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Abstract

Background: Neuromusculoskeletal modeling and simulation enable investigation of the neuromusculoskeletal
system and its role in human movement dynamics. These methods are progressively introduced into daily clinical
practice. However, a major factor limiting this translation is the lack of robust tools for the pre-processing of
experimental movement data for their use in neuromusculoskeletal modeling software.

Results: This paper presents MOtoNMS (matlab MOtion data elaboration TOolbox for NeuroMusculoSkeletal
applications), a toolbox freely available to the community, that aims to fill this lack. MOtoNMS processes experimental
data from different motion analysis devices and generates input data for neuromusculoskeletal modeling and
simulation software, such as OpenSim and CEINMS (Calibrated EMG-Informed NMS Modelling Toolbox). MOtoNMS
implements commonly required processing steps and its generic architecture simplifies the integration of new
user-defined processing components. MOtoNMS allows users to setup their laboratory configurations and processing
procedures through user-friendly graphical interfaces, without requiring advanced computer skills. Finally,
configuration choices can be stored enabling the full reproduction of the processing steps. MOtoNMS is released
under GNU General Public License and it is available at the SimTK website and from the GitHub repository. Motion
data collected at four institutions demonstrate that, despite differences in laboratory instrumentation and procedures,
MOtoNMS succeeds in processing data and producing consistent inputs for OpenSim and CEINMS.

Conclusions: MOtoNMS fills the gap between motion analysis and neuromusculoskeletal modeling and simulation.
Its support to several devices, a complete implementation of the pre-processing procedures, its simple extensibility,
the available user interfaces, and its free availability can boost the translation of neuromusculoskeletal methods in
daily and clinical practice.
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Background
Neuromusculoskeletal modeling and dynamics simula-
tion have recently emerged as powerful tools to establish
the causal relation between the neuromusculoskeletal sys-
tem function and the observed movement. They estimate
human internal variables, such as neural signals and mus-
cle dynamics, that could not be derived by experimental
measures and conventional motion analysis [1–5]. This
provides a key contribution to fully understand human
locomotion in healthy subjects and to establish a sci-
entific basis for rehabilitation treatment of pathological
movements [2, 5, 6].
In the latest years, several software tools (e.g., SIMM,

AnyBody, OpenSim, MSMS) were released to automate
and facilitate the complex and time-consuming pro-
cess of modeling and simulate the movement of mus-
culoskeletal systems [7–10]. Among them, the freely
available OpenSim software has seen a widespread adop-
tion with a growing network of research applications
[4, 11–14].
Regardless the applications and the final objective of the

study, these software tools require as input the simulta-
neous recordings of heterogeneous motion data acquired
with different devices: three-dimensional marker trajec-
tories, foot ground reaction forces (GRFs), and, often,
surface electromyography (EMG). Before the recorded
raw data can actually be used as input for the simula-
tion softwares, several pre-processing steps are required
depending on the objective of the study [15, 16]. Among
them, filtering is usually performed and is one of the
most critical [17, 18]. In addition, simpler steps as trans-
formations among coordinate systems of the acquisition
devices and the musculoskeletal modeling software still
require to be carefully defined. Finally, the integrated and
pre-processed motion data must be stored using the file
format of the chosen simulation software.
While mature tools are available for the analysis of

biomechanical data [19], there is still a lack of a robust
tool for the pre-processing of experimental recorded data
for optimal integration in neuromusculoskeletal modeling
and simulation software. This represents a major factor
limiting the translation of neuromusculoskeletal studies
into daily practice, as highlighted by several researchers
[13, 20, 21].
The main cause holding back the development of such

a tool is probably the large number of commercially avail-
able motion analysis devices and proprietary softwares
[13, 20, 22]. It is therefore difficult to handle all data
seamlessly and with unified procedures. As a recognized
problem, the biomechanics community proposed a stan-
dard file format (C3D – Coordinate 3D, [23]) to store
all the heterogenous motion data: raw coordinate of 3D
points, raw analog data from synchronized devices, force
plates calibration, analog channels configuration, sample

rates, and quantities computed by the acquisition software
(joint angle, joint moment, joint power, . . .).
Despite the maturity of C3D, its use is still limited. Most

of the companies provide acquisition systems that record
information using different file formats and proprietary
software tools that mainly process data with their own
format. The consequence is that researchers develop a
proliferation of custom tools and codes that perform sim-
ilar processing pipeline, but might differ for the input data
format and for the use of procedures and proprietary soft-
ware specific to an acquisition system. As the latter are
usually not openly available, it becomes difficult to repro-
duce the same data processing procedures in a consistent
and repeatable way across different laboratories [20, 24].
Over the last years, the problem escalated as emerging

biomechanics research challenges require multidisci-
plinary knowledge stimulating multicenter collaborations
[25, 26]. Thus, the definition of shared and standard pro-
cedures for biomechanical data collection, management,
and processing is increasingly required [20, 24].
This work presents MOtoNMS (matlab MOtion data

elaboration TOolbox for NeuroMusculoSkeletal applica-
tions), a software toolbox that directly addresses this prob-
lem. MOtoNMS is an open source software [27] that has
been already successfully used to process and share data
from different laboratories, each one with its own gait
analysis instrumentation and methodologies, for their use
in neuromusculoskeletal analyses and applications.
The procedures implemented in MOtoNMS include: (i)

computation of centers of pressure and torques for the
most commonly available force platforms (types 1 to 4,
including Bertec, AMTI, and Kistler); (ii) transformation
of data between different coordinate systems; (iii) EMG
filtering, maximum EMG peak computation, and EMG
normalization; (iv) different procedures for gait events
detection; (v) joint centers computation methods for hip,
knee, ankle, elbow, shoulder, and wrist; (vi) support for
OpenSim file formats and possibility to configure new
output formats.
While MOtoNMS already provides a library of mod-

ules for the most commonly required steps, its archi-
tecture is designed to be open to new contributions
in instrumentations, protocols, and methodologies. The
choice ofMATLAB, themost widespread language among
biomechanists, goes also in the direction of simplifying
the sharing of procedures within the community.
This paper describes the toolbox structure and mod-

ules, and then introduces the testing procedure. Finally,
the paper points out MOtoNMS key features and main
advantages.Motion data and results, freely available, show
that MOtoNMS can handle experimental data collected
in motion analysis laboratories with different setups and
can process them to provide inputs for OpenSim [9]
and CEINMS [28, 29]. The latter is a freely available
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neuromusculoskeletal software, developed by the authors’
research groups, that uses experimentally recorded EMG
signals as estimates of the individual muscle recruitment
strategies to predictmuscle forces and jointmoments [30].

Methods
The MOtoNMS toolbox is implemented in MATLAB
(The MathWorks, USA) and is intended to be accessible
to a wide spectrum of users, from researchers to clini-
cians, who are interested in pre-processing experimental
motion data to be used in neuromusculoskeletal simula-
tions. The selection and setup of procedures is available
through a set of graphical user interfaces, thus not requir-
ing end-users to have advanced computer skills. Current
MOtoNMS release works with MATLAB R2010b and
later versions, and runs on the major operating systems
(Windows, Linux, and MacOS X).
Figure 1 presents the toolbox organization. MOtoNMS

comprises several blocks that are grouped in three main
functional areas: Data Elaboration, with the procedures
for the data processing pipeline, Data Management,

responsible for the input data loading and the output
data generation and storing, and System Configuration,
supporting the user in the configuration of the elabo-
ration through user friendly graphical interfaces. This
structure, distributing independent modules with precise
duties and well-defined input/output interfaces in three
areas, simplifies the integration of other functionalities
and algorithms.

Data Elaboration
Data Elaboration is the toolbox core with the two blocks
of Dynamic Trials Elaboration and Static Trials Elabora-
tion. These are responsible for processing EMG, GRFs,
and marker trajectories for dynamic and static trials.

Dynamic Trials Elaboration
This block (Fig. 2) handles motion data recorded from
dynamic trials. It supports the different GRF data struc-
tures generated by the most common force plate (FP)
types [31], with no constraints on the number and
position of FPs in the laboratory. Depending on the FP

Fig. 1MOtoNMS overview schema. Data Elaboration is the toolbox core, processing data according to the user’s choices selected during the System
Configuration steps. DataManagement defines storing and management of input and output files
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Fig. 2 Dynamic Trials Elaboration. Flowchart of the Dynamic Trials Elaboration block. The user can customize this processing workflow by means of
parameters defined in the elaboration.xml configuration file. Sub-blocks influenced by those parameters are emphasized with a bold line

type and its output, MOtoNMS correctly extracts raw
force data, plate moments, and, when available, centers of
pressure (CoP) [31]. For FP of type 3, total raw forces and
moments are computed [32]. Three-dimensional marker
trajectories undergo piecewise cubic interpolation when
gaps caused by occlusions during the acquisition are auto-
matically identified. Users can define the gap’s maximum
size that will be interpolated. Choosing a value of zero
results in no interpolation. A log file tracing the proce-
dure is also available. Users can enable the filtering of
pre-processed marker data and raw GRFs with a zero-lag
second order low pass Butterworth filter at customizable
cut-off frequencies. When CoPs are not directly provided
by the FPs (types 2 to 4) [31], they are computed from
filtered and thresholded forces and moments [32].
The analysis window definition sub-block (Fig. 2) allows

selection of the data segments to be processed accord-
ing to users choices. Frames of interest can be selected
based on events, when available in the input C3D files.

Alternatively, a thresholding algorithm based on GRF data
is implemented for automatic detection of heel strike and
toe off events [33]. Lastly, a manual selection of start
and stop frames is also possible. Processed GRFs are
then used to compute FP free torques [34] based on fil-
tered forces, moments, and CoP for the selected frames.
Finally, marker and GRF data are transformed from lab-
oratory or FP reference systems to the global reference
system of the selected musculoskeletal application, i.e.
OpenSim. Required rotations depend on the laboratory
setup described in the dedicated configuration file
(“System Configuration” Section).
When available, raw EMG signals are processed by

high-pass filtering, rectification, and low-pass filtering
[28]. Resulting EMG linear envelopes are then normal-
ized. For each muscle, the maximum EMG peak is iden-
tified by extracting the maximum instantaneous value
from a set of trials selected by the user for the spe-
cific purpose. Those values are then logged in a text
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file. Other intermediate processing results (i.e., selected
and processed EMG, filtered GRFs, CoPs, and moments
within the analysis window) are also stored in dedicated
folders, together with plots that facilitate their visual
inspection.

Static Trials Elaboration
The objective of the Static Trials Elaboration block is to
optimize data for the scaling of generic musculoskeletal
models, which is essential to match an individual’s anthro-
pometry [9]. Therefore it processes marker trajectories

Fig. 3 Data Folders Organization. Folders in black store input data. The picture presents the structure suggested by MOtoNMS authors: a folder for
each subject that includes a set of directories, each one for a different acquisition session. All subjects must be grouped in a InputData folder.
Red files are the configuration files, while green folders are for the output generated by the toolbox. These folders are automatically created and
mirror the structure of the InputData folder. MOtoNMS reads C3D files and saves the extracted data in the sessionData subfolder.
staticElaborations and dynamicElaborations subfolders include the output respectively of the Static Trials Elaboration and the
Dynamic Trials Elaboration blocks. Finally, the results of multiple executions of these two parts, with different configurations for the same input data,
are stored in different subfolders, each one named with an identifier chosen by the user through the graphical interface
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recorded during static standing trials and provides meth-
ods for the computation of subject-specific joint centers,
which are usually recommended to improve the accu-
racy of the scaling procedure. This block is designed to
accommodate different algorithms for the joint centers
estimation. Users can include their own procedures for
the joints of interest. Currently, MOtoNMS provides joint
centers computation methods for hip, knee, ankle, elbow,
shoulder, and wrist. Hip joint center is estimated through
Harringtonmethod [35], while the others are computed as
the mid points between anatomical landmarks specified
by the user.

Data Management
Data Management (Fig. 1) deals with input and output
data, supporting an easy integration of new file formats
and inducing a clear and uniquely defined organization of
the files. This is achieved also through a complete separa-
tion between Data Management and Data Elaboration.

Input data loading
Input data are extracted from C3D files and stored in
MATLAB structures. This avoids continuous and com-
putationally expensive access to C3D files. The extracted
data include: marker trajectories, FP characteristics,
GRFs, EMG signals, other data from analog channels,
and events. Two implementations for data extraction

are available: using C3Dserver software [23], limited
to MATLAB 32 bit on Window platforms, or exploit-
ing the Biomechanical Toolkit (BTK, [19]). Users can
choose between the two alternatives according to the
system requirements, with the second one enabling cross-
platform execution.
The choice of supporting only C3D as input file format

does not limit the usability of MOtoNMS. Indeed, being
the standard for the representation of biomechanical data,
usually acquisition systems (Vicon, Qualysis, BTS, Motio-
nAnalysis, Codamotion, etc.) export synchronized data in
the C3D file format.

Output data generation
The processed marker trajectories and GRFs are stored
in .trc and .mot files (OpenSim file formats). The EMG
linear envelopes are exported by default to .mot files
(SIMM and OpenSim motion format), compatible also
with the CEINMS toolbox [30]. Alternative file for-
mats can be selected by the user, such as .sto (Open-
Sim storage) and text formats. The support of new
file formats for other musculoskeletal modeling software
requires the implementation of additional output blocks.
These have only to store in the desired file formats
the data already available from the processing phase,
thus not introducing any change in the Data Elaboration
step (Fig. 1).

Fig. 4MOtoNMS GUI. Examples of user-friendly graphical MATLAB interfaces available in MOtoNMS for the configuration of the toolbox procedures
(acquisition, elaboration, static configuration files)
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Data storage structure
MOtoNMS automatically generates output directories
mirroring the structure of the data folders provided by
the user. This relieves the user frommanually creating the
output folders and also results in a consistent structure,
simplifying information retrieval. Albeit not mandatory,
MOtoNMS authors encourage users to follow few sim-
ple suggestions in the organization of input experimental
data, to foster the sharing of tools and results among
research teams (Fig. 3).

System Configuration
The high configurability of MOtoNMS results in a
high number of parameters. These are not set directly
in the code as it would make the system hard to
maintain. Instead, MOtoNMS can be fully configured
through configuration files without modifying the under-
lying MATLAB code. Moreover, the use of configu-
ration files guarantees the reproducibility of the data
processing. Parameters are defined in three files: (1)
acquisition, including information about the acquisition
session (i.e., number of FP, coordinate system orientations,
marker sets, and EMG setups), (2) elaboration, includ-
ing parameters that univocally define the execution of
the Dynamic Trials Elaboration block (i.e., selected tri-
als, cut-off frequencies, markers list for output file, . . .,
Lst. 1), and (3) static, including additional parameters
for the elaboration of static trials (i.e., joint centers of
interest). MOtoNMS stores a copy of the configuration
files together with the output to keep a trace of per-
formed elaborations [36]. The chosen language for these
files is XML (eXtensible Markup Language), extremely
suitable for parameter information encoding (Lst. 1). Syn-
tax correctness of each file is guaranteed through the use
of XML Schema Definition (XSD). MOtoNMS provides
user-friendly MATLAB graphical interfaces that allow the
user to handily configure the toolbox execution and auto-
matically create the XML configuration files, ensuring
their syntax correctness (Fig. 4). In addition, the configu-
ration procedure has been designed to limit the required
information to the one specific of the current experimen-
tal session. Those features that are common to several
acquisition sessions (e.g., laboratory setup, marker and
EMG protocols) are instead conveniently stored into XML
files during the initial setup. These files can be selected
from the GUI, so the user is not required to input all
the included information at each new acquisition, thus
resulting in an efficient system configuration procedure.

Listing 1 An example of an elaboration.xml file generated
with the graphical user interface
<?xml version="1.0" encoding="utf-8"?>
<elaboration>
<FolderName>.\InputData\UNIPDsubject\2014-06-09
</FolderName>
<Trials>Walking1 Walking2 FastWalking1 FastWalking2

Running1 Running2</Trials>
<MarkersInterpolation>

<MaxGapSize>15</MaxGapSize>
</MarkersInterpolation>
<Filtering>
<Trial>

<Name>Walking</Name>
<Fcut>

<Markers>8</Markers>
<Forces>8</Forces>
<CenterOfPressure>7</CenterOfPressure>

</Fcut>
</Trial>
<Trial>

<Name>FastWalking</Name>
<Fcut>

<Markers>10</Markers>
<Forces>10</Forces>
<CenterOfPressure>7</CenterOfPressure>

</Fcut>
</Trial>
....
</Filtering>
<WindowSelectionProcedure>

<StanceOnFPfromC3D>
<Leg>Right</Leg>
<LabelForHeelStrike>Foot Strike
</LabelForHeelStrike>
<LabelForToeOff>Foot Off</LabelForToeOff>
<Offset>20</Offset>

</StanceOnFPfromC3D>
</WindowSelectionProcedure>
<Markers>C7 RA LA L5 RPSIS LPSIS RASIS LASIS RGT

LGT RLE ... </Markers>
<EMGMaxTrials>Running1 Running2 MVCadd MVCtibant

MVCper MVCtfl ...</EMGMaxTrials>
<EMGsSelection>
<EMGSet>UNIPD-CEINMS</EMGSet>

<EMGs>
<EMG>
<OutputLabel>addmag_r</OutputLabel>
<C3DLabel>Right Adductor Longus
</C3DLabel>

</EMG>
...

</EMGs>
</EMGsSelection>
<EMGOffset>0.2</EMGOffset>
<OutputFileFormats>

<MarkerTrajectories>.trc</MarkerTrajectories>
<GRF>.mot</GRF>
<EMG>.mot</EMG>

</OutputFileFormats>
</elaboration>

Results
Data from four institutions were processed using
MOtoNMS. The four gait laboratories are character-
ized by different instrumentations and setup (Table 1):
(1) three motion capture systems: BTS, Vicon, and Qual-
ysis; (2) three types of FPs [23], requiring different com-
putation for plates moments and CoP; (3) four different
setups for the global reference system, and FP positions
and orientations along the walkway, resulting in differ-
ent rotations from each FP reference system to the global
one; (4) different configurations of analog channels; and
(5) marker and EMG protocols dependent on each labo-
ratory routine analysis.
Experimental data were collected from four healthy sub-

jects, one for each institution, who gave their informed
consent. MOtoNMS was used to elaborate the collected
movement trials and produce the following outputs:
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Table 1 Characteristics of the laboratories testing MOtoNMS

Institution Acquisition device Global reference Kinematic Markers protocol EMG device Analog Analog channels:
(Hardware/Software) system sampling rate (Hz) rate (Hz) Output data

UNIPD BTS Smart E
��

��
�

z

y

x

60 modified version of BTS Pocket EMG 1020 1-6: FP1; 7-12: FP2;

BTS Smart Capture IORgait [47] 13-17: EMG

UMG Qualysis

��
��

�

x

z

y

240 modified version - 720 1-6: FP1; 8-13: FP2

Qualysis Track Manager (QTM) of [48]

GU Vicon �
���

�

y

z

x

200 10 Points Cluster [49] Aurion Zero Wire 1000 1-6: FP1; 7-12: FP2;

Vicon Nexus 29-44:EMG;

13-28, 45-52:Biodex

UWA Vicon

��
��

�

x

z

y

250 UWA full-body [50] Noraxon 2400T G2 2000 1-6: FP1; 7-12: FP2;

Vicon Nexus 13-28: EMG

Four institutions are involved: Department of Information Engineering, University of Padova, Italy (UNIPD), Department of Neurorehabilitation Engineering, Georg August University in Gottingen, Germany (UMG), Centre of
Musculoskeletal Research, Griffith University, Gold Coast, Australia (GU), and School of Sport Science, Exercise and Health, University of Western Australia, Perth, Australia (UWA)
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(1) .trc and .mot files for OpenSim (Fig. 5), (2) joint centers
for hip, knee, and ankle and, depending on data availabil-
ity, also wrist, elbow, and shoulder (Fig. 6), (3) normalized
EMG linear envelopes (Fig. 7), and (4) plots of processed
data (Fig. 8).
Tests aimed at proving the correctness of execution on

different combinations of configuration options, i.e., the
definition of the analysis window, the cut-off frequen-
cies for filtering, number and combination of trials to be
elaborated and different sets of trials for the computation
of the maximum EMG peak.
To illustrate MOtoNMS capabilities, a selection of the

collected trials and examples of obtained results with the
corresponding configuration files are freely available for
download [37]. Three elaborations for the dynamic trials
and one for the static acquisitions are included for each

data set. Resulting .trc and .mot files can be directly loaded
in OpenSim and used to visualize the processed data. The
full MATLAB source code of MOtoNMS [27] with the
User Manual [36] is also available to allow reproducibility
of results and additional testing.
Results show that, despite the differences in instru-

ments, configurations, and protocols (Tables 1 and 2),
MOtoNMS succeeded in processing data in a consistent
and repeatable way, based on the parameters selected in
the user-defined configuration files.

Discussion and conclusions
MOtoNMS enables processing motion data collected
with different instruments and procedures, and gener-
ates inputs for neuromusculoskeletal modeling software.
Marker trajectories, GRFs, and joint centers are processed

Fig. 5 Gait cycle in OpenSim. Example of .trc and .mot files generated using MOtoNMS and loaded in OpenSim. The sequence (a-f) reproduces a
gait cycle on the laboratory force platforms
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Fig. 6 Joint centers. A 3D view of hip (HJC), knee (KJC), ankle (AJC), elbow (EJC), shoulder (SJC) and wrist (WJC) joint centers and markers used for
their computation

and saved using OpenSim file formats [9], while normal-
ized EMG linear envelopes are exported by default to the
OpenSim motion file format (.mot), compatible also with
CEINMS [30].
MOtoNMS has been designed to be flexible and highly

configurable, to satisfy the requests of different research
groups without the need of accessing and modifying the
code. Indeed, processing properties (i.e., selected trials,
cut-off frequencies, data analysis window, markers list,
joint centers of interest, . . . ) can be selected directly from
user-friendly graphical interfaces and stored, together
with the laboratory arrangements, in configuration files.
In addition, processed data, along with the configuration
and processing log files, are automatically organized in
output directories with a uniquely defined structure. This
becomes an essential feature for information retrieval and
when results are shared among different research teams,
especially if large amount of data are involved. Finally,
MOtoNMS has been developed in MATLAB for its large
diffusion in biomechanics research, and works on the
most diffused operating systems (Windows, Linux, and
Mac OS X).

Currently available alternatives to MOtoNMS do not
provide complete solutions that generalize across labora-
tories. Lee S. and Son J. proposed a toolbox that converts
motion data in OpenSim inputs [38], however it is lim-
ited to VICON systems only. Other MATLAB functions
with a broader applicability are available on the SimTK.org
website [39, 40]. While they implement several tasks, they
are not connected in a well-structured instrument able
to fully process data in a single procedure [41, 42]. The
users are required to go through a sequence of MAT-
LAB functions and often to adapt the code to their own
laboratory configuration and experimental protocols. Tim
Dorn provides a complete tool with the C3D Extraction
Toolbox [43]. However, support and testing of different
laboratory setup is limited to specific instrumentation
types (e.g., assumption of AMTI force plates). Finally,
none of these solutions provide a tool to process the
recorded data supplying filtering blocks, several meth-
ods for the analysis windows selection, computation of
joint centers, EMG linear envelopes and maximum EMG
peaks from selected trials for normalization, and graphical
interfaces.
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Fig. 7 Normalized EMG linear envelopes. Normalized EMG linear envelopes versus the percentage of the analysis window selected for the elaboration.
All muscles of a single acquisition are grouped together to provide a global picture of the output of the EMG processing step

Fig. 8 Example of output EMG plots. The main plot shows raw EMG (blue) for an overall trial, together with the computed envelope (green) and the
selected analysis window (red). An example of plot of an envelope within the analysis window is reported in the smaller picture. Two measurement
scales are visible in the graph: the normalized one (blue, on the left), and the voltage from the acquisition device (green, on the right)
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Table 2 FPs characteristics of the laboratories testing MOtoNMS

Institution Num Brand and Model Type Sizes (mm) Position along the walkway

UNIPD 2 Bertec 1 400 × 600

1
�
�
��� y

z

x

2 �
����

y

zx

4060-08-1000 400 × 600

UMG 2 Bertec 4 400 × 600
1 �

����
y

zx

2 �
����

y

zx
4060-07-1000 400 × 600

GU 2 Kistler 9287B 2 900 × 600 1 �
����

y

zx

2

		
�
�

y
z

x

800 × 600

UWA 2 AMTI BP12001200 2 1200 × 1200
2

�
�
��� y

z

x

1

�

�

��� y

z

x

Kistler 9281C 400 × 600

Different FP types require different procedures for plate moments and CoP computation. Force platform of type 3 is not available in the laboratories, but it is implemented in
the toolbox and it has been tested by another institution

Results showed that MOtoNMS could instead be used
to process data from laboratories of four institutions
(Table 1) with three different motion capture systems (i.e.,
Vicon, BTS, Qualisys), EMG units (Noraxon, BTS, and
Zerowire), as well as GRF data generated by four differ-
ent force plate types (e.g., types 1 to 4 by Bertec, AMTI,
and Krisler, Table 2). This makesMOtoNMS the first tool-
box that allows users to easily configure the processing of
motion data from laboratories with different instruments,
software, protocols, and methodologies, and export data
processed for musculoskeletal applications. MOtoNMS
currently supports OpenSim and CEINMS file formats.
Nevertheless, its modular design supports the integration
of additional blocks for the generation of output files
required by other musculoskeletal applications.
MOtoNMS is an ongoing software with a dynamic cycle

of development, aimed at extending its features. Addi-
tional methods for joint centers computation, e.g. based
on functional movements, may be included in a near
future. Customizable algorithms for a better control in the
computation of EMGmaximum and average could also be

introduced. We are also planning to distribute a database
of configuration files for themost popular acquisition pro-
tocols [44–46]. In addition, we will provide a standalone
application of MOtoNMS using the MATLAB Runtime
Compiler that will allow the use of the software in the
contexts, such as the clinical one, where the diffusion of
MATLAB could be limited.
MOtoNMS is released under GNU GPL license and lat-

est versions of the toolbox are constantly uploaded on
the project page at the SimTK.org website [37], together
with up-to-date documentation and a set of testing data.
The GitHub repository of the project traces changes in
the development of the software and aims at encouraging
contributions to extend MOtoNMS capabilities from
other users [27].
The authors hope that MOtoNMS will be useful to the

research community, reducing the gap between experi-
mental motion data and neuromusculoskeletal simulation
software, and uniforming data processing methods across
laboratories. Moreover, reduction of processing time and
the intuitive graphical user interfaces may facilitate the
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translation of neuromusculoskeletal modeling and simu-
lation to daily and clinical practice.

Availability and requirements
Project name:MOtoNMS
Project home page: https://simtk.org/home/motonms/
Repository: https://github.com/RehabEngGroup/MOto
NMS (public GIT repository)
DOI: 10.5281/zenodo.18690
Test Data: https://simtk.org/home/motonms/
Documentation: http://rehabenggroup.github.io/MOto
NMS/ [User Manual]
Operating system(s): Platform independent
Programming language:MATLAB
Other requirements: C3Dserver (http://www.c3dserver.
com/) or Biomechanical Toolkit (BTK, https://code.
google.com/p/b-tk/)
License: GNU General Public License v3
Any restrictions to use by non-academics: None
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BTK: Biomechanical Toolkit; C3D: Coordinate 3D; CoP: Center of Pressure; EMG:
Electromyography; FP: Force Platform; GPL: GNU General Public License; GRFs:
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Schema Definition.
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