
Corpas et al. Source Code for Biology and Medicine 2012, 7:3
http://www.scfbm.org/content/7/1/3
COMMENTARY Open Access
How Not to Be a Bioinformatician
Manuel Corpas1*, Segun Fatumo2 and Reinhard Schneider3
Abstract

Although published material exists about the skills required for a successful bioinformatics career, strangely enough
no work to date has addressed the matter of how to excel at not being a bioinformatician. A set of basic guidelines
and a code of conduct is hereby presented to re-address that imbalance for fellow-practitioners whose aim is to
not to succeed in their chosen bioinformatics field. By scrupulously following these guidelines one can be sure to
regress at a highly satisfactory rate.
Introduction
The advent of fast 3D gaming PCs, the Internet and
massive sequencing efforts have attracted hackers and
failed wet-lab biologists to the bioinformatics field. To
make matters worse, the looming prospect of massive
lay-offs in the financial sector or the new hoped-for
thrill to be working on things that matter [1] following a
mid-life crisis, have all contributed to the resurgence of
a new breed of a mutant, super-resistant bioinformati-
cian species.
The resulting ecosystem of practitioners is an eclectic

mixture of individuals, including a) those whose graphics
card for video games would preferably be hammered out
with algorithmic computations for the elucidation of the
meaning of life, b) those submerged in the muddy waters
of the ever increasing –omics subfields, and c) those ful-
filling their role as annotation monkeys. As if that wasn’t
enough, a myriad of new packages, formats and data-
bases keep on mushrooming daily throughout the bio-
medical arena, surreptitiously embracing complexity just
for the sake of it. Bioinformatics has evolved into the
cheap form of Biology during cycles of funding
shortages. Its tentacles now spread into pretty much
every branch of life sciences. So much so that the ways
of defining it are nearly as numerous as there are indivi-
duals in the field. After quite some time of wrestling
with the idea of what Bioinformatics is, we decided that
it would probably make more sense to define how not to
become one of the troupe. So what follows is a compen-
dium of 10 “sarcastic” guidelines that illustrate how a
* Correspondence: mc@manuelcorpas.com
1Independent, Cambridge, UK
Full list of author information is available at the end of the article

© 2012 Corpas et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
few months on the computer can save a few hours in
the library (or on Google) [2].

1. Stay low level at every level. Develop your code by
anecdote: avoid planning phases, requirement
analysis exercises or any structure to your code. Stay
away from object oriented programming. Build up
your own little myriad of helper scripts. Do not
document either inside or outside your code. Your
coding style should only be understood by you. Make
sure your software does not scale. Refuse to model or
abstract and always choose the quick and dirty fix.

2. Be open source without being open. Error messages
should never be provided. If error messages are
provided, they should be utterly cryptic so as to
convey as little information as possible to the end
user [3]. If you create the application, make it
difficult to build. Have plenty of hidden
dependencies and bizarre variables. Don’t bother to
debug or provide backwards compatibility. Ensure
that your code is not portable, it only works in
outdated operating systems and assume only you
will use your application. Take for granted that
everyone will be able to understand it.

3. Make tools that make no sense to biologists. The
less they resemble any intelligible biological question
the better. If you provide a help document, bombard
scientists with abbreviations and provide as much
unnecessary technical information as possible. The
typical biologist hates mathematics, so use
mathematical formulas extensively throughout the
documentation. Integrate your workflows with as
many irrelevant services as possible, so you’ll have
greater the chances of a potential dead link.
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:mc@manuelcorpas.com
http://creativecommons.org/licenses/by/2.0


Corpas et al. Source Code for Biology and Medicine 2012, 7:3 Page 2 of 2
http://www.scfbm.org/content/7/1/3
4. Do not provide a graphical user interface:
command line is always more effective. Force your
end-users to use the command line. It helps if the
parameter name does not relate to the intended
action. For example, never use –o for specifying an
output file; a “k” or “B” creates a more memorable
impression. If you provide a graphical user interface,
a) make sure there is no logic behind it, b) it is not
intuitive to the user and c) support as few formats
as you can, preferably html or text only. Forget
HTTP-XML or SOAP. To make sure that the user
experience is a nightmare, here are some guiding
principles: 1) Provide thousands of menu options
and pop up windows that make little or no sense. 2)
Ask the user to make impossible decisions. 3)
Change your interface/format whenever you feel like
it, especially if many people and applications depend
on it.

5. Make sure the output of your application is
unreadable, unparseable and does not comply to
any known standards. Just use plain ASCII text, or
better still, provide your own obfuscated format. Do
not use ontologies, XML, or any other inter-
exchangeable standard. If you use XML, make sure
that your data file is impossible to validate and that
it does not follow any XML schema. You can also
invent a new name for your gene if a) it doesn’t
match any available identifier from reference
databases and b) you don’t tell anyone about it.

6. Be unreachable and isolated. Configure your contact
email to either bounce back or permanently set it to
vacation. Miss key meetings or seminars where
other colleagues may be presenting their seminal
results and never, ever make any attempt at
remembering their names or where they work.
Reinvent the wheel. Do not keep up with the
literature on current methods of research if you
possibly can.

7. Never maintain your databases, web services or any
information that you may provide at any time.
Provide unstable data, unstable models and unstable
services. Your ultimate goal in data curation should
be to propagate as many errors as possible from one
database to another, while still making sure that they
sound realistic. Your curated data should only
partially reflect the science of the papers you don’t
read. When curating your data, make as many new
categories as exceptions you find to your
classifications. Forget about the final scientific
question you are trying to answer and stay well away
from convention.

8. Blindly believe in the predictions given, P-values or
statistics. Select instances for your training set that
you know will give you the answer you want.
Produce arbitrary cut-offs on rank-ordered result
lists. Absolute truth above, absolute falsehood below
[2]. Always work with default parameters and never
explore other options algorithms might provide. If
you get a list of hits, only look at the first one. Do
not believe in the mantra "rubbish in, rubbish out";
just make sure that your rubbish data doesn’t smell.

9. Do not ever share your results and do not reuse.
Never discuss your results before your submission
has been accepted in a lost conference proceeding.
Consider that the work others are doing is probably
a waste of time. Ignore whatever new algorithms
and methods your colleagues have developed in the
last two decades.

10.Make your algorithm or analysis method
irreproducible. The less testing you carry out in
your experiments, the more revolutionary results
you should expect to get. When testing your
algorithm, compare it against methods developed
before the past decade: your performance levels will
look much better. Include irrelevant variables in
your equations and make them unnecessarily
complex, so your reviewers will be very impressed
by the complexity of the astonishing predictions you
get.

Conclusions
Here we have highlighted a series of disastrous practices
in the bioinformatics field. We hope that readers will
not only find them stimulating but useful. Embrace them
fully and we guarantee their efficacy.

Competing interests
The authors declare that they have no competing interest.

Acknowledgements
The authors would like to thank Nils Gehlenborg for helpful comments.

Author details
1Independent, Cambridge, UK. 2Covenant University Nigeria, Department of
Computer and Information Sciences, KM 10 Idiroko road, Ota, Nigeria. 3Data
Integration and Knowledge Management, European Molecular Biology
Laboratory (EMBL), Meyerhofstr. 1, 69117, Heidelberg, Germany.

Authors' contributions
MC, SF and RS conceived and wrote the paper. All authors have read and
approved the final manuscript.

Received: 25 April 2012 Accepted: 28 May 2012
Published: 28 May 2012

References
1. Tim O’Really: Work on Stuff that Matters: First Principles. [http://radar.oreilly.

com/2009/01/work-on-stuff-that-matters-fir.html].
2. Carole Goble: The Seven Deadly Sins of Bioinformatics. [http://www.

slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics].
3. Andy Law: Law’s Laws. [http://bioinformatics.roslin.ac.uk/lawslaws.html].

doi:10.1186/1751-0473-7-3
Cite this article as: Corpas et al.: How Not to Be a Bioinformatician.
Source Code for Biology and Medicine 2012 7:3.

http://radar.oreilly.com/2009/01/work-on-stuff-that-matters-fir.html
http://radar.oreilly.com/2009/01/work-on-stuff-that-matters-fir.html
http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
http://www.slideshare.net/dullhunk/the-seven-deadly-sins-of-bioinformatics
http://bioinformatics.roslin.ac.uk/lawslaws.html

	Abstract
	Introduction
	Conclusions
	Competing interests
	Acknowledgements
	Author details
	Authors' contributions
	References
	link_CR1
	link_CR2
	link_CR3

