
Loman and Pallen Source Code for Biology and Medicine 2010, 5:6
http://www.scfbm.org/content/5/1/6

Open AccessB R I E F R E P O R T S
Brief reportsEntrezAJAX: direct web browser access to the
Entrez Programming Utilities
Nicholas J Loman* and Mark J Pallen

Abstract
Web applications for biology and medicine often need to integrate data from Entrez services provided by the National
Center for Biotechnology Information. However, direct access to Entrez from a web browser is not possible due to
'same-origin' security restrictions. The use of "Asynchronous JavaScript and XML" (AJAX) to create rich, interactive web
applications is now commonplace. The ability to access Entrez via AJAX would be advantageous in the creation of
integrated biomedical web resources. We describe EntrezAJAX, which provides access to Entrez eUtils and is able to
circumvent same-origin browser restrictions. EntrezAJAX is easily implemented by JavaScript developers and provides
identical functionality as Entrez eUtils as well as enhanced functionality to ease development. We provide easy-to-
understand developer examples written in JavaScript to illustrate potential uses of this service. For the purposes of
speed, reliability and scalability, EntrezAJAX has been deployed on Google App Engine, a freely available cloud service.
The EntrezAJAX webpage is located at http://entrezajax.appspot.com/

Background
Web applications for biology and medicine often need to
integrate data from external data sources. Entrez, pro-
vided by the National Center for Biotechnology Informa-
tion (NCBI) provides a searchable interface to important
biological databases including PubMed, GenBank and
GenPept [1]. Application developers may perform
searches of Entrez directly by accessing the publically
available Entrez Programming Utilities (Entrez eUtils)
interface [2]. However, until now there has been no API
available which allows web application ('webapp') devel-
opers to access Entrez eUtils directly from the browser.
Developers are limited to accessing Entrez eUtils through
software code running on the web "backend". This
approach is less than ideal as it requires the call to Entrez
eUtils to have been completed before each web page can
be rendered. This means that that pages load slowly and
may become blocked if the Entrez eUtils interface is
unavailable for some reason (e.g. downtime, network
congestion). It also means bandwidth required to provide
the service may be increased due to the overhead of
fetching the page from the backend and returning it to
the user. This synchronous approach may also result in

larger pages being generated, which also slow down page
loading (Figure 1).

The use of "Asynchronous JavaScript and XML" (AJAX)
has transformed the usability and power of webapps over
the past 5 years. These technologies have been instru-
mental in the development of rich web applications.
Many popular web services, including Google, Twitter
and Flickr permit direct programmatic access to their
databases and services by offering AJAX APIs [2-4]. The
availability of such APIs has given the ability to integrate
multiple data sources within a web application without
the need for backend server code. The ease-of-use of
such approaches has driven the adoption of 'mash-up'
applications which make it simple to integrate datasets
from a diversity of sources. A typical example is the abil-
ity to link location data from status messages in a Twitter
feed with a map display from Google to give a geographi-
cal display of the dataset. Although biomedical resources
have slowly begun to embrace the use of AJAX to
improve the user's experience [5-7], they rarely offer
AJAX APIs for direct browser access to databases.

We describe EntrezAJAX , an AJAX service which pro-
vides fast, convenient and reliable access to Entrez eUtils
from any web browser. By circumventing the web
browser security restrictions this API can be used by any
developer wishing to incorporate Entrez results into their
webapp.

* Correspondence: n.j.loman@bham.ac.uk
1 Centre for Systems Biology, University of Birmingham, Edgbaston,
Birmingham, B15 2TT, UK
Full list of author information is available at the end of the article
© 2010 Loman and Pallen; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20565938
http://entrezajax.appspot.com/
http://entrezajax.appspot.com/
http://entrezajax.appspot.com/

Loman and Pallen Source Code for Biology and Medicine 2010, 5:6
http://www.scfbm.org/content/5/1/6

Page 2 of 4
Implementation
The essence of the EntrezAJAX implementation is a web
proxy-like service backend, which is able to convert
results from Entrez eUtils to JavaScript Object Notation
(JSON).

On grounds of security, web browsers are configured so
that they do not allow a site to connect to a second, unre-
lated site. This is known as the 'same-origin' policy. Typi-
cally, if data providers wish to allow third-party websites
access to their data through the browser they provide
specific JavaScript APIs served from their web domain.
These APIs give the browser implicit permission to
request further data from that domain. In order to cir-
cumvent the same-origin policy requirement we support
JSON with padding (JSONP) which takes advantage of
the web browser's ability to load JavaScript source from
arbitrary remote locations [8].

The backend was built using the model-view-controller
(MVC) web framework Django [9]. MVC approaches to
web development help enforce good development prac-
tice by separating data (model) from presentation (view)
and business logic (controller) in code. We used the
Entrez module of Biopython [10] to access Entrez eUtils.

The backend software was deployed on the web using
Google App Engine (GAE) [11], a freely-available cloud
computing service. The Datastore and Memcache com-
ponents of GAE were used to store the registry of devel-
oper API keys and cache search results respectively.

JavaScript developer examples were written to demon-
strate common uses for the service. These example codes
utilise the jQuery JavaScript library [12] to make AJAX
calls.

The results of web requests are stored in a temporary
memory cache for 24 hours. This value is configurable on
a per-application basis. Each request is given a key, which
comprises the method name and the alphabetically
sorted parameter list (excluding the developer API key).
Each request's key is checked against the cache first
before contacting Entrez eUtils. If the key is present in
the cache, the result is returned directly from the cache.
This acts to reduce the time taken to serve requests and
to reduce the number of calls made to Entrez eUtils to
save bandwidth.

Results
Developers wishing to use EntrezAJAX must first register
their website on the project homepage to receive a devel-
oper API key. Web developers make requests to EntrezA-
JAX by constructing a URL consisting of three
components; the endpoint, the method name and a dic-
tionary of parameters (a hash of key/value pairs). The
parameter dictionary must include the developer API
key, which identifies the originator of the request. Other
parameters are method-dependent. Each of the Entrez
eUtils applications (EInfo, ESearch etc.) are exposed as a
separate method name.

Developers wishing to access the Entrez eUtils 'Esearch'
application should construct a URL in the following for-
mat, substituting <APIKEY>:
http://entrezajax.appspot.com/

esearch?apikey=<APIKEY>&db=pubmed&term=
Crick+AND+Watson

In order to accommodate common patterns of usage,
combined methods permit two calls to Entrez eUtils to be
chained together. In these cases, the first of these meth-
ods return a list of GI numbers, which are not returned to
the user but are instead passed to the second method via
the id parameter. Table 1 lists the available methods.

Results are always returned as JSON-format strings.
Such strings can be natively deserialized into JavaScript
objects. This process is fast and avoids the need for any
specific parsing code (e.g. XML parsing) to be imple-

Table 1: List of EntrezAJAX Method Calls

eUtils Passthrough Calls Combined calls

efetch esearch+esummary

einfo esearch+efetch

elink esearch+elink

espell elink+esummary

esummary elink+efetch

List of the available method calls from EntrezAJAX

Figure 1 Anatomy of an AJAX Request. A typical web application
which requires access to Entrez eUtils uses a synchronous pattern as
shown on the left. EntrezAJAX permits an asynchronous pattern which
does not couple the request to Entrez eUtils to the web server serving
the original request.

Web�Browser

HTTP�Request

Web�Browser

HTTP�Request Asynchronous�
HTTP Request

Web�Server Web�Server

EntrezAJAX

HTTP�Request

CGI�Script

Entrez eUtils

HTTP�Request

Entrez eUtils

HTTP�Request
Entrez eUtils

Standard�use�of�
Entrez eUtils by a

Asynchronous�
Communication to EntrezEntrez�eUtils�by�a�

Web�Application
Communication�to�Entrez�
by�Web�Application

Loman and Pallen Source Code for Biology and Medicine 2010, 5:6
http://www.scfbm.org/content/5/1/6

Page 3 of 4
mented in JavaScript. JSON is widely supported by other
languages either natively or through third-party libraries.
Languages with JSON support available include Python,
Java and Perl.

To support JSONP and to bypass the same site policy,
all method calls support an optional parameter callback.
The value of this parameter is used to specify the name of
the JavaScript function, which will be called with the
JSON string as its first argument.

We anticipate developers will use a JavaScript helper
library such as jQuery, Prototype [13] or YUI [14] to per-
form AJAX tasks. We developed our example code using
the jQuery scripting language as this provides native sup-
port for JSONP callbacks and is simple and easy to read.

NCBI specify strict limitations on the use of the Entrez
Programming Utilities service on a per-developer basis.
Where practical, we have enforced these limitations in
code. The service will not permit more than three
requests to be passed through to Entrez within one sec-
ond. Additionally, the tool and email parameters are auto-
matically filled-in using the information supplied when
registering for a developer API key. We urge users of this
service to familiarise themselves with the NCBI limita-
tions and ensure their application meets them.

The EntrezAJAX project website has example code for
using EntrezAJAX. These include the retrieval of results
from PubMed and GenBank, retrieval of journal articles
related to a nucleotide sequence and the ability to auto-
matically correct users' spelling. Additionally, EntrezA-
JAX is heavily used on the authors' own xBASE resource
for comparative bacterial genomics [15].

Discussion
Google App Engine Platform
The use of GAE has significant advantages for implemen-
tation of services such as EntrezAJAX. These include the
availability of a large in-memory cache, persistent data
storage, a distributed network infrastructure and auto-
matic failover mechanisms. During the development of
EntrezAJAX we did not experience any occasion when
the service was not available. However, the application
sometimes took several seconds to respond, probably
because a new GAE process was started up.

Currently any user may deploy an application on GAE
for free. However, the application must stay within cer-
tain limits otherwise the application may be prevented
from serving further requests until the quota period has
elapsed. Quotas are subject to change, but important lim-
its to consider when implementing this service include
the incoming HTTP request limit, the UrlFetch limit and
the Memcache API limit. The limitations imposed by the
free tariff we believe are sufficient to cater for likely
demand for the service in the near future. However we
plan to monitor the service usage in case limits are

reached. In that case, heavy users of the service will be
contacted and we may suggest that they deploy the Entr-
ezAJAX application from their own Google App Engine
account and update their endpoint details accordingly.

Dependency on Entrez eUtils
The EntrezAJAX service is dependent on the availability
of NCBI eUtils to work correctly. If NCBI eUtils is
unavailable, requests will not be fulfilled, unless the
request is already stored in the cache.

Access to Other Services
EntrezAJAX provides a working implementation for pro-
viding direct web browser access to biomedical resources
accessible via the web. Therefore, we encourage users
wishing to access other resources via AJAX to contribute
code accordingly. However we believe this intelligent
proxy approach represents a stepping-stone along the
path to more integrated biomedical resources on the web.
We are actively looking for other bioinformatics web
resources that would benefit from a similar interface to
EntrezAJAX. We also hope this project will inspire devel-
opers to invest the time and energy in producing AJAX-
compatible endpoints for their databases.

Availability and Requirements
Project name: EntrexAJAX

Project home page: http://entrezajax.appspot.com/
Source code home page: http://github.com/nickloman/

entrezajax
Operating system(s): Platform-independent
Programming language: Python 2.5 +
Other requirements: Django 1.1 +, BioPython 1.53 +,

Google App Engine
License: Apache License, Version 2.0
Any restrictions to use by non-academics: None

List of Abbreviations
API: Application Programming Interface; HTTP: Hyper-
Text Transfer Protocol

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
NJL conceived and implemented the software. NJL and MJP jointly drafted the
manuscript. Both authors have read and approved the final manuscript.

Acknowledgements
The xBASE facility and Loman's position are funded by BBSRC grant
BBE0111791

Author Details
Centre for Systems Biology, University of Birmingham, Edgbaston, Birmingham,
B15 2TT, UK

Received: 15 April 2010 Accepted: 21 June 2010
Published: 21 June 2010
This article is available from: http://www.scfbm.org/content/5/1/6© 2010 Loman and Pallen; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Source Code for Biology and Medicine 2010, 5:6

http://entrezajax.appspot.com/
http://github.com/nickloman/entrezajax
http://github.com/nickloman/entrezajax
http://www.scfbm.org/content/5/1/6
http://creativecommons.org/licenses/by/2.0

Loman and Pallen Source Code for Biology and Medicine 2010, 5:6
http://www.scfbm.org/content/5/1/6

Page 4 of 4
References
1. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin

V, Church DM, Dicuccio M, Federhen S, Feolo M, Geer LY, Helmberg W,
Kapustin Y, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott
DR, Marchler-Bauer A, Miller V, Mizrachi I, Ostell J, Panchenko A, Pruitt KD,
Schuler GD, Sequeira E, Sherry ST, Shumway M, et al.: Database resources
of the National Center for Biotechnology Information. Nucleic Acids Res
2010, 38:D5-16.

2. Twitter API Wiki [http://apiwiki.twitter.com/]
3. Google AJAX Search API [http://code.google.com/apis/ajaxsearch/]
4. Flickr Services [http://www.flickr.com/services/api/]
5. Manske HM, Kwiatkowski DP: LookSeq: a browser-based viewer for deep

sequencing data. Genome Res 2009, 19:2125-2132.
6. Berger SI, Iyengar R, Ma'ayan A: AVIS: AJAX viewer of interactive

signaling networks. Bioinformatics 2007, 23:2803-2805.
7. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,

Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR,
Bateman A: The Pfam protein families database. Nucleic Acids Res 2010,
38:D211-222.

8. Remote JSON - JSONP [http://bob.pythonmac.org/archives/2005/12/
05/remote-json-jsonp/]

9. Django - The Web framework for perfectionists with deadlines [http://
www.djangoproject.com/]

10. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I,
Hamelryck T, Kauff F, Wilczynski B, de Hoon MJ: Biopython: freely
available Python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009, 25:1422-1423.

11. Google App Engine [http://code.google.com/appengine/]
12. jQuery: The Write Less, Do More, JavaScript Library [http://

www.jquery.com/]
13. Prototype JavaScript framework: Easy Ajax and DOM manipulation for

dynamic web applications [http://www.prototypejs.org/]
14. YUI Library [http://developer.yahoo.com/yui/]
15. Chaudhuri RR, Loman NJ, Snyder LA, Bailey CM, Stekel DJ, Pallen MJ:

xBASE2: a comprehensive resource for comparative bacterial
genomics. Nucleic Acids Res 2008, 36:D543-546.

doi: 10.1186/1751-0473-5-6
Cite this article as: Loman and Pallen, EntrezAJAX: direct web browser
access to the Entrez Programming Utilities Source Code for Biology and Medi-
cine 2010, 5:6

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19910364
http://apiwiki.twitter.com/
http://code.google.com/apis/ajaxsearch/
http://www.flickr.com/services/api/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19679872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17855420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19920124
http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/
http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/
http://www.djangoproject.com/
http://www.djangoproject.com/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19304878
http://code.google.com/appengine/
http://www.jquery.com/
http://www.jquery.com/
http://www.prototypejs.org/
http://developer.yahoo.com/yui/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17984072

	Abstract
	Background
	Implementation
	Results
	Discussion
	Google App Engine Platform
	Dependency on Entrez eUtils
	Access to Other Services

	Availability and Requirements
	List of Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

