess expression levels of every
known gene within the target organism's genome. Micro-
array data have been presented in an ever-growing
number of publications, and confidence in the technol-
ogy is growing as progress is made validating microarray
findings.

The analysis of microarray data remains challenging, how-
ever, for a number of reasons. The technology is expen-
sive, often restricting the number of replications that can
be run in an experiment. Moreover, the validity of various
statistical models and their corresponding processing
algorithms for gene expression data are being actively
debated [2,3].

One of the more daunting but unavoidable aspects of
microarrays, as with all high-throughput systems, is the
sheer volume of data that must be examined. Researchers
are unable to develop comprehensive familiarity with
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each of the millions of data points available in a typical
microarray data set. Multi-display graphical methods are
thus key for reaching an understanding of the data, for
assessing analysis assumptions, and for examining the
effects of data pre-processing methods.

Plotting allows the rapid and concise representation of the
data as a whole, and allows trends and local aberrations to
be spotted with relative ease [4]. These trends are useful
for more than just diagnostic assessments; due to the rel-
ative paucity of replicate observations in many studies,
supplementary information is frequently gathered from
observations with similar expression properties. This
information can be used, for example, to obtain an
improved estimate of inter-array variability [5].

A further motivation for concise and elegant graphics is
the space restrictions typically imposed by scientific jour-
nals. A thorough and well designed graphic needs to be
explained just once, and its subsequent re-use can allow
the reader rapid insight into volumes of visual data.

The construction of comprehendible graphics, however, is
a challenge of its own. Unnecessary ink must be kept to a
minimum, and it is easy to obscure or even mask impor-
tant points through graphs that are complex or confusing.
Efficiency, readability, and relevance are of paramount
concern.

With these criteria in mind, the present work illustrates an
aggregate graphical approach, inspired by (but not
restricted to use with) microarray data. The proposed tech-
nique pools the strengths of several other graphical meth-
ods which are commonly applied to microarray data: a
boxplot, a probability density function plot, and a plot
illustrating variability as a function of signal intensity. The
present work demonstrates that these plots can be produc-
tively combined, facilitating integration of complemen-
tary information. Although this plot design is motivated
by microarray analysis, we present this technique as a via-
ble tool for both exploration and publication of other
types of high volume multivariate data sets.

Component plots

This section reviews the component plots that are assem-
bled in our proposed graphical method. Simulated and
empirical microarray data are used to illustrate the
strengths and weaknesses of these respective plots when
presented individually. The microarray data used in this
section were obtained from the publicly available Affyme-
trix GeneChip spike-in data [6].

Boxplots
The boxplot [7] is an example of a concise graphic in
which several critical pieces of information are presented
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about a univariate distribution. Firstly, the median is illus-
trated as a dot in the "box", with the position of the dot
relative to the axis giving the specific value. The interquar-
tile range (IQR), which contains the middle 50% of the
data, is shown by the length between the outer edges of
the box. The points farthest from the median that are not
classified as outliers are marked as the tips of the whiskers
extending from the box. In addition to these five distribu-
tional landmarks, outliers are explicitly plotted as lines or
dots beyond the ends of the whiskers. A rule of thumb,
such as 1.5 times the IQR beyond the edges of the box, is
typically employed to distinguish how far from the center
an observation must be to be classified as an outlier.
Examples of boxplots can be seen in Figures 1a-c.

The five-point summary delivered in the box-and-whisker
portions of boxplots allows rapid access to many aspects
of the distribution. For example, indications of skewness
can be seen both in the position of the median within the
interquartile range box (closer to either end implicates
skewness) and the lengths of the respective whiskers
extending from the box (if one whisker is much longer
than the other, skewness is a possible explanation).

Boxplots, however, have shortcomings. Although they are
easily interpreted and are pleasing to the eye, they have
poor data-ink ratio [8]. The "box" component of a box-
plot can be disassembled into its 5 composite values, with
the remaining ink merely providing assistance to the eye.
For example, only one half of the boxplot, as divided by
the horizontal axis of bilateral symmetry through the
center of the boxplot, is necessary.

Furthermore, enclosing a "boxed" region encourages the
interpretation of area, a quantity which is arbitrarily deter-
mined by the boxplot's vertical width. This two-dimen-
sional depiction only distracts from the interpretation of
one-dimensional distance. Although the marked quanti-
ties and their positions relative to one another are rele-
vant, a majority of the lines surrounding and joining these
values are not. Boxplots also potentially mask underlying
features of the distribution, such as tail densities and mul-
tiple modes [9]. As an illustration of this hazard, compare
the boxplot generated from a normal distribution (Figure
1a) to the boxplot of a distinctly bimodal (mixture of two
non-overlapping normals) distribution (Figure 1b). From
these two illustrations alone, it would be very difficult to
discern that the two distributions have a different number
of modes. This information can be recovered, however,
through use of the density plot.

Density plots

Perhaps the easiest way to introduce the density plot is to
first examine the related concept of a histogram [10]. His-
tograms work on a univariate data set by first stratifying
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RMA Microarray Data
c) Boxplot

-]

4 6 8 10 12
RMA
(mean intensity across replicate arrays)

f) Histogram

1500

0 500

4 6 8 10 12
RMA
(mean intensity across replicate arrays)

i) Density Plot

0.20
|

2 4 6 8 10 12 14
RMA
(mean intensity across replicate arrays)

0.00
|
\

Examples of Existing Plot Devices. An illustration of some popular plotting techniques for distributional data. Panels a-c
show horizontal boxplots; panels d-f show histograms; panels g-h show probability density plots. Plots in column | were con-
structed based on a sample of 1000 from an N(10, 1) distribution. Plots in column 2 were constructed based on a mixture; 500
drawn from N(5, I) and 500 from N(15, |). Column 3 applies these same plots to microarray data. The RMA algorithm was
performed using 6 chips from the Affymetrix HG_UI33A_tag spike-in data set; mean intensities were obtained by averaging log
(base 2) summary expression measures across a subset consisting of three technical replicates.
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the data into "bins" based on value, and then plotting the
population count of each bin. The resulting graph dis-
plays how the data values are distributed; bins containing
many observations have taller bars than sparsely popu-
lated bins. Histograms are excellent for detecting multiple
modes, skewness, and kurtosis. Examples of histograms
can be seen in Figures 1d-f.

Density plots [11] offer what is in essence a "smoothed"
histogram; instead of using discrete bins and counts, den-
sity plots employ a continuous curve to communicate the
same information. Area is used to convey the probability
of observations within specified ranges. Specifically, were
a sample value drawn from the depicted distribution, the
probability of this value lying within a given interval can
be determined by taking the integral of the curve bounded
by that interval. Example density plots can be seen in Fig-
ures 1g-i. Like the histogram, density plots are excellent
for detecting multiple modes, skewness, and kurtosis. The
limitation of any approach that employs frequency as a
metric is that extreme values and outliers are given little
credence. These outlying values can carry a high leverage
on important quantities such as the mean, yet they have
only a subtle effect on the density curve. Although density
plots do an excellent job estimating the position and
number of modes, the mode is itself a highly variable esti-
mator of the center of a distribution, and it is challenging
to visually estimate the position of a mean or median
from the density curve.

Variability-versus-intensity plots

It is typical for the variability of replicated microarray data
to exhibit a dependence on intensity, whether replication
is across or within arrays and whether the variability
reflects processing effects only or processing plus biologi-
cal effects. One common approach is to log gene expres-
sion data, which tends to stabilize error variance across
replicates for mid-to-upper range intensity values but
which has the disadvantage of inflating additive error for
low intensity values. Alternative approaches to microarray
data transformation model both additive and propor-
tional error components (see the "generalized log" meth-
ods of [12-16]). Variability versus intensity plots can be
used to assess how successfully such transformations have
stabilized the variance throughout the entire intensity
range. Additionally, the plot can also be used as a visual
aid for pooling estimates of random error associated with
genes of similar expression intensity [3,17,18].

The relationship of variability to mean intensity (i.e. the
trend line) is the important piece of information to be
obtained from this plot. The vast majority of points on the
plot are of little interest to the viewer and can make the
visual estimation of the trend challenging when data
points are densely packed. As a method of capturing the
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trend of variability as a function of mean intensity, one
can employ any of the loess family of smoothers [4,19],
which perform local weighted least squares regression to
capture nonlinear trends in data. (An example loess fit can
be seen in Figure 2c.)

Results and discussion

The Shivplot

As can be seen from Figure 2a-c, all three of the discussed
plots - boxplot, density plot, and variability-versus-inten-
sity (standard deviation vs mean) - have an axis in com-
mon. Figure 2d presents the shivplot, an amalgamation of
the three plots. To first capture the essence of the boxplot,
we eliminate its vertical width, thereby reducing it down
to point components: the five distributional landmarks
along with the outliers. These points can be displayed as
ticks across the middle of the graph, aty = 0. Then, in the
region below, we can draw the reflection of the density
function plot (with the scale starting at zero and increas-
ing downward along the lower half of the y-axis). The area
enclosed by this curve below y = 0 represents the probabil-
ity density. Lastly, we can draw the loess fit from the vari-
ability-versus-intensity plot in the upper half of the graph.
One can quickly isolate the information in any of the
three precursor graphs from the final image - there is no
significant loss of information when the plots are super-
imposed. (The values along the right side of the graph
provide maximum values: the maximum standard devia-
tion above, and the maximum density below.)

The data interpreter needs to adjust to two aspects of this
graph: The upper and lower halves of the plot have dis-
tinct y-axes, with different scales and units, and the den-
sity distribution is inverted. However, having the three
graphs simultaneously available provides the advantage
that each plot can readily be interpreted in the context of
the other two. The advantages of this feature are best illus-
trated by examining empirical data, as provided in the fol-
lowing section.

Examples

There is an ongoing debate about the appropriate analysis
of data derived from microarrays. As such, it is of great
interest to biologists and statisticians alike to observe the
impact of different statistical algorithms on microarray
data. Having approachable visual tools with which to
make such comparisons greatly expedites this tedious and
iterative process.

The examples in this section come from three different
data sets. To build familiarity with the shivplot, we use
data from the Affymetrix U133 spike-in data set to dem-
onstrate the appearance of the components of the shiv-
plot, and then follow this up with their shivplot
equivalent. From these shivplots, we will be able to evalu-
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The Shivplot and its Components. lllustration of the individual components of a shivplot are displayed in a-c; the agglom-
eration of these plots is displayed in the shivplot in d. The same raw data as in Figure | was instead processed with the Affyme-
trix MAS 5.0 default algorithm (as implemented in Bioconductor [25]), and the resulting expression measures are illustrated
here. Means of log (base 2) measurements were taken across technical replicates.
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ate distributional features that distinguish the expression
estimates produced by different Affymetrix normalization
procedures from one another.

Beyond distinguishing the nuances of algorithms, the
shivplot can also be used to detect interesting distribu-
tional properties of data sets that typical exploratory
graphics may understate or miss. To demonstrate this util-
ity, we have obtained the data from two microarray stud-
ies that were specifically designed to examine technical
aspects of microarray data structure. Specifically, data sets
produced by [20] and [21] will be examined, as these data
sets highlight unique advantages of the shivplot in an
exploratory context.

For these latter two data sets, we also present a slight vari-
ation on our shivplot theme. When a large number of dis-
tributions are to be compared in tandem, granting each
shivplot its own unique frame and axes may require too
much space to be efficient. Separate frames also make it
difficult to perceive inter-relationships among density,
variability, and signal intensity. To address these issues,
we introduce a multi-sample shivplot (Figures 8 and 9), in
which each distribution is depicted upon a common set of
axes.

Affymetrix spike-in data

As mentioned earlier, the microarray manufacturing com-
pany Affymetrix has produced spike-in data sets where the
underlying transcript quantity information is engineered
and thus known in advance. Such data sets have been used
to design [22], field test [23], and compare [24] statistical
algorithms. The specific details of these spike-in experi-
ments can be found at the aforementioned website. We
shall use our shivplot to compare a subset of Affymetrix
analysis algorithms.

Figure 3 shows the individual components of the shivplot
produced by three algorithms: MAS 5.0 [22], as imple-
mented in [25], RMA [23], as implemented in [25], and
dChip [26], as implemented in their dChip software, ver-
sion '2004". Figure 4 shows the shivplot representation of
these data. Note that a wide variety of information can be
gleaned from this side-by-side shivplot comparison. For
example, the three metrics clearly do not share an abso-
lute scale. Furthermore, they are in disagreement over the
general distribution of points. RMA, for example, has a
larger proportion of very small values compressed within
a small range and with outliers solely in the high expres-
sion range compared to the other examined algorithms.
Both MAS 5.0 and dChip, by contrast, produce approxi-
mately symmetrical distributions, as can be seen in the
density portion of the shivplot.
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MAS 5.0 has a step in its algorithm in which unrealisti-
cally small gene expression values are replaced with
imputed values. The consequences of this approach can
be seen uniquely in the MAS 5.0 shivplot as a decrease in
variability across replicates at the (partially imputed) low
end. A similar dip in average variability can be see at the
low end of the RMA intensity spectrum, although this
phenomenon does not have a satisfying methodological
explanation like the one offered for MAS 5.0. The compar-
ative plot also shows the substantially lower replicate var-
iability of RMA relative to MAS 5.0 and dChip, a feature of
the RMA algorithm that has been well documented [24].
Though dChip has relatively stable variance at the high
end, there is an escalation in variability near the low end.

Figures 5a-c illustrate the shivplots scaled individually.
Note that on this plot it is much easier to detect details
such as the non-uniformity (relative to intensity) of RMA
cross-replicate variability, a detail which was lost when
the RMA variability was scaled against the comparatively
massive variability of the dChip low end.

Kendziorski et al. pooling data

This study, assessing the merits of pooling biological sam-
ples, examined whether array-to-array variability was
directly related to degree of pooling (i.e., 2 or 3 samples
pooled per hybridization) as would be predicted by the-
ory. Additionally, several technical array replications were
performed on a subset of the samples used in the study,
allowing for an evaluation of array-to-array variability
when biological material is invariant. Five types of repli-
cation were taken from this study - biological replication,
in which one animal is used per array, pools of 2 (or 3)
animals, where multiple animal samples are pooled on
each array, and two levels of technical replication - one
where the sample taken from a single animal is processed
on multiple arrays, and one where a pool of all available
animal samples is processed on multiple arrays. Note that
in the latter two groups, the array-to-array variability is
purely technical - the same sample material is applied to
each array. The former three capture various levels of "bio-
logical" variability - that is to say, an estimate of how
much gene expression varies from animal to animal when
treatment is invariate. Note that one would expect the
observed inter-array variability to diminish as more ani-
mals are pooled per array (as pooling should act as a sort
of "biological averaging" prior to hybridization). A multi-
sample shivplot can be used to examine relationships and
trends in the variability of feature expression levels as a
function of both degree of pooling and/or normalization
strategy. Figure 6 depicts the variability vs intensity rela-
tionship when the RMA normalization procedure is used
to produce expression summary measures for each level of
pooling individually. As shown by the top part of the shiv-
plot (the variability vs intensity component), there is a
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Algorithm Comparison with Multiple Plots. An illustration of popular plots on microarray data. Three high-impact
microarray analysis algorithms are compared side-by-side; column | features expression measures produced by the RMA algo-
rithm (as in Figure ), column 2 contains expression measures produced by MAS 5.0 (as in Figure 2), and column 3 contains
data preprocessed with the dChip algorithm (software version 2004'). The same data set as in Figures | and 2 was passed into
each algorithm, and the resulting means across a fixed set of three technical replicates are compared in these plots.
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Algorithm Comparison using Shivplot. The same data
as in Figure 3, in shivplot form. Note that the upper (variabil-
ity) y-axis and lower (density) y-axis share a scale across the
three plots. This allows us to readily observe, for example,
how much smaller the variability across replicates is for RMA
compared to either MAS 5.0 or dChip.

striking difference at the high end between groups that
retain some degree of biological variability (biological
replicates, as well as pools of 2 and 3 animals) and those
within which variability is purely technical (replicates of
the same animal or replicates of the pool of all animals).
Furthermore, for the medium-to-high end, the magnitude
of the variability corresponds nicely with the amount of
pooling, with pools of fewer animals producing more var-
iable expression estimates than those with several ani-
mals.

Note that the simultaneous interpretation offered by the
multi-sample shivplot is particularly helpful in making
assessments about observed trends. Had only boxplots
and/or expression density plots been examined, the dis-
tinction between data sets based on variability would
have been invisible. On the other hand, however, solely
examining the variability plot would allow the viewer to
notice these trends but not allow any evaluation of their
consequence. Differences at the low and high ends of
measurement spectra may simply reflect limited sample
size, and it is thus crucial to be able to supplement any dif-
ference in variability trend with information about the rel-
ative number of observations affected. If the differences
only concern the lowest 5% of the data, for example, any
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An Alternate Construction of Shivplot. The same shiv-
plots as in Figure 4 with each axis scaled individually. This
local scaling makes it easier to notice features, such as the
dependence of RMA variability across replicates on the
mean, that were out of resolution when a common scale was
enforced.

trends observed may be artifacts of sampling, and even
real effects may have little consequence when so few data
points are influenced. Moreover, note that despite differ-
ences in the variance-intensity relationship, the distribu-
tions of the intensity measurements were highly similar.
This information is difficult to recover when examining
the components individually. Figure 7 was generated by
examining various normalization strategies on biological
replicates of a common experimental condition (with no
pooling). Two additional normalization procedures are
introduced in this figure, the GC-RMA [27] and GLA [28]
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Figure 6

A multi-sample Shivplot on RMA'd Data from the
Pooling Experiment. To produce this figure, RMA normal-
ization was applied to each level of replication separately,
producing one data set per such level. Each of these data sets
is represented by its own line on the common set of shivplot
axes. The most striking feature of this illustration is the clear
distinction between conditions which include some measure
of biological variance (pools of one, two, or three animals)
and those in which the inter-array variability is purely techni-
cal (pooling all animals, or technical replicates of a single ani-
mal).

algorithms. This allows us to observe how the various nor-
malization algorithms influence trend in the variability
observed in Figure 6, and how they affect the distribution
of the data. Note that in this shivplot, the importance of
the simultaneous presentation of the components is again
evident. In particular, the variability plot alone would
tempt the interpretation that the normalization algo-
rithms can be roughly divided into two groups - those
that have elevated low-end variability and those that do
not. However, the boxplot and distribution density plots
reveal that the story is more complicated. Specifically,
although the measures with high variance at the low end
seem to have relatively homogenous density distribu-
tions, the measures with low variance at the low end have
strikingly different density distributions, resulting in com-
pletely different interpretations of the distribution of the
same biological data (i.e. GC-RMA is bimodal, RMA is
platykurtotic and possibly also bimodal, GLA has com-
pressed range). This provides another example where
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Figure 7

A multi-sample Shivplot With Many Normalizations
on a Single Condition of the Pooling Experiment. To
produce this figure a single condition from the Kendziorski
data (single animals per chip) was normalized using a number
of alternative Affymetrix summarization algorithms.

examining the components of the shivplot individually
would reduce their interpretability.

Choe et al. Golden Spike data

The final data set we examine here was the Golden Spike
experiment produced for [21]. This data set was engi-
neered so that a vast majority of the effect sizes between
treatment and control condition were known in advance,
as determined by a predetermined spike-in design.
Although designed to serve as a benchmarking data set for
algorithm comparison, the golden spike data set pro-
duced results at odds with other benchmark data sets and
has been critiqued on methodological grounds [29]. More
specifically, it was remarkable that in the comparison per-
formed in [21], the standard RMA algorithm performed
quite poorly, and in particular worse than MAS 5.0. This
finding contrasts with results of other method compari-
son studies. In an attempt to identify a possible explana-
tion for this unusual result, we apply the shivplot
successively to the RMA and the MAS 5.0 processing of the
Golden Spike expression data.

On one hand, Figure 8 presents a multi-sample shivplot of
RMA normalized data, distinguished by group and by
whether normalization was performed across conditions.
It is noteworthy that the variance vs intensity relationship
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Figure 8

A multi-sample Shivplot on the Choe data following
RMA normalization. Two interpretations of each of the
conditions of the Golden Spike are illustrated here. The
"treatment” and "control" data were generated by normaliz-
ing both conditions (6 chips) simultaneously, and then plot-
ting each condition individually. To produce the "control
alone" and "treatment alone" lines, RMA was performed on
each of the conditions individually (3 chips). Although this is
less than the recommended minimum for an RMA proce-
dure, we were interested to see whether the different vari-
ance vs intensity relationships were produced as an artifact
during normalization. This does not appear to be the case.

is quite different across conditions, even after executing
the very strong quantile normalization procedure, integral
to RMA, which largely homogenizes the expression meas-
ure distributions. This effect persists regardless of whether
the conditions are normalized together or separately. As
such, quantile normalization did not produce the varia-
bility discrepancy. An explanation of this discrepancy
would be of relevance to anyone using variability to
weight the significance of differential expression.

As in the analysis of the previous data set, the shivplot's
simultaneous presentation of the variability-vs-intensity
plot and the density distribution is clearly advantageous.
Had the variability plot been examined individually, it
would have been challenging to correctly predict the
homogeneity of the component distributions. Similarly, it
would have been difficult to predict from the highly sim-
ilar distributional plots that the variability relationship
would differ so markedly. The findings in this plot offer a
graphical explanation why the (unusual) second round of

http://www.scfbm.org/content/1/1/6
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Figure 9

A multi-sample Shivplot on the Choe data following
MAS 5.0 normalization. This figure contains MAS 5.0 nor-
malizations of the same data depicted in Figure 8. Note that
since MAS 5.0 does not use information across arrays, there
is no distinction between normalizing arrays together or sep-
arately. Note that the variance vs intensity relationship is
common across conditions following MAS 5.0 normalization,
except for a small number of low intensity measurements, in
contrast to Figure 8's RMA normalization of the data.

normalization was deemed necessary by [21] to analyze
their data.

Figure 9, on the other hand, which presents the multi-
sample shivplot of the MAS 5.0 normalized data, tells a
different story. In contrast to the crossing trend lines
observed in Figure 8, the variance-intensity relationships
for the control and treatment groups were highly similar,
except for a small number of low intensity measurements.

It seems likely that either RMA has produced this unusual
difference between groups (although, as we have demon-
strated, the quantile normalization is unlikely to blame),
or some aspect of the MAS 5.0 normalization procedure
has managed to eliminate it from the raw data. While fur-
ther detective work is beyond the scope of the present
work, the shivplot was a pivotal tool in uncovering this
intriguing phenomenon in the Golden Spike data.

Availability
R/S-PLUS code written by the authors to produce shiv-
plots is available in a flat file [see Additional File 1]. Also
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provided are a tutorial demonstrating the use of the code
[see Additional File 2] and example data sets formatted for
use with the code [see Additional Files 3, 4]. Alternatively,
the entire shivplot library is available as a package for R in
either source form [see Additional File 5] or as a Windows
binary [see Additional File 6].

Conclusion

Microarray data, like data obtained from all high-through-
put assays, represent a complex system, and significant
amounts of space must be allocated in each publication to
introduce and familiarize the reader with the technology
and methodology used in any analyses. With the space
restrictions imposed by many scientific journals, it is
important to present as much information as cleanly as
possible in concise graphics. The present work illustrates
how three graphical tools of growing importance to
microarrays and other high-throughput platforms can be
effectively combined into a single plot, not only saving
space but facilitating insights obtainable from comple-
mentary simultaneous interpretation. Furthermore, the
introduced tool is general enough to serve a variety of
high-throughput purposes, both in microarray data anal-
ysis and exploratory data analysis in general.

Additional material

Additional file 1

shivcode.txt. This file contains shivplot script code for both R and S-
PLUS. To prepare an R/S-PLUS session to produce shivplots, either copy
the contents of this file into the input console of an instance of R/S-PLUS
or read the code in using the source() command (see tutorial.txt). There
are several prepackaged plots included as examples. The instructions to
produce these plots can be reviewed at any time by calling the shivHelp
command.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-S1.txt|

Additional file 2

tutorial.txt. This file provides instructions on how to read custom data
into R or S-PLUS, and provides some examples of how to call the shivplot
function. This is a good place to start for those unfamiliar with R or S-
PLUS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-S2.txt]

Additional file 3

example.txt. This file contains some artificial data in a flat file format
that is easily manipulated by R and S-PLUS. It is used in the tutorial, and
can be used as a file format template for those unfamiliar with the import
utilities of R and S-PLUS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-S3.txt]

http://www.scfbm.org/content/1/1/6

Additional file 4

alternate.txt. This file contains some artificial data in a flat file format
that is easily manipulated by R and S-PLUS. It is used in the tutorial, and
can be used as a file format template for those unfamiliar with the import
utilities of R and S-PLUS.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-84.txt|

Additional file 5

source distribution of R shivplot package. This file is a compressed
archive of the source files necessary to build the shivplot library in R.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-85.zip|

Additional file 6

Windows binary distribution of R shivplot package. This file is a com-
pressed archive of the windows binary distribution of the shivplot library.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1751-
0473-1-6-56.zip]
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