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Implementing a new EPR lineshape parameter
for organic radicals in carbonaceous matter
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Abstract

Background: Electron Paramagnetic Resonance (EPR) is a non-destructive, non-invasive technique useful for the
characterization of organic moieties in primitive carbonaceous matter related to the origin of life. The classical EPR
parameters are the peak-to-peak amplitude, the linewidth and the g factor; however, such parameters turn out not to
suffice to fully determine a single EPR line.

Results: In this paper, we give the definition and practical implementation of a new EPR parameter based on the
signal shape that we call the R10 factor. This parameter was originally defined in the case of a single symmetric EPR
line and used as a new datation method for organic matter in the field of exobiology.

Conclusion: Combined to classical EPR parameters, the proposed shape parameter provides a full description of an
EPR spectrum and opens the way to novel applications like datation. Such a parameter is a powerful tool for future EPR
studies, not only of carbonaceous matter, but also of any substance which spectrum exhibits a single symmetric line.

Reproducibility: The paper is a literate program—written using Noweb within the Org-mode as provided by the
Emacs editor— and it also describes the full data analysis pipeline that computes the R10 on a real EPR spectrum.

Keywords: Electron paramagnetic resonance, Lineshape, Solid state chemistry, Carbonaceous matter, Exobiology,
Literate programming, Python

Background: Necessity for a shape factor definition
In the field of exobiology, we need to determine the age
of organic material in rock samples. Isotopic methods are
commonly used to date the rock itself, but the organic
matter may not be syngenetic with the rock. A novel solu-
tion based on Electron Paramagnetic Resonance (EPR)
was proposed [1]; it requires the determination of a new
EPR parameter, the R10, from the EPR spectrum of the
rock sample, fromwhich the age can be computed from an
empirical log-linear correlation that was uncovered in [1].
Knowing the distribution of the different parameters that
contribute to the R10, we may also provide a confidence
interval for the age thus determined. In the following, we
shall explain what the classical EPR parameters are and
what the proposed new parameter brings to the table,
and then describe the algorithm for the determination of
the R10: how to process the data files generated during
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an EPR experiment, extract the classical EPR parameters
and compute their distribution in order to have an esti-
mate of their error; compute the new R10 parameter and
its distribution from the preceding distributions. Thanks
to this paper, scientists may themselves extract the R10
parameter from EPR data and use it not only for datation
purposes but also to uniquely characterize the observed
EPR spectrum lineshapes. Our goal is to automate a man-
ual process that has proved scientifically successful yet
cumbersome and tedious when applied on datasets that
are getting larger. In that version of our code, some of our
algorithmic choices just mirror the —successful—manual
process. We have chosen the Python language because of
its high level, ease of development and popularity; last but
not least, it also provides powerful libraries for scientific
development, and speed of execution turned out not to be
a key factor for our goalsa. The Python code runs inside
the Sage computing platform [2], which aims at providing
a single computing environment both for numerical and
symbolic computations.
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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Bourbin et al. Source Code for Biology andMedicine 2013, 8:15 Page 2 of 11
http://www.scfbm.org/content/8/1/15

Electron Paramagnetic Resonance (EPR) is a non-
destructive and non-invasive technique which has indeed
long been used for the study of paramagnetic defects
(organic radicals) in carbonaceous materials. Such defects
have been detected with high sensitivity in coals by pio-
neering EPR works [3]. These types of radicals were
therefore used for the characterization of a wide range of
carbonaceous objects, ranging from coals [4-6] to cherts
[7] through meteorites [8-11]. The EPR signal of kerogen
is a single line, due to the presence of aromatic radi-
cal moieties, with an unpaired electron spin delocalized
in carbon p-type molecular orbitals [4,9,12,13]. Several
parameters can be deduced from an EPR spectrum, based
on the amplitude App, the linewidth �Bpp and the res-
onance field Bres of the signal. However, for a single set
of those three parameters, various lineshapes are possible
(Figure 1); therefore, to fully determine the EPR line, a new
EPR parameter, based on the lineshape, had to be defined.
The shape of the magnetic resonance absorption line

of a system of interacting and randomly distributed spins
depends on the nature of the interactions (dipole-dipole
or exchange), on the spin concentration and on the dimen-
sionality of the spatial distribution of the spins [14-18].
This study is restricted to the case of a dipole-dipole
type interaction between electron spins, thus excluding
exchange interaction occurring in very concentrated elec-
tron spin systems. Several limiting cases are distinguished
in the literature, depending on the spin concentration and
on the dimensionality of the distribution, cf. Table 1.
In the high concentration regime (generally considered

when the fractional site occupation r by a paramag-
netic centre exceeds 0.1), the lineshape is approximately
Gaussian [17]. This regime also occurs when the line
is broadened by unresolved hyperfine interaction. Given

Table 1 EPR lineshapes and lineshape parameter R10 for
different limit regimes of dipolar broadening

Spin concentration Distribution Lineshape R10

High: dipolar and 3D Gaussian to Lorentzian ≥ 0

hyperfine broadening

Low: Lorentzian 0

2D Stretched Lorentzian −1.78

1D Stretched Lorentzian −2.95

that EPR experimental spectra correspond to absorption
derivatives, the Gaussian EPR line is described by:

FG(B − Bres) = −App
B−Bres
�Bpp

exp
[
−2

(
B−Bres
�Bpp

)2
+ 1
2

]

(1)

where B is the applied magnetic field, Bres the field at the
centre of the line (maximum of absorption), App the peak-
to-peak amplitude and �Bpp the peak-to-peak linewidth
(Figure 1).
In the low concentration regime (generally considered

when r < 0.01) with no hyperfine broadening, the
lineshape depends on the dimensionality of the spatial
distribution of the paramagnetic centres [16]. When the
distribution is random, the resonance line may be calcu-
lated from the relaxation function:

G(d, t) = B exp
(
−a · t d3

)
(2)

This function describes the decay with time t of the
spin magnetization, perpendicular to the magnetic field,
after an infinitely short microwave pulse. Parameter a is a

Figure 1 Theoretical EPR lines corresponding to upper limit cases of dipolar broadening. Continuous line: high spin concentration regime
(Gaussian lineshape); Mixed line: diluted spin regime and 3D distribution (Lorentzian lineshape); Dashed line: diluted regime, 2D distribution
(stretched Lorentzian); Dotted line: diluted regime, 1D distribution (stretched Lorentzian).
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constant that depends linearly on the spin concentration
and parameter d represents the dimensionality of the spin
distribution: d = 1 for a linear distribution, d = 2 for a
distribution in a plane and d = 3 for a distribution in a
volume. The EPR absorption is the Fourier transform of
the relaxation function, and thus the EPR spectrum is the
field derivative of this Fourier transform:

Fd(B − Bres) = �
[∫ +∞

0
G(d, t)

(
−it

gβ
�

)

× exp
[
−i(B − Bres)t

gβ
�

]
dt

] (3)

where � stands for the real part. In the case of a three
dimensional distribution (d = 3), the EPR lineshape func-
tion can be analytically calculated and corresponds to the
field derivative of a Lorentzian function:

F3(B − Bres) = − 16
9
App

(B−Bres)
�Bpp[

1 + 4
3

(
(B−Bres)

�Bpp

)2] (4)

For lower dimension of spin spatial distribution (d < 3),
the Fourier transform can only be calculated numerically.
Figure 1 shows the theoretical EPR spectra corresponding
to the Gaussian, Lorentzian (d = 3) and low dimensional
(d = 1 and 2) cases. The wings of a Gaussian line fall
off faster than those of a Lorentzian line while the wings
of an EPR spectrum corresponding to a low-dimensional
distribution fall off more slowly, giving rise to a so-called
stretched Lorentzian lineshape. Originally, the R10 line-
shape factor was imagined after studying the spectra in a
coordinate system (x, y) in which the difference between
the lineshapes stands out more clearly [14], and where the
Lorentzian becomes a straight line:

fL(x) = x + 3
4

(5)

and the Gaussian shape by an increasing exponential:

fG(x) = exp(x − 1
4
) (6)

with fG(x) ≥ fL(x), ∀x, cf. Figure 2. That coordinate
system can be obtained thanks to the following transfor-
mations as given in [14]:

xBenc =
(
B − Bres
�Bpp

)2
and

yBenc = f (xBenc) =
√

App
|F(B − Bres)|

|B − Bres|
�Bpp

(7)

where F = FG or Fd. We shall thus define two functions,
one that creates the new abscissas from the old x ≡ B and
the other that creates the new ordinates from the old x
and y ≡ F(B − Bres):
3

〈Functions to transform coordinates 3〉 ≡ (11a)
def xTransform(x, Bres, DeltaBpp):

return ( (x - Bres) / DeltaBpp ) ˆ 2

def yTransform(x, y, App, Bres, DeltaBpp):

return sqrt( App * abs(x - Bres) /

(DeltaBpp * abs(y)) )

Following the Noweb literate programming style as
described in [19], the above code is called a code chunk,
with a unique name given between angle brackets and fol-
lowed with an equal sign, together with a corresponding
unique number made up of the page number and a letter
starting at a and increasing alphabetically on a given page;

Figure 2 Representation of the EPR spectra in the new (xBenc, yBenc) coordinates system described by [14] and given in equation (7).
Continuous line: Gaussian; mixed line: 3D distribution (Lorentzian); dashed line: 2D distribution (stretched Lorentzian); dotted line: 1D distribution
(stretched Lorentzian).
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that number is mirrored in the left margin for easy refer-
ence. The number on the end of line after the code chunk
name indicates the code chunk where the current code
chunk is used. Often, we shall add some code to an already
existing code chunk, and that will appear in two different
ways: first, the name between angle brackets will be fol-
lowed by an equal sign attached to a plus sign (instead of
a lone equal sign), and the numbers on the end of line will
also indicate where the code chunk gets some new code
(a small triangle is added to that number, i.e. 	 for previous
existing definition, and 
 for the next new code).
For diluted spin systems with low-dimensional dis-

tribution, the representative function f lies below the
line corresponding to a Lorentzian shape. To quantita-
tively characterize the lineshape for systems intermediate
between the above four ideal cases [Gaussian, Lorentzian
(d = 3), one-dimensional (d = 1) and two-dimensional
(d = 2)], we define a lineshape parameter measuring the
deviation from a Lorentzian line as described in [7]:

R10 = 1
10

∫ x=10

x=0

[
f (x) − fL(x)

]
dx (8)

This parameter corresponds to the algebraic surface
between the curve f representing an experimental EPR
spectrum and the curve fL representing a Lorentzian line.
R10 is negative for a low-dimensional distribution (d < 3)
and positive for an EPR line intermediate between
Lorentzian and Gaussian lines (Table 1). The integration
in equation (8) must be restricted to a finite range of x-
values for the integral may not converge when x → ∞. In
practice, the range is limited to x ≤ 10, since in most cases
encountered the signal-to-noise ratio of the EPR spectra
is poor for x ≥ 10, inducing strong fluctuations in f and
consequently in the lineshape parameter. Also, because
of spectra with left/right assymmetry, the final R10 is the
average of the values computed on the left and right of the
resonance field, i.e.

R10 = 1
2

(R10 + R−10) (9)

To compute the integral in equation (8), we shall fol-
low the method originally used: a simple top-left corner
rectangular approximation. That allows full reproducibil-
ity with the original manual method that was used before
automation with a program; in the future we may replace
it with a more accurate algorithm if there is a general
agreement on the need to depart from the manual pro-
cessing. We shall thus consider a matrix matrixXYL
—a numpy array— made up of the abscissas of the
spectrum in the first column, the ordinates of the spec-
trum in the second column, and the ordinates of the

ideal Lorentzian in the third column, with the number of
lines corresponding to the number of data-points on the
curves:

4a 〈R10 rectangular integral 4a〉 ≡ (5)
Xspacing = (matrixXYL[:,0][1:]

- matrixXYL[:,0][:-1])
Ydifference = (matrixXYL[:,1][:-1]

- matrixXYL[:,2][:-1])
Xspan = (matrixXYL[:,0][-1]

- matrixXYL[:,0][0])
R10 = sum(Xspacing*Ydifference)

/ Xspan

The matrixXYL will be defined as a numpy array, and
we use the sum function from the same library:

4b 〈Import useful pylab functions 4b〉 ≡ (12) 5b�
from pylab import sum

In order to construct the matrix matrixXYL, we
need the data abscissas and ordinates and we use
equation 5 for the yL coordinates of the ideal Lorentzian
curve:

5a 〈Matrix of XYL values in new coordinates 5a〉 ≡ (5)
matrixXYL = array([[xm,ym,yL] for x,y

in zip(abscissas,ordinates)\

for xm,ym in [(xTransform(x, Bres,

DeltaBpp), yTransform(x, y, App,

Bres, DeltaBpp))]

for yL in [xm + 3/4.] if xm < 10 and

〈Same side of Bres 5c 〉] )

Again, we need to use the array data-structure, so we
import it:

5b 〈Import useful pylab functions 4b〉+ ≡ (12)�4b 6f�
from pylab import array

Operationally, the R10 was only defined separately for
the parts of the curve which abscissas x are larger or
smaller than the resonance field Bres, and we thus define
an operator testSameSideofBres that will enable us
to build two matrices matrixXYL, one for each side:
5c 〈Same side of Bres 5c〉 ≡ (5a)

testSameSideofBres(x,Bres)

In the case of the left hand side, we look for x lower than
Bres, and the opposite for the right hand side:

5d 〈Left matrix of XYL values 5d〉 ≡ (5h) 6a�
testLeftSideofBres = lambda x,

Bres: x < Bres

testSameSideofBres = testLeftSideofBres

〈Matrix of XYL values in new coordinates 5a 〉
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5e 〈Right matrix of XYL values 5e〉 ≡ (5i)
testRightSideofBres = lambda x,

Bres: x >

Bres testSameSideofBres =

testRightSideofBres

〈Matrix of XYL values in new coordinates 5a〉

We shall thus obtain two values of R10, one for each side
of Bres,

5f 〈Compute R10 5f〉 ≡ (11a)
〈R10 on the left 5h〉
〈R10 on the right 5i〉
〈Average R10 5g〉

and we shall then use their average as the final value for
the spectrum under study, cf. equation (9):

5g 〈Average R10 5g〉 ≡ (5f )
R10 = (R10_left + R10_right)/2

5h 〈R10 on the left 5h〉 ≡ (5f )
〈Left matrix of XYL values 5d〉
〈R10 rectangular integral 4a〉
〈Save R10 left value 5j〉

5i 〈R10 on the right 5i〉 ≡ (5f )
〈Right matrix of XYL values 5e〉
〈R10 rectangular integral 4a 〉
〈Save R10 right value 5k〉

5j 〈Save R10 left value 5j〉 ≡ (5h)
R10_left = R10

5k 〈Save R10 right value 5k〉 ≡ (5i)
R10_right = R10

We need to be careful with the order of the values in the
matrix giving the coordinates in the new coordinate sys-
tem defined in equation (7): if we start from small values of
x in the original frame, then, for the left hand side of Bres,
values in the new frame will decrease, whereas values on
the right hand side will increase. Thus, values on the left
side must be reversed, whereas that will not be necessary
for the right hand side.

6a 〈Left matrix of XYL values 5d〉+ ≡ (5h)�5d
〈Reverse matrix 6b〉 ≡

6b 〈Reverse matrix 6b〉 ≡ (6a)
matrixXYL = matrixXYL[::-1]

Methods
All the relevant discussion about the experimental part
of the work, that involves collecting EPR data on the

rock samples, can be found in [1]. In the current paper,
we focus on the specific data handling and process-
ing in order to extract the R10 parameter from an
EPR spectrum and estimate the associated error. All
computations were made in the Sage computing envi-
ronment [2], with imports from the Numeric Python
library [20].
In the spirit of reproducible research [21], the paper is

written in the literate programming style [22]: the code
and its explanationb are intertwined in a single place, and
a particular program is then used to extract either the
source code for execution on a computer or the liter-
ate paper for reading by humans. Literate programming
tools exist, and we use Noweb [19] and Org-mode [23,24]
within Emacs with Evil mode to enable vi commands. We
also make use of the Sagetex package that comes with
the Sage distribution, that allows Sage code to be exe-
cuted when compiling the LaTeX source of the paperc,
and we have a home-built script that manages to combine
Org-mode with Sagetex together with a Noweb output.
Figures are produced either with Sage and Sagetex, or with
Asymptote: it allows us to program figures, and thus make
them executable, and embeddable in the LaTeX source
code. The code will be made available through the team’s
websited.

Processing data from an EPR file
Removing the background signal
EPR spectra on which the R10 factor was to be measured
were selected for their symmetric and well-defined single
absorption derivative signal. As usual in EPR studies, the
large scale background signal was subtracted with a third
degree polynomial fitted on the smooth parts of the spec-
trum where the signal variations are only due to noise,
which in practice correspond to the first and last 10% data
points in a typical spectrum.

6c 〈Remove background 6c 〉 ≡ (12)
〈Compute number of data points in tails 6d〉
〈Define points in tails 6e〉
〈Compute polynomial on tails 6g〉
〈Subtract polynomial from spectrum 7a〉

6d 〈Compute number of data points in tails 6d 〉 ≡ (6c)
numPointsTails = ceil(len(abscissas)/10.)

6e 〈Define points in tails 6e〉 ≡ (6c)
tailX = concatenate

((abscissas[:numPointsTails],

abscissas[-numPointsTails:]))

tailY = concatenate

((ordinates[:numPointsTails],

ordinates[-numPointsTails:]))
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6f 〈Import useful pylab functions 4b〉+ ≡ (12)�5b 6h�
from pylab import concatenate

6g 〈Compute polynomial on tails 6g〉 ≡ (6c)
degreePoly = 3

backPoly = polyfit(tailX, tailY,

degreePoly)

6h 〈Import useful pylab functions 4b〉+ ≡ (12)�6f 7b�
from pylab import polyfit

From now on, the spectrum will be understood as the
baseline corrected raw spectrum.

7a 〈Subtract polynomial from spectrum 7a〉 ≡ (6c)
ordinates -= polyval(backPoly,abscissas)

7b 〈Import useful pylab functions 4b〉+ ≡ (12)�6h 7f�
from pylab import polyval

Reading the data for the spectra
EPR Spectra are given as .txt files, with a name made up
of the following informations:

• sample-name
• temperature-of-acquisition
• microwave-power
• number-of-scans

For example,gunflint_ambient_2mW_1scan.txt
corresponds to a sample named gunflint, studied at
ambient temperature with a microwave power of 2mW
using 1 scane.

7c 〈Load data 7c〉 ≡ (12)
〈Define DATA directory 7g〉
〈Define filename 7d〉
〈Extract abscissas and ordinates 7e〉

7d 〈Define filename 7d〉 ≡ (7c)
fileName =

’MB_gunflint_ambient_2mW_1scan.txt’

The first two lines must be skipped when loading data:
they provide the EPR acquisition parameters and the file
description. EPR text files comprise three columns, giv-
ing respectively the point index (starting from one and
running to the total number of points recorded), the
datapoint abscissa —the magnetic field B— and the dat-
apoint ordinate —the intensity in arbitrary units. To ease
data manipulation we extract two lists, abscissas and
ordinates.

7e 〈Extract abscissas and ordinates 7e〉 ≡ (7c)
data = loadtxt(DATA+fileName, skiprows=2)

#Skip first two comment lines

abscissas = data[:,1].copy()

ordinates = data[:,2].copy()

and the load function loadtxt will be taken from the
pylab library.

7f 〈Import useful pylab functions 4b〉+ ≡ (12)�7b 8h�
from pylab import loadtxt

We also have to make sure that the DATA variable is
defined, which is normally automatic within Sage:

7g 〈Define DATA directory 7g〉 ≡ (7c)
try:

DATA

except NameError:

DATA = ’data/’

In order to plot the spectrum as in Figure 3, we use Sage
builtin plot function list_plot.

7h 〈Plot spectrum 7h〉 ≡ (10g 12)
spectrumPlot = list_plot(zip(abscissas,

ordinates))

spectrumPlot.save

(DATA+’spectrumPlot.png’)

The distribution of the classical EPR parameters
To uncover the underlying Lorentzian curve which will
be compared to the original spectrum for the R10 com-
putation, we need to find the three parameters that
determine the latter: the peak-to-peak amplitude App,
the linewidth �Bpp and the resonance field Bres. We
define the peaks (positive and negative) as the extrema
of the spectrum ordinate values, and the App and �Bpp
as the difference between the peaks’ ordinates and
abscissas, respectively.

8a 〈Compute App 8a〉 ≡ (8d)
Amax = max(ordinates)

Amin = min(ordinates)

App = Amax - Amin

8b 〈Compute DeltaBpp 8b〉 ≡ (8d)
indexAmax = list(ordinates).index(Amax)

Bmin = abscissas[indexAmax]

indexAmin = list(ordinates).index(Amin)

Bmax = abscissas[indexAmin]

DeltaBpp = Bmax-Bmin

The resonance field Bres was defined as the value at
which the EPR lineshape crosses the baseline of the spec-
trum, which corresponds to the zero axis since the spectra
are baseline corrected.
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Figure 3 The loaded EPR spectrum (dots) and the corresponding theoretical Lorentzian (continuous): the R10 factor is based on the
integral difference between the two, cf. equation (8).

8c 〈Compute Bres 8c〉 ≡ (8d)
for y in

〈The ordinates between the two extrema 8e〉:
〈Find when ordinate crosses baseline 8f〉

Bres =
〈Mean of the two ordinates above and below
baseline 8g〉

8d 〈Compute the classical EPR parameters 8d〉 ≡ (9g)
〈Compute App 8a〉
〈Compute DeltaBpp 8b〉
〈Compute Bres 8c〉

8e 〈The ordinates between the two extrema 8e〉 ≡ (8c)
ordinates[indexAmax:indexAmin+1]

8f 〈Find when ordinate crosses baseline 8f〉 ≡ (8c)
if y < 0:

yCross = y

break

The resonance field Bres is thus the mean of the two
ordinates lying above and below the baseline respectively:

8g 〈Mean of the two ordinates above and below
baseline 8g〉 ≡ (8c)

mean(map(lambda v: abscissas[list

(ordinates).index(yCross) + v],

[-1, 0]))

8h 〈Import useful pylab functions 4b〉+ ≡ (12)�7f 9b�
from pylab import mean

Knowing the distributions of the classical EPR param-
eters App, DeltaBpp and Bres, we may check visually
their normality thanks to a histogram plot; if normal, we
may propagate their standard deviation in the global R10
error calculation.

9a 〈Plot histograms of the classical EPR
parameters 9a〉 ≡ (9g)

setEPRparams = [listApp, listDeltaBpp,

listBres]

for i in range(len(setEPRparams)):

clf()

hist(setEPRparams[i])

savefig(DATA+’distrib’+ str(i))

9b 〈Import useful pylab functions 4b〉+ ≡ (12)�8h 9d�
from pylab import clf, hist, savefig

9c 〈Compute the moments of the classical EPR
parameters 9c〉 ≡ (9g)

[App, DeltaBpp, Bres] =

map (mean,setEPRparams)

[sigmaApp, sigmaDeltaBpp, sigmaBres] =

map(std,setEPRparams)

9d 〈Import useful pylab functions 4b〉+ ≡ (12)�9b 9f�
from pylab import std
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In order to uncover the classical EPR parameters’ dis-
tributions, we chose the Monte Carlo error propagation
method, cf. [25]: we take themeasured spectrum, consider
each data point as the mean of a random variable, then
draw a new value for each data point given its distribu-
tion. For that, we suppose it is a normal distribution, with
mean given by the data point and standard deviation given
by the square root of the meanf; we thus use the normal
distribution generator provided by randn in the pylab
library.

9e 〈Add noise to data 9e〉 ≡ (9g)
ordinates += sqrt(abs(ordinates))

* randn(len(ordinates))

9f 〈Import useful pylab functions 4b〉+ ≡ (12)�9d
from pylab import randn

With this approach, a large number of cloned data sets is
generated, for which App, DeltaBpp and Bres are com-
puted; we then check for their normality by plotting their
distribution and, if confirmed, compute their standard
deviation for later use when computing the distribution of
the R10.

9g 〈Distribution of the classical EPR parameters 9g〉 ≡
(12)

〈Create the lists for the classical EPR parameters 9h 〉
〈Backup data10c 〉
〈Repeat a large number of times 10b〉

〈Add noise to data 9e〉
〈Compute the classical EPR parameters 8d〉
〈Store the parameters 9i〉
〈Retrieve original data 10d〉

〈Plot histograms of the classical EPR parameters 9a〉
〈Compute the moments of the classical EPR

parameters 9c〉

To store the parameters, we need to create the three
empty lists listApp, listDeltaBpp and listBres.

9h 〈Create the lists for the classical EPR
parameters 9h〉 ≡ (9g)

listApp, listDeltaBpp, listBres

= [], [], []

We then use the append function to add each calcu-
lated set of data to the storage lists.

9i 〈Store the parameters 9i〉 ≡ (9g)
listApp.append(App)

listDeltaBpp.append(DeltaBpp)

listBres.append(Bres)

/

For the Monte Carlo error propagation, we need to iter-
ate a sufficient number of times in order to produce a
significant set of data ; we thus create a global variable that
specifies the number of Monte Carlo iterations.

10a 〈Define global variables 10a〉 ≡ (12)
numIter = 100

10b 〈Repeat a large number of times 10b〉 ≡ (9g 11a)
for _ in xrange(numIter):

Because we add some noise during the Monte Carlo
error propagation, and thus modify the original data, we
need to store it before starting the Monte Carlo and
retrieve it for each iteration in the Monte Carlo.

10c 〈Backup data 10c〉 ≡ (9g)
originalOrdinates = ordinates.copy()

10d 〈Retrieve original data 10d〉 ≡ (9g)
ordinates = originalOrdinates.copy()

Extracting the new R10 factor from the spectrum
The R10 factor is calculated from the difference with the
ideal Lorentzian derivative, which equation is:

−App�B3
pp(x − Bres)

( 34�B2
pp + (x − Bres)2)2

(10)

where App is the signal amplitude, �Bpp the siglnal width
and Bres the resonance field; such an expression supposes
that the background signal has been subtracted, i.e. that
Amoy = 0. We thus compute the theoretical Lorentzian
ordinates yL corresponding to the same abscissa as that of
the spectrum and the same classical EPR parameters App,
DeltaBpp and Bres as that of the spectrum; we store
them in a list lorentzOrdinates.

10e 〈Define theoretical Lorentzian 10e〉 ≡ (10f )
lorentzFun = lambda x: -App*DeltaBpp^3

*(x-Bres)/(0.75*DeltaBpp^2

+(x-Bres)^2)^2

lorentzOrdinates = [lorentzFun(x)

for x in abscissas]

We plot the spectrum and its corresponding Lorentzian
curve for visual checking.

10f 〈Plot Lorentzian 10f〉 ≡ (10g)
〈Define theoretical Lorentzian 10e〉

lorentzPlot = list_plot(zip(abscissas,

lorentzOrdinates),\

color=’red’, plotjoined=True)
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lorentzPlot.save

(DATA+’lorentzPlot.png’)

10g 〈Plot spectrum and Lorentzian 10g〉 ≡ (12)
〈Plot spectrum 7h〉
〈Plot Lorentzian 10f〉
dlPlot = spectrumPlot + lorentzPlot

dlPlot.save(DATA+’dlPlot.png’)

Now the R10 parameter is computed relatively to the
theoretical Lorentzian having the same set of classical EPR
parameters, so we could compute the error on the for-
mer by propagating analytically the errors of the latter,
which we now know thanks to the previous application
of the Monte Carlo error propagation method. However,
we found it easier and somewhat more in line with the
computational approach to use a Monte Carlo approach
to propagate the errors. We thus need to repeat the R10
computation for a series of values of Bres, DeltaBpp
and App to which we add a random error compatible with
their distributionsg:

11a 〈R10 distribution computation 11a〉 ≡ (12)
〈Functions to transform coordinates 3〉
〈Create R10 list 11e〉
〈Backup classical EPR parameters 11b〉
〈Repeat a large number of times 10b〉
〈Add noise to classical EPR parameters 11d〉
〈Compute R10 5f〉
〈Store R10 11f〉
〈Retrieve original classical EPR parameters 11c〉

〈Compute mean and standard deviation
for R10 11g〉

Because we modify the classical parameters during the
R10 computation, we need to store the values and retrieve
them before and after each iteration of the Monte Carlo:

11b 〈Backup classical EPR parameters 11b〉 ≡ (11a)
backupEPR = [App, DeltaBpp, Bres]

11c 〈Retrieve original classical EPR parameters 11c〉 ≡
(11a)

[App, DeltaBpp, Bres] = backupEPR

11d 〈Add noise to classical EPR parameters 11d〉 ≡ (11a)
App += randn()*sigmaApp

DeltaBpp += randn()*sigmaDeltaBpp

Bres += randn()*sigmaBres

11e 〈Create R10 list 11e〉 ≡ (11a)
listR10 = []

11f 〈Store R10 11f〉 ≡ (11a)
listR10.append(R10)

11g 〈Compute mean and standard deviation
for R10 11g〉 ≡ (11a)

R10 = mean(listR10)

sigmaR10 = std(listR10)

Results and conclusion
We now have extracted the R10 parameter together with
its distribution and may proceed to use it, for example to
determine the age of organic matter inside rock samples
[1]. Given the distribution, we may then check if the mean
and standard error do indeed properly characterize the
parameter, and eventually assign a probability to a range
of ages for the rock sample. The code runs in only a few
minutes, if we take into account all the Monte Carlo com-
putations. In [1], we demonstrate that the data processing
as reported here can indeed provide us with a reasonable
estimate for the age of rock samples older than 1 billion
years.

The complete code
12 〈r10.py 12〉 ≡

〈Import useful pylab functions 4b〉
〈Define global variables 10a〉
〈Load data 7c〉
〈Remove background 6c〉
〈Plot spectrum 7h〉
〈Distribution of the classical EPR parameters 9g〉
〈Plot spectrum and Lorentzian 10g〉
〈R10 distribution computation 11a〉

Endnotes
aAnyway, tools exist to go faster when needed, as

Cython inside Sage that allows easy variable typing.
bOr maybe the explanation and its code. . . literate

programming is really a whole new approach to writing,
thinking and coding.

cThis means that the outputs of some code need not be
pasted inside the paper, but can be computed on the fly
as needed.

dThe url is http://hpu4science.org.
eThis sample is part of the study where the R10

parameter was proposed as a datation method [1].
fThis corresponds to a normal distribution arising from

a Poisson distribution, and is the common practice in
EPR because of the underlying counting process when
measuring the absorption giving the spectrum. We can
indeed check it is so by studying the noise on the flat tails
of EPR spectra.

gUsing the Monte Carlo approach would also allow us
to draw the values for the classical parameters according
to their computed distribution.
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〈r10.py 12〉
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〈Repeat a large number of times 10b〉
〈Retrieve original classical EPR parameters 11c〉
〈Retrieve original data 10d〉
〈Reverse matrix 6b〉
〈Right matrix of XYL values 5e〉
〈Same side of Bres 5c〉
〈Save R10 left value 5j〉
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〈Store R10 11f〉
〈Store the parameters 9i〉
〈Subtract polynomial from spectrum 7a〉
〈The ordinates between the two extrema 8e〉
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