
BioMed Central

Source Code for Biology and
Medicine

ss
Open AcceSoftware review
Gbrowse Moby: a Web-based browser for BioMoby Services
Mark Wilkinson*

Address: Assistant Professor, Department of Medical Genetics, University of British Columbia, James Hogg iCAPTURE Centre for Cardiovascular
and Pulmonary Research, St. Paul's Hospital, Rm. 166, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada

Email: Mark Wilkinson* - markw@illuminae.com

* Corresponding author

Abstract
Background: The BioMoby project aims to identify and deploy standards and conventions that
aid in the discovery, execution, and pipelining of distributed bioinformatics Web Services. As of
August, 2006, approximately 680 bioinformatics resources were available through the BioMoby
interoperability platform. There are a variety of clients that can interact with BioMoby-style
services. Here we describe a Web-based browser-style client – Gbrowse Moby – that allows users
to discover and "surf" from one bioinformatics service to the next using a semantically-aided
browsing interface.

Results: Gbrowse Moby is a low-throughput, exploratory tool specifically aimed at non-
informaticians. It provides a straightforward, minimal interface that enables a researcher to query
the BioMoby Central web service registry for data retrieval or analytical tools of interest, and then
select and execute their chosen tool with a single mouse-click. The data is preserved at each step,
thus allowing the researcher to manually "click" the data from one service to the next, with the
Gbrowse Moby application managing all data formatting and interface interpretation on their behalf.
The path of manual exploration is preserved and can be downloaded for import into automated,
high-throughput tools such as Taverna. Gbrowse Moby also includes a robust data rendering
system to ensure that all new data-types that appear in the BioMoby registry can be properly
displayed in the Web interface.

Conclusion: Gbrowse Moby is a robust, yet facile entry point for both newcomers to the
BioMoby interoperability project who wish to manually explore what is known about their data of
interest, as well as experienced users who wish to observe the functionality of their analytical
workflows prior to running them in a high-throughput environment.

Background
The BioMoby Project [1-3] was initiated in late 2001 as an
open-source initiative within the model organism data-
base and partner community with the goal of identifying
standards and/or conventions that would aid interopera-
bility between the diverse bioinformatics resources cur-
rently available online. The BioMoby Web Service

interoperability platform [4,5] is now used to expose
more than 680 bioinformatics data and analytical
resources throughout North America, Europe, and Asia,
with participants from South America and Australia now
beginning to come on-line.

Published: 24 October 2006

Source Code for Biology and Medicine 2006, 1:4 doi:10.1186/1751-0473-1-4

Received: 08 July 2006
Accepted: 24 October 2006

This article is available from: http://www.scfbm.org/content/1/1/4

© 2006 Wilkinson; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.scfbm.org/content/1/1/4
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
The interest in BioMoby-based services stems from its
ability to identify service providers that are capable of con-
suming a particular in-hand data-type, manipulating it in
a particular way, and producing a well-defined output
data-type that can then be reliably and automatically con-
sumed by another service provider without any further
manipulation. Most of these discovery/execution proc-
esses can be fully automated, thus releasing the end-user
(biological researcher or bioinformatician) from the task
of discovering the Web interface to their tool of interest,
manually manipulating their data format to conform to
that Web interface, and then copy/pasting the result from
their browser.

The BioMoby interoperability system consists of:

• An ontology describing biological data entities (the
Namespace ontology), for example, records from a partic-
ular database such as Protein Data Bank or GenBank.

• An ontology describing biological data structures (the
Object ontology), such as FASTA or Generic Feature For-
mat.

• An ontology describing bioinformatics service types (the
Service ontology), such as BLAST or ClustalW

• A novel Web Service registry – Moby Central – that acts
as a "yellow pages", employing these ontologies to seman-
tically and syntactically match the needs of a service con-
sumer with the appropriate service provider.

The interoperable behaviours observed between BioMoby
service providers is achieved through all providers agree-
ing to use, or extend, the standard set of data entities and
data structures defined in the Namespace and Object
ontologies when designing their Web Services.

To facilitate the exploration of BioMoby-compliant serv-
ices, a variety of client programs have been constructed.
We present here the Gbrowse Moby client, a browser-style
interface that enables the guided construction and step-
wise execution of analytical workflows. This is achieved
through iterative discovery of all relevant services availa-
ble as the potential next step in the workflow, followed by
execution of the selected service, and rendering of the
results; result data can be automatically used to seed the
next service discovery query. Gbrowse Moby was the first
Web portal to facilitate one-stop, interoperable access to
hundreds of uncoordinated databases and analytical
tools, and remains one of the most frequently used gate-
ways into the BioMoby data and analytical space. The
Semantic Web Service browsing paradigm established by
Gbrowse Moby represents a novel and powerful way of

interacting with biological and bioinformatics data and
services.

In the following, we will describe the most salient and vis-
ible features of this interface, as well as some less obvious
features that allow it to be accessed by third-party tools
such as the Gbrowse package from the Generic Model
Organism Database project (GMOD) [6], or to be used
transparently as a portal through easily-parsed Common
Gateway Interface (CGI) GET calls to the public interface.

Implementation
Gbrowse Moby is implemented as a Perl CGI script that
can run under most Web servers. It requires a full installa-
tion of the BioMoby Perl code libraries [7], the Perl Life
Sciences Identifier (LSID) resolution stack [8], and the
Bio::Graphics::Browser::Util configuration module from
the Gbrowse package of GMOD [9]. Though Gbrowse
Moby can run entirely independently of the Gbrowse
interface itself, the configuration required to link the
Gbrowse on-screen widgets to the Gbrowse Moby inter-
face is described in detail in the Gbrowse package docu-
mentation. Look-and-feel are modified by editing the
Gbrowse configuration file such that Gbrowse Moby can
have an identical appearance to Gbrowse itself.

Results and discussion
The search and execute interfaces
The Gbrowse Moby interface is designed to facilitate one
particular style of interaction with the BioMoby registry
and services – that is, the discovery of service providers
based on a query of the MOBY Central registry focused on
the particular type of input data (i.e. a combination of
Namespace and/or Object types) that is in-hand at any
given point in the exploration process. As such, a brows-
ing session must first be primed with some input data. In
Gbrowse Moby, this initializing data takes the form of an
identifier for some type of database record. An initializa-
tion screen is shown as the introductory page to assist in
selecting the database domain (Namespace) of the identi-
fier – what type of record is being identified – and the ID
number of that record. When the user clicks the "Explore"
button, a search is executed against MOBY Central to dis-
cover services capable of providing more information
about that particular database record.

To interpret the results of such a query, it is critical that
users be aware of a fundamental principle of the BioMoby
environment – that is, that a Namespace is not tied to a
particular service provider. For example, the NCBI_gi
(GenBank) Namespace can be utilized by any service pro-
vider who claims to be capable of providing information
about a particular GenBank record, not just GenBank
themselves. This foundational principle of the BioMoby
platform allows third parties to provide additional infor-
Page 2 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
mation, of any type, for any given database record, and
thus dramatically expands the amount and type of data
that can be discovered through BioMoby exploration.

After initialization, there are two displays that make up
the Gbrowse Moby interface: the Service Search Result dis-
play, and the Service Invocation Result display. These are
shown in Figure 1A, and 1B respectively. These can be
configured to match the "look and feel" of the host web-
site through a simple cascading style sheet and configura-
tion file, based on the Gbrowse configuration file from
GMOD.

The results of a search against the Moby Central web-serv-
ice registry are presented as a list of compatible services in
the Search Result screen (Fig 1A). Service descriptions
include:

• The name of the service

• The identification of the service provider – their
"Authority" identifier

• The service type ontology term – what type of analytical
operation the service provides

The Search Result Screen (A) and the Invocation Result Screen (B) of the Gbrowse Moby Web Service BrowserFigure 1
The Search Result Screen (A) and the Invocation Result Screen (B) of the Gbrowse Moby Web Service
Browser. (A) shows two services discovered using the search parameters: Namespace = "DragonDB_Allele", Identifier =
"cho". The latter of these, getDragonSimpleAnnotatedImages provided by antirrhinum.net, has been executed, with the results
shown in panel (B). The rendering in (B) comes from a combination of two automatically selected renderers in response to the
unknown data-type "SimpleAnnotatedJPEGImage"; one was capable of rendering JPEG Images, and the other capable of render-
ing free-text. Note also the clickable cross-reference to the DragonDB_Gene CHO in panel (B) that will initiate a new
Gbrowse_Moby browsing session primed with that new piece of cross-referencing information provided by the Service.
Page 3 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
• The ontologically defined data-type that will be returned
from invocation of that service

• A human-readable description of what the service does,
and what resources it uses

• An email link to contact the service provider if necessary

To execute a desired service using the most recently-dis-
played data as input, the user simply clicks the "Execute
this Service" button. No additional formatting of the data
is required, and the user does not need to be aware of any
details about the interface for that service – all of these
functions are managed by the Gbrowse Moby software.

If a service offers additional configuration parameters a
"Configure Parameters" button is available in addition to
the "Execute this Service" button. Parameter configuration
happens thorough a JavaScript pop-up window, in which
each parameter is presented with its default value pre-
selected. Users can modify the default values if they
require, and these are validated against the data-type and/
or range that the service provider has specified in the reg-
istry prior to being saved. The modified values will be
passed to the service when it is executed.

The Invocation Result screen (Fig. 1B) presents the results
of the service execution rendered as HTML (the rendering
process is described in detail in the Data Rendering sec-
tion). In the case of an error in service invocation, an error
code (defined in the BioMoby Service API), plus the tex-
tual description of the error as provided by the service pro-
vider, are displayed. If the service provider provides no
error code information, Gbrowse Moby makes a "best
guess" at what the error situation is based on the portion
(if any) of the response message it received from the serv-
ice provider.

Each result is associated with a "Re-Query" button, and a
set of query restriction parameter boxes. Unless additional
parameters are chosen, clicking the "Re-Query" button
executes a query against the Moby Central registry based
on the data-type that is currently being displayed; i.e. the
default query is "what services consume the data currently
in-hand". This search can be further refined by the inclu-
sion of one or more of:

• A desired service type, for example "Parsing" or "BLAST"

• A particular service provider, based on a unique Author-
ity identifier

• A desired type of output data

• A keyword found in the service description

• A switch that enables matching of services that operate
on semantically and syntactically compatible data-types

Output data from the previous service invocation is
passed to whichever service is selected by clicking the
"Execute This Service" button. Executing a service returns
the user to the Invocation Screen, and the process iterates.
Thus, the user is led through potentially lengthy and com-
plex bioinformatics workflows by an interface that pro-
vides a uniform view over hundreds of Web resources,
suggesting only those that are capable of operating on the
data-type currently in-hand.

As the user continues their exploration of the data-space,
Gbrowse Moby records a (linear) record of their activities.
This record can be saved at the end of a browsing session
by retrieving it as an XSCUFL (XML Simple Unified Con-
ceptual Flow Language [10]) document by clicking the
button labeled "Retrieve Current SCUFL Workflow". The
resulting XSCUFL workflow is compatible with high-
throughput workflow environments such as Taverna [11].

New resources appear in the interface as they are regis-
tered in the BioMoby registry, unlike other bioinformatics
analysis tools where the data-types and interoperable
resources are hard-coded into the interface. The breadth
and scope of interoperable resources available through
Moby, and thereby through the Gbrowse Moby browser,
is limited only by the participation of the community.

Data rendering
The most crucial consideration in the design of Gbrowse
Moby was its data-rendering architecture. A significant
complexity arises from the fact that the BioMoby Object
(data-type) ontology is end-user extensible. This makes it
possible, even likely, that data returned to the Gbrowse
Moby client from any given service will be in a format
never before encountered; nevertheless, the system must
not fail when receiving these unpredictable data-types,
since this unpredictability is a necessary consequence of
the open-world BioMoby specification.

Gbrowse Moby employs a novel, ontology-guided render-
ing system that allows it to render any Moby data-type it
receives. The rendering methodology is as follows:

• HTML renderers are assigned to, at a minimum, the base
of each major "branch" of the Object ontology.

• At startup, Gbrowse Moby polls all available renderers
for the Ontology nodes that they are capable of rendering.

• When a piece of data (i.e. an instance of an Ontology
node) is received by Gbrowse Moby, it first checks if it has
a renderer for that data-type.
Page 4 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
� If so, that renderer is selected

� If not, it traverses the Object ontology until it discovers
an ontological parent that has a renderer assigned to it,
and that renderer is selected.

• The data is passed to the renderer

• The renderer disassembles the XML of that object, ren-
dering only the XML nodes that it "understands", and
removes them from the data model.

• The renderer then passes the HTML-rendered data back
to Gbrowse Moby, along with the fragments of the data
object that were left unrendered. Because all data in Bio-
Moby is ontologically defined, each of these data fragments
is itself an instance of an ontologically defined data-type.

• Gbrowse Moby iterates through this process with each
data fragment, eventually finding a renderer capable of
rendering each fragment.

This rendering methodology has been robust over the
hundreds of new data-types registered in the Object ontol-
ogy in the past four years (24 new data-types registered in
the month of July, 2006, alone) and thus we encourage
others to follow this as a paradigm for dealing with the
ever-expanding BioMoby Object Ontology.

A default set of renderers is available in the Gbrowse
Moby package which is capable of rendering all existing
MOBY objects at a superficial level. For richer or more
graphical representations of certain Object types, new ren-
derers can be created by the host with no modification of
Gbrowse Moby itself. The API for the renderers consists of
only two methods – "type" which returns the names of the
ontology node(s) that the renderer can manage; and
"render" which returns the HTML representing that Moby
Object, and any un-rendered fragments.

Invoking Gbrowse Moby with a CGI GET String
It is often desirable to initiate a BioMoby registry query, or
invoke a BioMoby service, from inside of another applica-
tion. For example, you may want to create hyperlinks to
Gbrowse Moby Searches from a gene name displayed on
a third-party web page, or allow a displayed sequence to
be automatically passed to a particular sequence align-
ment service simply by clicking. To facilitate this, Gbrowse
Moby can receive, as CGI GET string parameters, a service
name, an authority, a Namespace, a data identifier, and/
or a URL-encoded block of XML representing a piece of
BioMoby data. This allows other standalone or Web-
based applications to utilize the Gbrowse Moby interface
without having to know anything about the BioMoby
specification or have any of the BioMoby code libraries

installed. This functionality is the means by which
Gbrowse Moby is integrated with the Generic Genome
Browser (Gbrowse) – the Gbrowse sequence viewer dis-
play can be configured such that individual features in the
genome map are hyperlinked to a Gbrowse Moby brows-
ing session primed with whatever sequence-feature the
user clicked on, simply by passing the namespace and id
of the selected feature as GET string parameters in the
hyperlink.

It is also possible to utilize Gbrowse Moby without initi-
ating the browser at all. If namespace, id, authority and
service name are all passed in the GET string, the indicated
service will be executed, and the rendered HTML result
returned (see [12] for an example). To make it convenient
to extract this data from within independent standalone
applications, tags are placed into the rendered Gbrowse
Moby HTML that facilitates the parsing individual service
results. The HTML comment tags:

<!--SCRAPE_ME_START -->

<!--SCRAPE_ME_END -->

Limitations
As a pure-CGI-based browser system, there are several lim-
itations to Gbrowse Moby. The most notable of these is
the way it handles BioMoby Collections. While BioMoby
services are capable of consuming and/or producing col-
lections of input or output data-types (suitable for high-
throughput analyses) Gbrowse Moby is specifically
intended to be a low-throughput manual browser. As
such, output collections are broken into their individual
components, and can only be passed singly to down-
stream services. Attempts have been made to provide sup-
port for Collections, however the scale of output data
quickly becomes unmanageable within a browser-style
client, so this functionality has been purposely removed
in order to keep the Gbrowse Moby interface as simple as
possible.

The utility of the GET string functionality is limited by the
server-specific size-limitations on GET requests. For even
moderately large data objects, the URL-encoded string
would be larger than many HTTP servers will allow in a
GET operation; as such, this functionality is best utilized
only for simple invocations of services that require only
namespace and id parameters.

Example annotated workflow
A multi-step workflow representing a typical Gbrowse
Moby browsing session is provided (see Table 1) that can
be followed to observe the salient features of the interface.
In this example, the user initializes the browsing session
with the keyword "apetala3" (an Arabidopsis thaliana gene
Page 5 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
common-name). This triggers a semantic search against
the MOBY Central Web Service registry for services that
operate on keywords. Among the results, are a service
offered by mips.gsf.de named GetAGILocusCodes, which
returns Arabidopsis Genome Initiative (AGI) locus identi-
fiers. Invocation of this service results in a single piece of
output data, the AGI Locus At3g54340 – the formal iden-
tifier for the apetala3 gene. Reinitializing with that piece
of data triggers a new semantic search, from which the
getEmblDNASequence service can be selected to retrieve
the DNA sequence for that locus, and so on through the
remainder of the workflow.

Of particular note are the ability to limit searches based
on output data-type (Step 5 of the sample workflow); to
broaden or narrow your search by applying/removing
ontology traversal during the interpretation of the query

data-type (Step 7); the ability to limit searches to specific
service providers (Steps 7 and 9); and the ability to follow
cross-referencing information (Step 4ab).

An example of the iterative rendering process is exhibited
in Step 17 of the sample workflow. Gbrowse Moby
includes a renderer for base-64-encoded JPEG images, and
a renderer for Strings; however it does not have a renderer
for the SimpleAnnotatedJPEGImage data-type. Examina-
tion of the ontological relationships that make up Sim-
pleAnnotatedJPEGImage (see Appendix 1) shows that it is
a type of base-64-encoded-JPEG that contains an addi-
tional String data-type representing the description. In
this case, the rendering system queried the ontology for
the parentage of SimpleAnnotatedJPEGImage, discovered
it was a type of base-64-encoded-JPEG, and selected that
renderer first. It was returned the HTML-rendered JPEG

Table 1: An annotated example Gbrowse Moby workflow

Step Screen Data Type or Service (provider) Notes

1 Initialization Namespace: Global_keyword ID: apetala3 Select namespace and type in the ID
2 Search GetAGILocusCodes (mips.gsf.de)
3 Invocation AGI_LocusCode:At3g54340
4 Search getEmblDNASequence (mips.gsf.de)
5 Invocation CommentedDNASequence type FASTA into the desired output object field and Re-initialize
6 Search GenericSequence2FASTA (bioinfo.icapture.ubc.ca)
7 Invocation FASTA Switch the authority to antirrhinum.net to limit to the Snapdragon

database. Switch semantic searching OFF to limit to services that
specifically consume FASTA files.

8 Search getDragonBlastText (antirrhinum.net)
9 Invocation NCBI_Blast_Text keep the authority as antirrhinum.net and resubmit
10 Search parseDragonDBBlastText (antirrhinum.net)
11 Invocation DragonDB_Sequence Chose EM:AMDEFA
12 Search getDragonSequenceLocus (antirrhinum.net)
13 Invocation DragonDB_Gene Chose DEF
14 Search getDragonLocusAlleles (antirrhinum.net)
15 Invocation DragonDB_Allele Chose def-101
16 Search getDragonSimpleAnnotatedImages (antirrhinum.net)
17 Invocation SimpleAnnotatedJPEGImage

traverse back (with browser back button) to
AGI_LocusCode:At3g54340

4a Search getGOTermsByAGIcode (atidb.org)
4b Invocation GO Term
4c Search getGOTermAssociations (bioinfo.icapture.ubc.ca)
4d Invocation GO Associations

traverse back (with browser back button) to
AGI_LocusCode:At3g54340

4aa Search getNASC_codebyAGI_locus (arabidopsis.info)
4ab Invocation NASC_Code note all of the cross-references, all clickable to reinitialize the

browsing session
traverse back (with browser back button) to
AGI_LocusCode:At3g54340

4aaa Search getAGRISTFFamilyNameByAGI (arabidopsis.med.ohio-state.edu)
4aab Invocation AGRIS Transcription Factor Family Name

Steps in the browsing session are enumerated, sequentially. Numbers with suffixes (e.g. 4a) indicate an alternate path (a) starting from step 4. The
column labeled Screen indicates which Gbrowse Moby screen is visible at any given step. The middle column indicates which Moby Service (for the
Search screen) should be selected, or which output data-type (for the Initialization and Invocation screens) is being displayed on the screen. The
Notes column provides browsing hints and/or observations that can be made at any given step.
Page 6 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
image data, together with the String data-type object that
could not be rendered. The system them passed the String
object to the String renderer in order to retrieve the HTML
representing the image description. In this way, every Bio-
Moby data-type can be rendered by Gbrowse Moby.

Retrieving the SCUFL document at Step 17 provides the
workflow diagrammed in Figure 2 when loaded into Tav-
erna, and will execute the workflow with high-through-
put, following all possible links iteratively. The essence of
this workflow is to look at the phenotypes of Snapdragon
mutants whose affected locus shares homology with an
Arabidopsis mutant whose phenotypic description
includes a certain keyword – a process that would be
extremely difficult in the absence of a workflow tool.
However, the simplicity of the Gbrowse Moby interface
makes it possible for a relatively naïve user to construct
this workflow in just a few minutes.

Conclusion
Gbrowse Moby was the first client capable of engaging
BioMoby services, and has developed into a convenient
yet powerful portal for "surfing" biological data. Though
Gbrowse Moby itself is not capable of high-throughput
analyses, it functions well as an environment for simulta-
neously designing and testing analytical pipelines that
might then be utilized in workflow management environ-
ments such as Taverna [11], MOWserv [13], or Remora
[14]; moreover, the ability to immediately access the
SCUFL workflow description of your browsing session
and load it into such a tool allows you to immediately
move from a simple browsing environment to a high-
throughput environment with little or no additional
effort. Most importantly, however, Gbrowse Moby facili-
tates and guides the manual exploration of a global data-
space, and the creation and immediate testing of multi-
step analytical pipelines by non-informaticians, without
requiring them to manipulate data formats, learn new
web interfaces, or even have prior knowledge of the exist-
ence of the datasets and/or tools that they are engaging.

The power of having a common interface into a poten-
tially unlimited number of data and analysis services can-
not be underestimated, and this has been achieved thanks
to community adoption of an end-user extensible onto-
logical standard. Gbrowse Moby is one of the first exam-
ples of a semantically enabled bioinformatics data
browser, and reveals an early glimpse of the power that
Semantic Web Services will provide in the future.

Availability and requirements
Project name: Gbrowse_moby

A SCUFL workflow generated by Gbrowse Moby as dis-played in the Taverna environmentFigure 2
A SCUFL workflow generated by Gbrowse Moby as
displayed in the Taverna environment. The workflow
generated by following the example workflow in Table 1 was
retrieved at step 17 and loaded into Taverna. The image
shown here was exported from Taverna's wokflow overview
screen. Note that Gbrowse Moby detected that the final
data-type was a binary data-type in the BioMoby system
(SimpleAnnotatedJPEGImage), and automatically added a
parser and base-64 decoder to the last steps in the workflow
such that the binary image would be properly displayed in the
Taverna environment.
Page 7 of 8
(page number not for citation purposes)

Source Code for Biology and Medicine 2006, 1:4 http://www.scfbm.org/content/1/1/4
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Project home page: A sub-package within the Generic
Model Organism Database [9], or for personal use or
proxy use over the Web [15].

Operating systems(s): Platform independent

Programming Language: Perl

Other Requirements: any CGI-capable webserver

License: Perl Artistic License

Restrictions: None

Appendix 1
Resolve the LSID urn:lsid:biomoby.org:objectclass:Sim-
pleAnnotatedJPEGImage:2001-09-21T16-00-00Z to
metadata [16] to see the Web Ontology Language (OWL)
class definition for SimpleAnnotatedJPEGImage.

Acknowledgements
This work was supported by an award to MDW from Genome Prairie and
Genome Alberta in part through Genome Canada, a not-for-profit corpo-
ration that is leading a Canadian national strategy on genomics and bioin-
formatics. Thanks to Edward Kawas for writing the javascript support for
Moby Secondary parameters.

References
1. Wilkinson MD, Links M: BioMOBY: An Open Source Web Serv-

ices Proposal for Biological Data. Brief Bioinform 2002,
3(4):331-341.

2. Wilkinson MD, Gessler DD, Farmer A, Stein L: The BioMOBY
project explores open-source, simple, extensible protocols
for enabling biological database interoperability. Proceedings
of the Virtual Conference on Genomics and Bioinformatics 2003, 3:16-26.

3. Wilkinson MD: BioMOBY: The MOBY-S Platform for Interop-
erable Data-service Provision. In Computational Genomics Edited
by: Richard P Grant. Norfolk, UK: Horizon Scientific Press;
2004:273-295.

4. Lord P, Bechhofer S, Wilkinson MD, Schiltz G, Gessler D, Hull D,
Goble C, Stein L: Applying semantic web services to bioinfor-
matics: Experiences gained, lessons learnt. In Proceedings of the
International Semantic Web Conference Springer-Verlag Berlin Heidel-
berg; 2004:350-364.

5. Wilkinson MD, Schoof H, Ernst R, Hasse D: BioMOBY Success-
fully Integrates Distributed Heterogeneous Bioinformatics
Web Services: The PlaNet Exemplar Case. Plant Physiol 2005,
138:1-13.

6. Stein LD, Mungall C, Shu S, Caudy M, Mangone M, Day A, Nickerson
E, Stajich JE, Harris TW, Arva A, Lewis S: The generic genome
browser: a building block for a model organism system data-
base. Genome Res 2002, 12(10):1599-610.

7. The BioMoby Project Homepage [http://www.biomoby.org]
8. The LSID (Life Sciences Identifier) Project [http://lsid.source

forge.net]
9. Generic Model Organism Database Construction Set [http:/

/gmod.sourceforge.net]
10. XSCUFL definition from myGrid Workflow Wiki

[http:www.mygrid.org.uk/wiki/Mygrid/Work
Flow#XScufl_workflow_definitions]

11. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver
T, Glover K, Pocock MR, Wipat A, Li P: Taverna: A tool for the
composition and enactment of bioinformatics workflows.
Bioinformatics Journal 2004, 20(17):3045-3054.

12. Example CGI-GET String Execution [http://mobycen
tral.icapre.ubc.ca/cgi-

bigbrowse_moby?namee=DragonDB_Allele&id=cho&authority=anti
hinum.net&servi cename=getDragonSimpleAnnotatedImages]

13. Navas-Delgado I, Rojano-Munoz Mdel M, Ramirez S, Perez AJ, Andres
Leon E, Aldana-Montes JF, Trelles O: Intelligent client for inte-
grating bioinformatics services. Bioinformatics Journal 2006,
22(1):106-111.

14. Carrere S, Gouzy J: REMORA: a pilot in the ocean of BioMoby
web-services. Bioinformatics Journal 2006, 22(7):900-901.

15. MOBY-S Client Initialization [http://mobycentral.icap
ture.ubc.ca]

16. BioMoby LSID Resolver Utility [http://mobycentral.icap
ture.ubc.ca/authority/LSID_resolver.jsp]
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12511062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15888672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12368253
http://www.biomoby.org
http://lsid.sourceforge.net
http://lsid.sourceforge.net
http://gmod.sourceforge.net
http://gmod.sourceforge.net
http://www.mygrid.org.uk/wiki/Mygrid/WorkFlow#XScufl_workflow_definitions
http://www.mygrid.org.uk/wiki/Mygrid/WorkFlow#XScufl_workflow_definitions
http://mobycentral.icapture.ubc.ca/cgi-bin/gbrowse_moby?namespace=DragonDB_Allele&id=cho&authority=antirrhinum.net&servicename=getDragonSimpleAnnotatedImages
http://mobycentral.icapture.ubc.ca/cgi-bin/gbrowse_moby?namespace=DragonDB_Allele&id=cho&authority=antirrhinum.net&servicename=getDragonSimpleAnnotatedImages
http://mobycentral.icapture.ubc.ca/cgi-bin/gbrowse_moby?namespace=DragonDB_Allele&id=cho&authority=antirrhinum.net&servicename=getDragonSimpleAnnotatedImages
http://mobycentral.icapture.ubc.ca/cgi-bin/gbrowse_moby?namespace=DragonDB_Allele&id=cho&authority=antirrhinum.net&servicename=getDragonSimpleAnnotatedImages
http://mobycentral.icapture.ubc.ca
http://mobycentral.icapture.ubc.ca
http://mobycentral.icapture.ubc.ca/authority/LSID_resolver.jsp
http://mobycentral.icapture.ubc.ca/authority/LSID_resolver.jsp
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Results and discussion
	The search and execute interfaces
	Data rendering
	Invoking Gbrowse Moby with a CGI GET String

	Limitations
	Example annotated workflow
	Conclusion
	Availability and requirements
	Appendix 1
	Acknowledgements
	References

