
Barton and Barton Source Code for Biology and Medicine 2012, 7:4
http://www.scfbm.org/content/7/1/4
SOFTWARE REVIEW Open Access
Scaffolder - software for manual genome
scaffolding
Michael D Barton* and Hazel A Barton
Abstract

Background: The assembly of next-generation short-read sequencing data can result in a fragmented
non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring
sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large
blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final
genome sequence. Taken together these considerations may make reproducing or editing an existing genome
scaffold difficult.

Methods: The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be
installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data
format which is both human and machine-readable. Command line binaries and extensive documentation are
available.

Results: This software allows a genome build to be defined in terms of the constituent sequences using a relatively
simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill
known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible
and easier to edit compared with large FASTA nucleotide sequences.

Conclusions: Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous
development in a genome project. Scaffolder can be found at http://next.gs.
Background
High-throughput sequencing can produce hundreds of
thousands to millions of sequence reads from a genome.
At the time of writing, high-throughput sequencing is
limited to producing reads less than 1,000 nucleotides in
length. Therefore to resolve a sequence longer than this,
such as a complete genome, these numerous smaller
fragments must be pieced together. The process of join-
ing reads into longer sequences is the ‘assembly’ stage of
a genome project [1].
Assembly software takes the nucleotide reads pro-

duced by sequencing hardware and, in the ideal case,
outputs a single complete genome sequence composed
of these individual fragments. An analogy for this
process is a jigsaw puzzle: each nucleotide read repre-
sents a single piece, and the final genome sequence is
the completed puzzle. Sequences of repetitive nucleotide
* Correspondence: mail@michaelbarton.me.uk
Biology Department, The University of Akron, Akron, OH 44325-3908, USA

© 2012 Barton and Barton; licensee BioMed C
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
‘repeat’ regions or biased and incomplete sequencing
data may prevent the genome being assembled into a
continuous sequence. This may be due to insufficient or
multiple different overlaps between reads and is analo-
gous to missing pieces in the jigsaw or pieces that fit to
multiple other pieces.
The advent of high-throughput sequencing methods

has led to a renewed interest in algorithms to solve the
problem of genome assembly [2,3]. The complexity of
merging large numbers of overlapping reads can lead to
genome assembly software being unable to produce a
complete sequence. Instead, the algorithm may generate
several large assembled regions of sequence (‘contigs’)
composed of the many individual reads. These contigs
represent a fragmented picture of the genome and there-
fore require additional work to join together into a
complete sequence.
The process of finishing a genome sequence can be ex-

pensive in terms of time and laboratory effort. In some
cases the genomic data present in a set of generated
entral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

http://next.gs
mailto:mail@michaelbarton.me.uk

Barton and Barton Source Code for Biology and Medicine 2012, 7:4 Page 2 of 6
http://www.scfbm.org/content/7/1/4
contigs may be sufficient for many research questions
[4]. Nevertheless, a continuous high-quality ‘finished’
genome sequence does provide a greater depth of infor-
mation, such as complete resolution of repeat regions
and precise estimates of distances between genomic ele-
ments [5,6]. The process of joining these contigs to-
gether to form a continuous genome sequence is called
the ‘scaffolding’ or ‘finishing’ stage and is the focus of
the software described in this article.

Scaffolding
Scaffolding is the process of joining a series of discon-
nected contigs into a complete continuous genome se-
quence. Due to genomic complexity and missing data,
scaffolding may not ultimately produce a final completed
sequence, but may still succeed in joining a subset of
contigs together or resolving gaps between contigs. An
overview of the required steps in the scaffolding process
is outlined below:

Contig orientation
The sequencing process generates reads from either
strand of the DNA helix and the resulting contigs con-
structed from these reads may represent either DNA
strand. Orientating all contigs to point in the same dir-
ection requires reverse complementing sequences where
necessary. In the case of archaeal and bacterial genomes
this orientation will be to the 5’! 3’ direction following
the direction of genome replication.

Contig ordering
Contig ordering determines the placement of observed
contigs to best represent their order in the true genome
sequence. The correct placement of each contig also
highlights any extra-genomic DNA, such as plasmids
which are scaffolded separately from the genomic se-
quence. The order is commonly started at the contig
containing the origin of replication. All subsequent con-
tigs are then ordered in the 5’! 3’ direction of DNA
replication.

Contig distancing
Given the correct order and orientation, determining the
distance between contigs results in an estimate of the
complete genome size. The size of any inter-contig gaps
represents the length of an unknown region in the gen-
ome. Filling these regions with unknown nucleotide
characters ‘N’ allows a draft continuous sequence. This
sequence is useful for representing both the known and
to-be-resolved areas in the genome sequence.

Gap closing
During the scaffolding process, closing and filling gaps
between contigs completes and improves the genome
scaffold. Closing gaps may require returning to the la-
boratory to perform additional sequencing or using
computational methods to estimate the unknown se-
quence. This additional sequence is used to replace the
gap between two contigs, joining them into a single se-
quence. Once all contigs have been joined and gaps in a
scaffold closed, the genome may be considered finished.

Computational methods for scaffolding
The process of finishing a genome scaffold uses wet la-
boratory methods, in silico methods, or a combination
of both. An example of a computational method might
use the paired-read data from the sequencing stage. The
occurrence of paired reads in separate contigs can be
used to estimate probabilistically the order and distance
between these contigs. Alternatively, laboratory methods
may use PCR to amplify the unknown DNA in a gap re-
gion then use Sanger sequencing to determine the se-
quence of this gap. Computational methods, using
available sequencing data, are preferable as they are less
costly in laboratory time and materials compared to
manual gap resolution [7]. Finally when the scaffold can-
not be completely resolved, in silico software packages
exist to suggest the likely primers necessary for PCR
amplifying the sequence in gap regions [8].
Examples of in silico methods include comparing the

assembled contigs to a complete reference genome se-
quence to search for areas of sequence similarity be-
tween the two. Any areas of corresponding sequence in
the reference genome can be used to infer contig place-
ment and build the contigs into a scaffold [9-11]. Gen-
omic recombination can however reduce the efficacy of
this. Repeat regions may also be responsible for multiple
gaps when building a genome sequence; tandemly
repeated nucleotide regions in the genome produce mul-
tiple reads with similar sequence. As many assembly
algorithms rely on sequence overlaps between reads to
build a contig, the similarity between repeat-region reads
can result in the assembly collapsing into an artificially
short sequence or being ignored by more conservative
assembly algorithms. Such regions can be resolved by
using algorithms that specifically reassemble the col-
lapsed repeat region [12,13]. A related approach uses
unassembled sequence reads matching the regions
around a scaffold gap to construct a uniquely overlap-
ping set of reads across the gap. [14].
Paired-read data can provide an extra level of informa-

tion about how contigs may be scaffolded together.
Heuristic scaffolding algorithms take advantage of this
data to search for the optimal configuration of contigs in
the scaffold that matches these paired-read distances
[15,16]. Synteny data from a reference genome can also
be combined with this paired-read data to estimate the
best contig configuration [17].

Barton and Barton Source Code for Biology and Medicine 2012, 7:4 Page 3 of 6
http://www.scfbm.org/content/7/1/4
These described in silico methods provide a wide array
of approaches for merging contigs into a larger, continu-
ous scaffold sequence. The scaffolding process may still
require manually inserting additional sequences or fur-
ther joining contigs using PCR-derived sequence. Mov-
ing and editing large blocks of nucleotide text by hand
however introduces human error and precludes any
reproducibility.
The software outlined here, “Scaffolder,” aims to ad-

dress these problems of reproducibility by creating a file
syntax and software framework for editing a genome
scaffold. Scaffolder uses a specific file format to define
how contigs are joined, additional sequences are
inserted, and for the specification of unknown regions.
This syntax allows a scaffold to be updated by simply
editing the scaffold file. As such, Scaffolder facilitates a
reproducible finishing process and provides a concise
overview of how the final genomic scaffold was
constructed.

Implementation
Code and dependencies
Scaffolder is written in the Ruby programming language
and tested against versions 1.8.7 and 1.9.2 [18]. The
Scaffolder package is split into two libraries. The first
called “scaffolder” which provides the core Scaffolder ap-
plication programming interface (API). The second li-
brary “scaffolder-tools” provides the Scaffolder
command line interface (CLI).
Unit tests were implemented to maintain individual

elements of the source code during development and
were written using the Shoulda and RSpec [19] libraries.
Integration tests were written to test the Scaffolder soft-
ware interface as a whole and were written using the Cu-
cumber library [19].
The Scaffolder source code is documented using the

Yard library [20]. Unix manual pages for the command
line were generated using the Ronn library [21]. The ma-
nipulation of biological sequences in Scaffolder uses the
BioRuby library [22]. A full list of the software depend-
encies in Scaffolder can be found in the Gemfile in the
root of each source code directory.

Scaffold file syntax
The choice of nucleotide sequences comprising the scaf-
fold is specified using the YAML syntax [23]. YAML is a
data format using whitespace and indentation to pro-
duce a machine readable structure. As YAML is a stan-
dardised data format, third-party developers have the
option to generate a genome scaffold using any pro-
gramming language for which a YAML library exists.
The YAML website lists current parsers for languages
including C/C++, Ruby, Python, Java, Perl, C#/.NET,
PHP, and JavaScript. In addition to being widely
supported, YAML-formatted scaffold files can be vali-
dated for correct syntax using third-party tools such as
Kwalify [24].
Initial sequencing data assembly may result in an in-

complete genome build. Adding further sequences from
either PCR or computational methods also means that
genome scaffolding may be an on-going process. The
scaffold file should therefore be simple to update manu-
ally in addition to being computationally tractable. This
requirement was also best suited to YAML syntax which
is human-readable and simple to edit in a standard text
editor.
The scaffold file takes the form of a list of entries.

Each entry corresponds to a region of sequence used in
the final scaffold sequence. Each entry in the scaffold file
may have attributes that define whether a sub-sequence
or the reverse complement of the sequence should be
used. The types of attributes available, and an example
scaffold file are outlined in the Results section.
The input data for Scaffolder are nucleotide sequences

in FASTA format file. These nucleotide sequences can
be of any length and may be individual reads, assembled
contigs or contigs which have been joined into larger
scaffolds. The case in which Scaffolder may be most use-
ful is using the contigs and scaffolded contigs, combined
with additional gap filling sequences produced by PCR
or in silico methods as outlined in the Background.

Results
Scaffolder simplifies genome finishing
The Scaffolder software facilitates reproducibly joining
nucleotide sequences together into a single contiguous
scaffolded super-sequence. Plain-text scaffold files writ-
ten in YAML specify how these sequences should be
joined. The Scaffolder software is used to generate the
scaffold sequence from these instructions. In addition to
specifying which contigs are required, the scaffold file
allows the contigs to be edited into smaller sub-
sequences or reverse complemented if necessary. Each
scaffold file represents one scaffolded nucleotide se-
quence and as such separate scaffolds should be defined
in separate files.
The process of genome finishing may involve produ-

cing additional oligonucleotide sequences to fill un-
known regions in a scaffold. The Scaffolder format
provides functionality to use these additional insert
sequences to fill gaps. These inserts can also be treated
in the same manner as larger contig sequences: trimmed
and/or reverse complemented to match the correspond-
ing gap region size and orientation.
The distances between contigs may be estimated from

paired-read data or from mapping the contigs to a refer-
ence genome. These inter-contig gap regions are useful
to join separate sequences together by the estimated

Barton and Barton Source Code for Biology and Medicine 2012, 7:4 Page 4 of 6
http://www.scfbm.org/content/7/1/4
distance. The scaffold file allows for the specification of
such unresolved regions by inserting regions of ‘N’
nucleotides into the scaffold. The use of these regions in
the scaffold indicates the unresolved regions in the build
and their approximate size.
The nucleotide sequences used in the scaffold are

maintained as a separate FASTA file: the nucleotide
sequences are referenced in the scaffold using the first
word from the FASTA header of the corresponding se-
quence. Maintaining the nucleotide sequences in a sep-
arate file preserves the unedited sequence and decouples
the data from the specification of how it should be used
to produce the genome sequence.

Defining a scaffold as a text file
The scaffold file is written using the YAML syntax and
an example is shown in Figure 1. This file illustrates the
text attributes used to describe a scaffold and how the
sequences are correspondingly joined together in the
genome build. The basic layout of the scaffold file is a
list of entries, where each entry corresponds to a region
of sequence in the generated scaffold super-sequence.

Simple sequence region
The first line of the scaffold file in Figure 1 begins with
three dashes to indicate the start of a YAML-formatted
document. The first entry (highlighted in green) begins
with a dash character ‘-’ to denote an entry in the YAML
list. This is a requirement of the YAML format: each
entry begins with a dash line. The next line is indented
by two spaces where whitespace is used to group similar
attributes together. The “sequence” tag indicates that
this entry corresponds to a sequence in the FASTA file
and the following line indicates the name of this se-
quence using the “source” tag. The first word of the
FASTA header is used to identify which sequence is
selected from the file. Together these three lines de-
scribe the first entry in the scaffold as a simple sequence
using a FASTA entry named ‘sequence1’. On the right
hand side of Figure 1 this produces the first region in
the scaffold, also shown in green.

Unresolved sequence region
The second entry in the scaffold, highlighted in orange,
is identified by the “unresolved” tag, indicating a region
of unknown sequence but known length. The second
line specifies the size of this unknown region. In this ex-
ample this entry produces a region of 20 ‘N’ characters
in the scaffold.

Trimmed sequence region with multiple inserts
The last entry in the scaffold, highlighted in blue, adds a
FASTA entry named ‘sequence2’ to the scaffold. This
entry demonstrates how this sequence may be
manipulated prior to addition to the scaffold. The ‘start’
and ‘stop’ tags trim the sequence to these coordinates in-
clusively. The “reverse” tag also instructs Scaffolder to
reverse complement the sequence. In the putative scaf-
fold shown in Figure 1 this completes the sequence.
This final entry in the scaffold uses the “inserts” tag to

add additional regions of sequence. These inserts are
also added as a YAML list, with each insert beginning
with a dash. The first insert, shown in purple, uses simi-
lar attributes to that of a sequence entry; the reverse,
start and stop tags are used to trim and reverse comple-
ment the insert. Similarly the ‘source’ tag identifies the
corresponding FASTA sequence as ‘insert1’. The “open”
and “close” tags are specific to inserts and determine
where the insert is added in the enclosing sequence. The
region of the sequence inside these coordinates is inclu-
sively replaced by the specified insert sequence. This is
visualised in the putative scaffold in Figure 1 by the
black lines bisecting the blue sequence.
The next insert, shown in brown, is specified using

only the ‘open’ tag. This illustrates that only one of ei-
ther the ‘open’ or ‘close’ tags is required when adding an
insert sequence. If only one of the ‘open’ or ‘close’ tags is
used the corresponding opposing ‘open’/‘close’ coordin-
ate is calculated from the length of the insert FASTA se-
quence. This allows inserts to bridge into, and partially
fill, gap regions without requiring an end coordinate
position.

Scaffolder software interface
Scaffolder provides a standardised set of Ruby classes
and methods (API) for interacting with the scaffold. This
allows Scaffolder to be integrated into existing genomics
workflows or used with Ruby build tools such as Rake.
In addition Scaffolder provides a command line interface
(CLI) to validate the scaffold file and build the draft
super sequence. The Scaffolder CLI behaves as a stand-
ard Unix tool and returns appropriate exit codes and
manual pages. The use of both these Scaffolder inter-
faces is outlined in detail on the Scaffolder website
(http://next.gs). This website provides a “getting started”
guide as an introduction to using Scaffolder to build a
genome scaffold.

Discussion
Scaffolding an incomplete genome assembly requires
joining contigs and additional gap-filling sequences
using a combination of computational and laboratory
methods. The process of manually editing a scaffold is
inherently hard to reproduce and introduces irreprodu-
cible edits and/or human error. In respect to this the
aims of the Scaffolder software are twofold: 1) to provide
software that is easy to install and simplifies the task of
genome finishing; and 2) to facilitate reproducibility in

http://next.gs

Figure 1 Example of Scaffolder File and the Resulting Build An example scaffold file written using the YAML syntax [1] (left) and the
resulting putative scaffold sequence (right). The scaffold contains three entries and two inserts. Each entry in the scaffold file text is delimited
by a ‘-’ on a new line and highlighted using separate colours. The scaffold diagram on the right is not to scale and instead illustrates how the
scaffold sequences are joined.

Barton and Barton Source Code for Biology and Medicine 2012, 7:4 Page 5 of 6
http://www.scfbm.org/content/7/1/4
the scaffolding and finishing stage of a genome project.
Scaffolder uses a minimal and compact syntax to de-
scribe how a genome scaffold sequence should be gener-
ated. This syntax is simple to write and edit whilst being
succinct and readable.
AGP is a similar format for describing scaffolds. This

format can be used to describe contig order and N-filled
gap regions in a scaffold. The advantage of the AGP for-
mat is that each contig entry is defined on a single line
which allows searching the scaffold using Unix line-
based tools. The Scaffolder format in contrast is written
in the standardised YAML format and therefore access-
ible to the many languages which provide parsers to this
format. The Scaffolder format is provided with a tool ex-
plicitly to produce the FASTA sequence of scaffold spe-
cified by the file. The Scaffolder format further provides
functions for trimming and replacing regions of se-
quence using inserts.
Constructing a genome by specifying the scaffold or-

ganisation in text file makes generating a scaffold super
sequence both reproducible and deterministic for the
same file and set of FASTA sequences. In comparison,
joining large nucleotide sequences by hand cannot be re-
liably reproduced, while the scaffold file also provides a
human readable description of how the scaffold is con-
structed. Configuring the final sequence in the scaffold
file means the build is easier to edit, once constructed.
An example use case for Scaffolder is a combination
of computational and manual editing of a genome scaf-
fold. We have used Scaffolder in our own genome pro-
jects to create an initial scaffold from computationally
parsing the output of in silico scaffolding tools into
YAML. This scaffold was then manually updated as the
scaffold was finished with additional gap-filling
sequences generated in the laboratory. This is example
of the Scaffolder format being both computationally
tractable while being simple to edit manually. The
YAML text format also allows comparison of differences
between scaffold builds using standard Unix tools such
as diff. This therefore makes scaffold files amenable to
storage in version control systems and allows genome
finishers to use methods similar to those in software
development.

Conclusions
Scaffolder is software, written in Ruby, aimed at both
bioinformaticians and biologists familiar with the com-
mand line who wish to build a genome scaffold from a
set of nucleotide sequences. The Scaffolder file format
maintains the genome scaffold as a concise and readable
text representation that allows third-parties to see how
the genome sequence was scaffolded. This file format
also allows a broad overview of which sequences were
included and how they are ordered in the genome

Barton and Barton Source Code for Biology and Medicine 2012, 7:4 Page 6 of 6
http://www.scfbm.org/content/7/1/4
scaffold, something not possible to deduce from a mega-
base-length string of nucleotide characters. Scaffolder
furthers increases the ease of reproducibility in genome
projects by allowing the scaffold super-sequence to be
reliably reproduced from the same scaffold file. The
YAML syntax for writing the scaffold file is also standar-
dised and simple to manipulate programmatically. This
thereby means the scaffolding process follows the Unix
tenet of “If your data structures are good enough, the al-
gorithm to manipulate them should be trivial.”

Availability and requirements
Project name: Scaffolder v0.4.4, Scaffolder Tools v0.1.3
Project home page: http://next.gs
Operating system: Platform Independent. Tested on

Mac OS X and Ubuntu. Programming language: Ruby
1.8.7 or 1.9.2
Other requirements: RubyGems package manage-

ment software and the following libraries: BioRuby 1.4.x,
confligliere 0.1.x, ronn 0.7.x. A full list of development
dependencies can be found in the Gemfile in the base
directory of each project.
License: MIT
Any restrictions to use by non-academics: None

Abbreviations
API: Application programming interface; CLI: Command line interface;
PCR: Polymerase chain reaction; YAML: YAML ain’t markup language [23].

Competing interests
The authors declare no competing interests.

Acknowledgements
This work was supported by the National Institute for Health: IDeA Network
of Biomedical Research Excellence (KY-INBRE) grant (NIH 2P20 RR016481-09)
and the NIH R15 AREA Program grant (R15GM079775).

Authors’ contributions
MDB developed and maintains the Scaffolder tool. MDB and HAB wrote the
manuscript. All authors have read and approved the manuscript.

Received: 2 May 2012 Accepted: 3 May 2012
Published: 28 May 2012

References
1. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation

sequencing data. Genomics 2010, 95(6):315–327.
2. Pop M, Salzberg SL: Bioinformatics challenges of new sequencing

technology. Trends Genet 2008, 24(3):142–149.
3. Pop M: Genome assembly reborn: recent computational challenges. Brief

Bioinform 2009, 10(4):354–366.
4. Branscomb E, Predki P: On the high value of low standards. J Bacteriol

2002, 184(23):6406–6409.
5. Parkhill J: The importance of complete genome sequences. Trends

Microbiol 2002, 10(5):219–220.
6. Fraser CM, Eisen JA, Nelson KE, Paulsen IT, Salzberg SL: The value of

complete microbial genome sequencing (you get what you pay for).
J Bacteriol 2002, 184(23):6403–6405.

7. Nagarajan N, Cook C, Di Bonaventura M, Ge H, Richards A, Bishop-Lilly KA,
DeSalle R, Read TD, Pop M: Finishing genomes with limited resources:
lessons from an ensemble of microbial genomes. BMC Genomics 2010,
11:242+.

8. Gordon D, Desmarais C, Green P: Automated finishing with autofinish.
Genome Res 2001, 11(4):614–625.
9. Richter DC, Schuster SC, Huson DH: OSLay: optimal syntenic layout of
unfinished assemblies. Bioinformatics 2007, 23(13):1573–1579.

10. Zhao F, Zhao F, Li T, Bryant DA: A new pheromone trail-based genetic
algorithm for comparative genome assembly. Nucleic Acids Res 2008, 36
(10):3455–3462.

11. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M: ABACAS: algorithm-
based automatic contiguation of assembled sequences. Bioinformatics
(Oxford, England) 2009, 25(15):1968–1969.

12. Mulyukov Z, Pevzner PA: EULER-PCR: finishing experiments for repeat
resolution. Pac Symp Biocomput 2002, 7:199–210.

13. Koren S, Miller JR, Walenz BP, Sutton G: An algorithm for automated
closure during assembly. BMC Bioinforma 2010, 11:457+.

14. Tsai IJ, Otto TD, Berriman M: Improving draft assemblies by iterative
mapping and assembly of short reads to eliminate gaps. Genome Biol
2010, 11(4):R41+.

15. Dayarian A, Michael TP, Sengupta AM: SOPRA: Scaffolding algorithm for
paired reads via statistical optimization. BMC Bioinforma 2010, 11:345+.

16. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W: Scaffolding pre-
assembled contigs using SSPACE. Bioinformatics 2011, 27(4):578–579.

17. Pop M, Kosack DS, Salzberg SL: Hierarchical scaffolding with Bambus.
Genome Res 2004, 14:149–159.

18. Matsumoto Y: The Ruby Programming Language. [http://www.ruby-lang.org/].
19. Chelimsky D, Astels D, Helmk B, North D, Dennis Z, Hellesoy A: The RSpec

Book: Behaviour Driven Development with Rspec. Cucumber: Friends.
Pragmatic Bookshelf; 2010.

20. Segal L: YARD: A Ruby Documentation Tool. http://yardoc.org/.
21. Tomayko R: Ronn manual page authoring tool. http://rtomayko.github.com/

ronn/.
22. Goto N, Prins P, Nakao M, Bonnal R, Aerts J, Katayama T: BioRuby:

bioinformatics software for the Ruby programming language.
Bioinformatics (Oxford, England) 2010, 26(20):2617–2619.

23. Evans CC: YAML: a human friendly data serialization standard for all
programming languages. http://www.yaml.org/.

24. Kuwata Lab: Kwalify: schema validator and data binding for YAML/JSON.
http://www.kuwata-lab.com/kwalify/.

doi:10.1186/1751-0473-7-4
Cite this article as: Barton and Barton: Scaffolder - software for manual
genome scaffolding. Source Code for Biology and Medicine 2012 7:4.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://next.gs
http://www.ruby-lang.org/
http://yardoc.org/
http://rtomayko.github.com/ronn/
http://rtomayko.github.com/ronn/
http://www.yaml.org/
http://www.kuwata-lab.com/kwalify/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Scaffolding
	Contig orientation
	Contig ordering
	Contig distancing
	Gap closing
	Computational methods for scaffolding
	Implementation
	Code and dependencies
	Scaffold file syntax

	Results
	Scaffolder simplifies genome finishing
	Defining a scaffold as a text file
	Simple sequence region
	Unresolved sequence region
	Trimmed sequence region with multiple inserts
	Scaffolder software interface

	Discussion
	Conclusions
	link_Fig1
	Availability and requirements
	Competing interests
	Acknowledgements
	Authors’ contributions
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24

