
Bellgard et al. Source Code for Biology and Medicine 2014, 9:14
http://www.scfbm.org/content/9/1/14
RESEARCH Open Access
Second generation registry framework
Matthew I Bellgard*, Lee Render, Maciej Radochonski and Adam Hunter
Abstract

Background: Information management systems are essential to capture data be it for public health and human
disease, sustainable agriculture, or plant and animal biosecurity. In public health, the term patient registry is often
used to describe information management systems that are used to record and track phenotypic data of patients.
Appropriate design, implementation and deployment of patient registries enables rapid decision making and
ongoing data mining ultimately leading to improved patient outcomes. A major bottleneck encountered is the
static nature of these registries. That is, software developers are required to work with stakeholders to determine
requirements, design the system, implement the required data fields and functionality for each patient registry.
Additionally, software developer time is required for ongoing maintenance and customisation. It is desirable to
deploy a sophisticated registry framework that can allow scientists and registry curators possessing standard
computing skills to dynamically construct a complete patient registry from scratch and customise it for their
specific needs with little or no need to engage a software developer at any stage.

Results: This paper introduces our second generation open source registry framework which builds on our
previous rare disease registry framework (RDRF). This second generation RDRF is a new approach as it empowers
registry administrators to construct one or more patient registries without software developer effort. New data
elements for a diverse range of phenotypic and genotypic measurements can be defined at any time. Defined data
elements can then be utilised in any of the created registries. Fine grained, multi-level user and workgroup access
can be applied to each data element to ensure appropriate access and data privacy. We introduce the concept of
derived data elements to assist the data element standards communities on how they might be best categorised.

Conclusions: We introduce the second generation RDRF that enables the user-driven dynamic creation of patient
registries. We believe this second generation RDRF is a novel approach to patient registry design, implementation
and deployment and a significant advance on existing registry systems.

Keywords: Patient registry, Born digital, Data element, Genotype, Phenotype, Ontology
Background
The need for information systems, or registries in scien-
tific disciplines is ubiquitous. For instance, in human
rare disease [1-4] as well as plant and animal biosecurity
[5,6]. In the field of human rare diseases alone, registries
are used for clinical trial recruitment, surveillance,
patient contact, natural disease history and longitudinal
patient phenotyping. Previously, a first generation rare
disease registry framework (RDRF), was developed to
simplify the development and deployment of rare disease
registries as there are over 6000 human rare conditions
[3,4]. This framework introduced a modular design to
rare disease registry development to reduce the amount
* Correspondence: mbellgard@ccg.murdoch.edu.au
Centre for Comparative Genomics, Murdoch University, Murdoch, WA 6150,
Australia

© 2014 Bellgard et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
of software developer time required to develop a new
registry and enable the ability to incorporate new func-
tionality efficiently. The RDRF introduced concepts
including multi-level secure access, workgroups and
simplifying the customisation of modules to enable reuse
of component from one rare disease registry to the next
across a range of registry requirements. The RDRF has
been successfully deployed for a number of diseases both
nationally and internationally [3,7].
However, within the RDRF there are a number of

bottlenecks. For instance, for every new registry, data
elements must be implemented at a programmatic level.
That is, the registry schema and data elements are static.
This leads to a number of limitations, for instance, i)
while software developer code might be efficiently
shared between registry implementations via modules,
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:mbellgard@ccg.murdoch.edu.au
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Bellgard et al. Source Code for Biology and Medicine 2014, 9:14 Page 2 of 6
http://www.scfbm.org/content/9/1/14
there is no simple, systematic way to link them at the
user level, except through import/export functionality -
a lower form of interoperability [4]; and ii) there is no
ability to import (computer readable) standardised, pre-
defined data elements (e.g. data elements defined within
the Neurological Disorders and Stroke Common Data
Element Project [8]). Software developer effort is re-
quired at every level of development and customisation.
While the first generation RDRF is suitable for a number
of use cases, it is recognised that community-wide ease
of uptake without the need for software developer time
is an important requirement that must be met.
It is not scalable for a software developer to be inti-

mately involved in every single registry development and
deployment. For instance, in a rare disease context, there
are over 6000 rare conditions that need to be captured
in multiple registries, in multiple countries, regions or
jurisdictions. With the current state of registry develop-
ment, there is no intuitive way to aggregate disease
registries nor is it possible to easily reuse a data ele-
ment (DE) created in one registry, into another. In a
desirable scenario, for ten different national/inter-
national rare disease registries it should be possible to
define a single Date of Birth (DOB) DE that can be
reused in each of the ten registries. The advantages of
this level of abstraction can be extended further. If a
DE such as the DOB field is defined in a standardised
template (e.g. [8]) with a unique identifier, then it
would be feasible to dynamically import these standard
DEs into a registry. In addition, in order to capture a
new measurement, a new DE could be defined and
dynamically added to a production registry well after
the registry has been created.
In this paper, we describe this significant advance of

the RDRF over static registry development in general.
We outline the features of this second generation
registry framework that enables non-software deve-
lopers to dynamically create and administer patient
registries.

Methods
System architecture
The registry is a web-based client server application uti-
lising the following technologies: Django (https://www.
djangoproject.com/), a Python based web framework;
PostgreSQL (http://www.postgresql.org/), a relational
database used to store framework metadata fields, user
information, registry membership information and ac-
cess permissions; MongoDB (http://www.mongodb.org/),
a NoSQL schema-less document store, used to store
registry-specific data for each patient; HTML, CSS,
YAML (http://www.yaml.org/) and Javascript. The open
source libraries jQuery (http://jquery.com/) and Boot-
strap (http://getbootstrap.com/) are also used.
Registry deployment
Currently RDRF is deployed to the CentOS (http://www.
centos.org/) Linux operating system, using Apache (http://
httpd.apache.org/) as a web server. Deploying using other
operating systems and Linux distributions is possible,
however currently only CentOS is tested and supported. A
YUM (http://yum.baseurl.org/) repository and RPM (http://
rpm.org/) for installation of the framework are also pro-
vided for CentOS 6 (http://rare-disease-registry-framework.
readthedocs.org/).

Results
We describe a highly dynamic web framework for the
creation of patient registries with no extra software de-
velopment. That is, users of the system do not need to
be software developers to construct and deploy registries
from scratch. To enable this, we exploited the meta-
programming features exposed by Python and the schema-
less storage facilities provided by MongoDB.

Meta-programming
Python allows creation of classes as first class citizens.
By constructing classes at runtime, the RDRF is able to
construct complex dynamic forms based on user specifi-
cations. Critically, no recompilation or code changes are
required to incorporate new fields or form elements.
Changes to presentation elements (widgets) or validation
logic can all be made at runtime.

Schema-less storage
A relational database is too restrictive to enable runtime
modification of fields. Instead, a schema-less data store,
MongoDB, was used to allow storage of dynamically de-
fined data in the RDRF. MongoDB was chosen because
it is an industry recognised schema-less data store with
a powerful, well-documented query API. MongoDB
stores all data in the form of “collections”, which are
essentially lists of object dictionaries. Each DE captured
by forms within a registry is stored as a single key value
pair in one such dictionary. The key includes the patient
identifier, the DE code and some additional bookkeeping
to encode the registry form structure. To simplify the
implementation of permissions, each user-defined regis-
try is isolated in its own MongoDB data collection.
Metadata about each DE, including its data type, is

stored as part of the DE definition in the relational SQL
database. In this way, the relational SQL database and
the NoSQL database provide a clean separation between
static field-definition features (SQL) and the dynamic
domain-level features (NoSQL).

Creating multiple patient registries
Figure 1 provides a screen capture of the registry cre-
ation screen. A user with appropriate credentials can use

https://www.djangoproject.com/
https://www.djangoproject.com/
http://www.postgresql.org/
http://www.mongodb.org/
http://www.yaml.org/
http://jquery.com/
http://getbootstrap.com/
http://www.centos.org/
http://www.centos.org/
http://httpd.apache.org/
http://httpd.apache.org/
http://yum.baseurl.org/
http://rpm.org/
http://rpm.org/
http://rare-disease-registry-framework.readthedocs.org/
http://rare-disease-registry-framework.readthedocs.org/


Figure 1 Registry capture screen. A screen capture of the form to create a new registry.

Bellgard et al. Source Code for Biology and Medicine 2014, 9:14 Page 3 of 6
http://www.scfbm.org/content/9/1/14
the web-based administration interface to create one or
more registries.

Data element (DE) definition and reuse
Users can define data elements (DEs) that can be shared
by all registries created within the framework. There are
a number of attributes that can be set for DEs. There are
Figure 2 Data elements definitions. A screen capture of the form that a
multiple data types: integer, float, string, date, file, that
can be used for attributes within each DE. Validation
rules (e.g. minimum and maximum for numeric fields)
can be defined and pattern validation can be defined for
textual fields (e.g. credit-card number pattern consisting
of four sets of four digits separated by a space). For
more sophisticated DEs, a DE can incorporate Permitted
ppears to create a data elements.



Bellgard et al. Source Code for Biology and Medicine 2014, 9:14 Page 4 of 6
http://www.scfbm.org/content/9/1/14
Value Groups (PVG). For example, a PVG might be
called, Size with the permissible values: large, medium,
small. This PVG can then be applied to any DEs that
requires the Size PVG. Figure 2 displays a screen capture
of the DE definition page.

Derived data elements (DDEs)
Within the second generation RDRF it is possible to
create what we refer to as a derived data element
(DDE). A typical example of a DDE is Body Mass Index
(BMI) which is based on a calculation involving a
Height DE and Weight DE. In the RDRF a DDE is
defined using Javascript to represent the calculation
involving one or more DEs. DDE are calculated dyna-
mically and are therefore updated as soon as the DEs
in the calculation are modified. Figure 3 is a screen
capture of the DDE for BMI. In summary, the DE
template can enable the creation of sophisticated DEs
without the need for any software developer effort.
DDEs can be similarly defined with the addition of a
Javascript snippet to dynamically calculate the value of
the DDE.
Figure 3 Derived data elements. A screen capture of a derived data elem
and weight.
Importing and exporting data elements
It is possible to import and export DEs via a YAML
specification file. By using YAML, a single human-
readable file definition of a registry can be exported
which can then be version-controlled and used for shar-
ing with other research communities.
A catalogue of all the DE defined within a patient

registry is also exportable.

File uploading
Registries often require documents to be uploaded into
the system. Such forms include signed patient consent
forms in a human health context or an export certifica-
tion form in a biosecurity context. This can be simply
achieved within the RDRF. Files can be uploaded and
downloaded using the File fields after creating the
specific file upload DE.

Demonstration registry
A demonstration rare disease registry using the second
generation RDRF is available for testing (https://ccgapps.
com.au/demo-rdrf/). The demonstration system allows
ent (Body Mass Index), derived from the two data elements: height

https://ccgapps.com.au/demo-rdrf/
https://ccgapps.com.au/demo-rdrf/


Bellgard et al. Source Code for Biology and Medicine 2014, 9:14 Page 5 of 6
http://www.scfbm.org/content/9/1/14
the creation of new registries, modification of existing
ones, creation of new data elements and so forth. The
demonstration system has multiple accounts to allow
users to test all levels of access and functionality (for
example, login: admin, password: admin; login: curator,
password: curator; login: genetic, password: genetic; and
login: clinical, password: clinical). A screenshot of a
patient questionnaire from the demonstration registry is
shown in Figure 4.

Discussion and conclusion
In this paper, we introduce significant enhancement to
our patient registry framework (RDRF) which now al-
lows the dynamic creation of new registries with little or
no software development. This addresses the critical bot-
tlenecks of community uptake and wider applicability.
RDRF could also be used in a surveillance context or in
clinical studies where there is an initial need to establish
a registry with a given set of data elements (DEs) but will
need to be later enriched with new DEs as a result of
additional phenotypical measurements that need to be
captured. Importantly, DEs are able to be created once
and reused (shared) in multiple registries and can be one
of multiple data types. From a systems perspective, we
Figure 4 Demonstration registry. A screen capture of a patient question
registry (https://ccgapps.com.au/demo-rdrf/).
contend that shared DEs (SDEs) will enable higher levels
of interoperability [4] that can facilitate ease of sharing
and extensive data mining of patient data across jurisdic-
tional boundaries - another significant bottleneck in
patient disease registries. We introduce the concept of a
derived DE (DDE). A DDE can be derived from one or
more DEs which means it is possible to actualise efforts
emanating from efforts to define a DE ontology (DEO).
Current data standards for DEs (such as [8]) could be
revised to reflect that the unique identifier used for any
given DDEs, references the identifiers of DEs from
which the DDE is derived.
From a technological perspective, the feature being

exploited in the Python programming language is the
ability to create classes dynamically. Typically most web
applications define classes statically, whereas RDRF is
dynamically constructing these classes at run time from
the DE definitions, which act as the specification. We
believe RDRF will have broader applicability and can
now be used in a wide range of disease and surveillance
contexts for human, animal, plant health or in a bio-
security context. RDRF will enable decision makers to
establish registries thereby ensuring personal electronic
records can be ‘born digital’. As RDRF now employs
naire form for the Myotonic Dystrophy (DM1) demonstration

https://ccgapps.com.au/demo-rdrf/


Bellgard et al. Source Code for Biology and Medicine 2014, 9:14 Page 6 of 6
http://www.scfbm.org/content/9/1/14
YAML, a single human-readable file definition of a regis-
try can be exported. This means that it will be possible
to version-control a registry for future sharing with
other research communities or customising for specific
needs.
In future releases we plan a number of enhancements,

including: the definition of a DE specification format
(DESF); ability to apply rules to the DEs to enable know-
ledge capture; and import outputs from a next gene-
ration sequencing experiment which includes both the
variant call format (VCF) file as well as the analysis
workflow audit trail [9].

Availability and requirements
Project name: RDRF
Project home page: https://bitbucket.org/ccgmurdoch/rdrf
Documentation: http://rare-disease-registry-framework.read
thedocs.org/
Operating system(s): Linux (CentOS 6 tested)
Programming language: Python
Other requirements: PostgreSQL, MongoDB, Apache
(including mod_wsgi)
License: GNU GPL v3
Any restrictions to use by non-academics: Yes

Abbreviations
DE: Data element; DEO: Data element ontology; DDE: Defined data element;
DESF: Data element specification format; SDE: Shared data elements;
RDRF: Rare disease registry framework.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MB and AH devised original concept design. Software architectural design
LR, AH, MR. Wrote manuscript: MB, AH, LR. All authors read and approved
the final manuscript.

Authors’ information
Matthew Bellgard: Professor Matthew Bellgard (BSc Hons, PhD in Computer
Science) is Murdoch University’s Bioinformatics Chair and the Director of the
Western Australian State Government Centre of Excellence, the Centre for
Comparative Genomics (CCG). His scientific work has resulted in
developments in the areas of pairwise sequence alignment and artificial
intelligence, early detection of base composition differences in closely
related bacterial species, whole genome sequence analysis and advances in
the development of web-based integrated systems utilising high performance
computing.
Lee Render: BSc Physics UWA, BA Philosophy (Hons) UWA. Has over ten
years industry experience in software development with experience in .NET
and Java. He has had direct experience in designing, developing and
maintaining bioinformatics workflow systems. Current focus on Python
software development.
Maciej Radochonski: Maciej Radochonski completed a MSc Eng in Applied
Computer Engineering at Wroclaw University of Technology, Poland and a
MSc in Information and Communication Technology at The University of
Notre Dame Australia. Maciej has nearly 8 years experience in software
development using Java and related technologies. Current focus on Python
software development.
Adam Hunter: Adam Hunter completed a BSc Honours in Computer Science
at Murdoch University. Adam has over 10 years experience in ICT including
software development in C and Java. He leads the CCG software
development and infrastructure team. Current areas of focus include
continuous integration, agile programming and cloud computing.
Acknowledgements
The authors received funding from the Australian National Health and Medical
Research Council (APP1055319), EU FP7 Project (HEALTH.2012.2.1.1-1-C): RD
Connect: An integrated platform connecting databases, registries, biobanks and
clinical bioinformatics for rare disease research, and the Office of Population
Health Genomics, Department of Health, Western Australia. The authors wish to
acknowledge their involvement in the International Rare Disease Research
Consortium. The authors also wish to acknowledge John McCooke for
providing valuable feedback on the demonstration RDRF system deployed.

Received: 3 February 2014 Accepted: 4 June 2014
Published: 20 June 2014

References
1. Rubinstein YR, Groft SC, Bartek R, Brown K, Christensen RA, Collier E, Farber A,

Farmer J, Ferguson JH, Forrest CB, Lockhart NC, McCurdy KR, Moore H,
Pollen GB, Richesson R, Miller VR, Hull S, Vaught J: Creating a global rare
disease patient registry linked to a rare diseases biorepository database:
Rare Disease-HUB (RD-HUB). Contemp Clin Trials 2010, 31(5):394–404.

2. Series OR: Disease Registries in Europe. 2013. Available from: http://www.
orpha.net/orphacom/cahiers/docs/GB/Registries.pdf.

3. Bellgard MI, Macgregor A, Janon F, Harvey A, O'Leary P, Hunter A, Dawkins H:
A modular approach to disease registry design: successful adoption of an
internet-based rare disease registry. Hum Mutat 2012, 33(10):E2356–E2366.

4. Bellgard M, Beroud C, Parkinson K, Harris T, Ayme S, Baynam G,
Weeramanthri T, Dawkins H, Hunter A: Dispelling myths about rare
disease registry system development. Source Code Biol Med 2013, 8(1):21.

5. Bellgard MI, Bellgard SE: A Bioinformatics Framework for plant
pathologists to deliver global food security outcomes. Austral Plant Pathol
2012, 41(2):113–124.

6. IPPC ISPM 35: Systems Approach for Pest Risk Management of Fruit Flies
(Tephritidae). 2012:10. Available from: http://www.fao.org/docrep/016/
k6768e/k6768e.pdf.

7. Rodrigues M, Hammond-Tooke G, Kidd A, Love D, Patel R, Dawkins H,
Bellgard M, Roxburgh R: The New Zealand Neuromuscular Disease
Registry. J Clin Neurosci 2012, 19(12):1749–1750.

8. Grinnon ST, Miller K, Marler JR, Lu Y, Stout A, Odenkirchen J, Kunitz S:
National Institute of Neurological Disorders and Stroke Common Data
Element Project - approach and methods. Clin Trials 2012, 9(3):322–329.

9. Hunter AA, Macgregor AB, Szabo TO, Wellington CA, Bellgard MI: Yabi:
An online research environment for grid, high performance and cloud
computing. Source Code Biol Med 2012, 7(1):1.

doi:10.1186/1751-0473-9-14
Cite this article as: Bellgard et al.: Second generation registry
framework. Source Code for Biology and Medicine 2014 9:14.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

https://bitbucket.org/ccgmurdoch/rdrf
http://rare-disease-registry-framework.readthedocs.org/
http://rare-disease-registry-framework.readthedocs.org/
http://www.orpha.net/orphacom/cahiers/docs/GB/Registries.pdf
http://www.orpha.net/orphacom/cahiers/docs/GB/Registries.pdf
http://www.fao.org/docrep/016/k6768e/k6768e.pdf
http://www.fao.org/docrep/016/k6768e/k6768e.pdf

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	System architecture
	Registry deployment

	Results
	Meta-programming
	Schema-less storage
	Creating multiple patient registries
	Data element (DE) definition and reuse
	Derived data elements (DDEs)
	Importing and exporting data elements
	File uploading
	Demonstration registry


	Discussion and conclusion
	Availability and requirements
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	References

