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Abstract

Background: Video cameras sense passively from a distance, offer a rich information stream, and
provide intuitively meaningful raw data. Camera-based imaging has thus proven critical for many
advances in neuroscience and biology, with applications ranging from cellular imaging of fluorescent
dyes to tracking of whole-animal behavior at ecologically relevant spatial scales.

Results: Here we present 'Motmot': an open-source software suite for acquiring, displaying, saving,
and analyzing digital video in real-time. At the highest level, Motmot is written in the Python
computer language. The large amounts of data produced by digital cameras are handled by low-
level, optimized functions, usually written in C. This high-level/low-level partitioning and use of
select external libraries allow Motmot, with only modest complexity, to perform well as a core
technology for many high-performance imaging tasks. In its current form, Motmot allows for: (1)
image acquisition from a variety of camera interfaces (package motmot.cam_iface), (2) the display
of these images with minimal latency and computer resources using wxPython and OpenGL
(package motmot.wxglvideo), (3) saving images with no compression in a single-pass, low-CPU-use
format (package motmot.FlyMovieFormat), (4) a pluggable framework for custom analysis of images
in realtime and (5) firmware for an inexpensive USB device to synchronize image acquisition across
multiple cameras, with analog input, or with other hardware devices (package
motmot.fview_ext_trig). These capabilities are brought together in a graphical user interface, called
'FView', allowing an end user to easily view and save digital video without writing any code. One
plugin for FView, 'FlyTrax', which tracks the movement of fruit flies in real-time, is included with
Motmot, and is described to illustrate the capabilities of FView.

Conclusion: Motmot enables realtime image processing and display using the Python computer
language. In addition to the provided complete applications, the architecture allows the user to
write relatively simple plugins, which can accomplish a variety of computer vision tasks and be
integrated within larger software systems. The software is available at http://code.astraw.com/

projects/motmot
Background sive toolset to observe and automatically interact with
The combination of video cameras and realtime image  dynamic processes, such as sensory-motor behaviors of
analysis offers the experimenter a sophisticated, non-inva-  animals. Real time image analysis is now more feasible as
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digital cameras have become inexpensive and computers
capable of high performance computation become com-
monplace.

We describe here 'Motmot', a set of software packages
designed to allow use of video technology with particular
emphasis on neuroscience applications (see Figure 1 and
Table 1). Of paramount importance in such applications
is the ability to integrate the video system with other
experimental components with maximal temporal cer-
tainty. For example, it may be critical to know the location
or orientation of an experimental subject at the moment
of stimulus onset and track movement with high tempo-
ral precision and low latency. 'Virtual reality' video dis-
plays, and the psychophysics experiments performed
using them, are contingent on low latency tracking.
Humans are capable of perceiving visual motor latencies
less than 20 msec [1,2], and it is reasonable to assume ani-
mals with faster visual and motor systems may be sensi-
tive to even shorter latencies. In other experiments,
correlation of electrophysiological recordings with animal
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movement might be required. In this case, the precise
(sub-millisecond) relative timing of spikes and limb
movement may be desired. The Motmot software was
designed to facilitate image acquisition and analysis with
these types of requirements. With an inexpensive USB
device called 'CamTrig', integration with other experimen-
tal components can be achieved with precise temporal
synchronization. The hardware for CamTrig may be pur-
chased commercially and the firmware is included with
Motmot.

At least one other open-source package with similar capa-
bilities is available [3], although it is focused primarily on
microscopy applications, whereas the emphasis of Mot-
mot is on behavioral applications with realtime image
analysis plugins.

This paper describes the important concepts behind Mot-
mot. These include an overview of temporal synchroniza-
tion issues, a discussion of the use of Python for realtime
computing tasks, and a brief description of the primary

packages in motmot

fview

S

trackem flytrax

realtime_image_analysis Fastimage

cam_iface (Python)
N
FlyMovieFormat

fview_ext_trig

pygarrayimage

libcamiface (C)

Intel IPP or AMD Framewave

Figure |

@ libdc1394

libprosilica

Relationships of packages inside and outside motmot. Motmot is a collection of related packages that allow for acquisi-
tion, display, and analysis of realtime image streams from uncompressed digital cameras. The packages that comprise motmot
are within the large box. Shaded boxes are GUI applications (fview) and plugins (flytrax, trackem and motmot.fview_ext_trig)
that end-users can utilize directly. Arrows represent a dependency such that the node at the head of the arrow depends on the
node at the tail. Dotted lines represent an optional (plugin) relationship. Not listed are the Python language itself and numpy
numerical processing library, which are dependencies of nearly all motmot packages.
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Table I: Motmot components

http://www.scfbm.org/content/4/1/5

High-level GUI Application

motmot.fview

Application with plugin architecture to enable writing new realtime analyses by creating one's own
process_frame () function.

Core camera infrastructure

libcamiface

Camera interface C API

motmot.cam iface

Python wrapper of libcamiface

CamTrig

Firmware for the a USB device for precise temporal synchronization and analog input

Core display infrastructure

motmot.wxglvideo wxPython OpenGL interface for video
pygarrayimage Transfer Python objects supporting the array interface to OpenGL textures
motmot.wxvideo wxPython interface for video

motmot . imops

Python extension module to manipulate image codings

Analysis infrastructure

motmot.FastImage

Pyrex based wrapper of Intel's Integrated Performance Primitives (IPP) or AMD Framewave Library

motmot.FlyMovieFormat

Code for manipulating .fmf movies. Includes Python (read/write) and MATLAB® (read-only) bindings.

motmot.realtime image analysis

Implements background subtraction and 2D feature extraction using Fastimage

FView plugins

motmot.fview ext_ trig

software for the CamTrig USB Device

motmot.flytrax

FView plugin for tracking 2D points in realtime and saving data and small images. (Used in [6-8].)

motmot.fview PLUGIN TEMPLATE

blank fview plugin to use as template for new plugins

motmot.fview c_callback

example fview plugin that calls pure C code

motmot.fview live histogram

example fview plugin that calls pure Python code

motmot.trackem

multiple point realtime tracker (used in [12])

Motmot consists of several modular components. Brief descriptions are given here, and the relationships between the components are shown in

Figure I.

software components of Motmot, which are available for
download from http://code.astraw.com/projects/mot
mot. Complete instructions for downloading and installa-
tion are available at the website.

Synchronizing multiple clocks

Fundamental to Motmot is the ability to reconstruct what
happened when. This is often difficult with computer
equipment because different devices each have their own

clocks and therefore (potentially) different numbers to
describe a single instant. Furthermore, because communi-
cation between devices takes time, it may not be trivial to
estimate differences between clocks.

One example of the experimental possibilities available if
such challenges are overcome is the ability to trigger an
event to happen at a specified number of milliseconds
after a change in the video image - even with variable
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latencies in video image analysis, clock synchronization
makes this possible. Another possibility is the ability to
track animals with multiple cameras using multiple com-
puters and to compare simultaneous images in order to
estimate 3D position. Without precise temporal align-
ment, the 3D reconstruction process would be subject to
measurement errors of the magnitude of the distance the
animal traveled over the duration of the temporal align-
ment error.

Motmot solves these problems by providing accurate esti-
mates of the time of external events with reference to the
computer's own clock. With this information known,
accurate temporal correspondences may be used for anal-
ysis purposes. Furthermore, because accurate timing
information is computed online, experimental designs in
which timing is critical are also possible (for example, trig-
gering an event with specified latency as described above).
Finally, the clocks of multiple computers may be brought
into precise alignment (within one or two microseconds
over a typical local area network) using implementations
of the IEEE-1588 Precise Time Protocol such as PTPd [4].
By coordinating the clocks of multiple computers, experi-
ments requiring more computing power than is available
within a single computer are possible. For example, using
Motmot, we have implemented an eleven camera realtime
free-flight fly tracking system, described below in the
'External applications' section.

The camera and the computer

In the simplest case, it is desirable to know when an image
was acquired in the computer's own time base without
any additional equipment. To allow this, the Motmot
camera interface 'libcamiface' queries the camera drivers
for a timestamp associated with each frame. Some camera
drivers return a timestamp in units of the computer's own
clock (libdc1394, for example). In this case, a correlation
with images and other events recorded on the computer
can be made. In other systems, the timestamp returned by
the camera driver is not in the same units as the compu-
ter's clock (for example, with the Prosilica GigE SDK) and
no such correlation can easily be made, leaving it difficult
to determine, beyond an approximation on the order of
ten milliseconds or more, exactly when an image was
acquired.

CamTrig USB device

With an additional piece of equipment, the CamTrig USB
device, any camera whose image acquisition can be trig-
gered on arrival of an external voltage pulse can be corre-
lated with high precision (sub-millisecond) to the
computer's clock. The CamTrig USB device is an inexpen-
sive ($30) USB-based microcontroller device, the Atmel
USBKEY, loaded with custom firmware provided as part
of Motmot. This firmware may be directly installed as-is.
Alternatively, the source code (based on the LUFA library)
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may be modified and compiled with the free GCC-AVR
cross compiler.

Amongst other functions (described below), the CamTrig
firmware emits regularly timed trigger pulses at a specified
frequency to begin image acquisition (see Figure 2). The
motmot.fview_ext_trig package queries the device every
few seconds over USB about the value of its clock, and
thus its frame counter. With these measurements, the
clock onboard the CamTrig device is modeled relative to
the computer's internal clock using a simple linear model

x=Ay+b (1)

where A is the gain between the two clocks and b is the oft-
set.

The motmot.fview_ext_trig package estimates the model
coefficients by sampling the relevant values (shown in
Figure 2). First, an individual sample of the CamTrig's
time y, is made. This sample is estimated to have occured
at time x, on the host computer using a symmetric delay
assumption

X, = ( xPTe 4 xhost )/ 2. (2)

Once two or more samples are acquired, a linear least
squares fitting routine is applied, and A and b are esti-
Camera

Computer CamTrig USB device

request handler camera sync trigger|

emit trigger pulse B capture
X' = get_time()
request timestamp 1>
— ys=get_time()
receive timestamp / >
gl | % = get_time()
@ >
>
x0® = get_time() N
request timestamp
q— \ y=get_time()
receive timestamp /| ™
X2 = get_time()
Figure 2

Overview of CamTrig USB operation for synchroniz-
ing multiple clocks. As described in the text, the CamTrig
USB device allows the host computer to accurately estimate
the timing of external events. The clock onboard the Cam-
Trig USB device is a crystal oscillator driving a counter/timer
to emit trigger pulses at very regular intervals. USB requests
allow the host computer to build an accurate model of the
time of events on the CamTrig device in its own time frame
of reference.
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mated. Thus, from any value of host clock x, the corre-
sponding CamTrig time y can be determined and vice
versa. With more than two samples, the fit is overdeter-
mined and the effect of additive noise is reduced. Addi-
tionally, one class of large measurment errors is

automatically rejected by ignoring values of x/*' — xP"

exceeding a threshold. Finally, by performing the linear
least squares fit on acquisition of each new sample using
only the most recent 100 samples, the clocks' relationship
is allowed to slowly drift over time, accounting for slow
non-linearities in the clocks' own rates.

With regularly timed trigger pulses and a model of the
time of those pulses as a function of the computer's inter-
nal clock, a precise reconstruction of the time of the trigger
pulse can be made. With camera-specific information
about the latency from trigger pulse to image acquisition
onset (usually negligibly small - on the order of nanosec-
onds) and camera-driver specific information about the
duration of the image integration time, very accurate esti-
mates of image acquisition start and stop may be made for
each and every image.

Additional capabilities of the CamTrig USB device

The CamTrig USB Device provides analog input and dig-
ital input/output capabilities. As described above, the
clock of the CamTrig USB device is modeled with high
accuracy and precision by the motmot.fview_ext_trig host
software. By taking advantage of this, analog voltage sam-
ples are acquired and related precisely to the temporal
model. The resulting temporal synchronization of analog
input with the computer's onboard clock may be a partic-
ularly important capability of Motmot for some applica-
tions. In electrophysiological experiments, for example, it
may be useful to know the precise timing of spikes
recorded in an analog voltage trace relative to images
acquired of animal movements. Given the relatively low
analog sampling performance of the CamTrig USB Device
(10-bit analog-to-digital converter, 0.0 to 3.3 volt range,
up to 9.6 KHz sample rate), this device is not ideal for
recording intracellular or extracellular signals directly, but
is useful for recording spike times or synchronizing with
other data acquisition components.

Realtime computing in mainstream operating
systems

An animal normally operates in 'closed loop', whereby its
own movements cause sensory input to change. By inter-
posing between motor output and sensory feedback,
novel experimental designs are possible, such as a 'virtual
open loop' condition [5], in which visual feedback from
an animal's own movement is canceled by way of a com-
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puter-updated display such that objects appear to remain
stationary despite the animal moving to a new location.

Computer programs executing within such a feedback
loop must operate in realtime, computing results immedi-
ately after being given input. Of course, the time scales
required depend on the specific circumstances, but to cre-
ate virtual-reality simulations, very short latencies are
desired. Human observers, for example, are sensitive to
latencies as low as 15-16 milliseconds [1,2]. In walking
Drosophila at luminances less than 60 cd/m?, no statisti-
cally significant differences were found at up to 200 milli-
seconds of latency in one measure of visually elicited
turning behavior [5]. (It should be noted, however, that
the experiment was not designed to detect whether flies
could discriminate the two conditions but rather to show
that the responses measured in virtual open loop with an
apparatus with an update rate of 5 Hz were similar to
those measured in true open loop.)

This section describes the difficulties associated with
achieving such low latencies. After considering these
issues, we implemented Motmot to run on mainstream
operating systems (Linux, Windows, and Mac OS X) to
allow use of a wide variety of data acquisition devices,
stimulus output devices and online analysis routines.
Additionally, we chose to implement the system primarily
in Python to take advantage of the rapid prototyping and
wide range of libraries available with this language. As
described in this section, the cost of these choices is that
Motmot cannot guarantee bounded latency, and the
'Latency measurements' section below quantifies the
resulting performance of the system.

Hard realtime computer systems are defined to have a
bounded maximum latency between when a task is sched-
uled to happen and when it actually happens. Due to the
preemptive multitasking nature of today's mainstream
operating systems, it is difficult or impossible to achieve
hard realtime performance within a normal (user space, as
opposed to kernel space) process. In particular, the kernel
may preempt a time-critical process with another process,
and there may be no mechanism to ensure a process is run
at a certain time or immediately upon a certain event. Soft
realtime systems have no guaranteed maximum latency,
but seek to process data with a minimum of latency with-
out any absolute performance guarantee. Computer
games, for example, are soft realtime systems, and they
illustrate that soft realtime feedback is sufficient to imple-
ment many interesting behavioral tasks with a computer
in the sensory-motor feedback loop.

The use of a soft realtime operating system means that no
bound on latency can be guaranteed. Furthermore, even if
using a hard realtime operating system, it is difficult to
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write complex software with deterministic latency. For
example, automatic 'garbage collection', a feature of sev-
eral computer languages, including Python, is used to free
unused memory, but this feature places indeterminacy in
the execution time of a piece of code. Therefore, to imple-
ment a hard realtime application, all critical components
must have deterministic latency, making language fea-
tures such as garbage collection unsuitable. For some
computer program functions, such as CPU interrupt serv-
ice routines written in C, ensuring a bounded latency may
be no problem, while for graphical displays, there may be
no possibility to ensure that use of an API, such as
OpenGL, does not itself introduce non-deterministic
latencies. Thus, the challenge of creating a hard realtime
application is formidable, and Motmot does not attempt
to solve these problems. To summarize, by using a main-
stream operating system, Motmot cannot guarantee
bounded latency. By choosing Python as the primary
implementation language, Motmot has additional inde-
terminacy in system latency. Thus, the total latency may
be greater due to use of Python, but considered within the
context of the variable latency associated with using a
mainstream operating system, we viewed this as a minor
quantitative effect rather than as a problematic qualitative
change. The following section quantifies these issues.

Latency measurements

Latency in a realtime camera and computer system arises
from several sources. The lower bound is set by the inte-
gration time of the sensor. To that is added the duration
of readout and transfer of data from the camera over the
interface (such as FireWire or gigabit ethernet), and from
there into the computer's main RAM. Once in RAM, a pro-
gram analyzes the image and performs some action based
on the outcome of these computations. Additionally,
other factors that are indeterminate from the program's
perspective may slow things down further (see the "Real-
time computing in mainstream operating systems" sec-
tion, above). We did not attempt to measure each of these
components individually, because it is their cumulative
sum that determines the latency of feedback and is there-
fore of primary interest in building realtime system. From
the total latency, we can subtract the known image inte-
gration time and estimates of readout and transfer dura-
tion based on technical data from camera manufacturers.
The remainder is attributable to the operating system and
Motmot.

We measured latency in three ways (Figure 3). All three
methods are included with the motmot.fview_ext_trig
software package in the examples directory and may be
performed on any camera that is triggered via an external
trigger input via the CamTrig device.

The first method, shown in Figure 34, is the most direct
but is infeasible during ongoing image acquisition. A sin-
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gle image trigger pulse is given at a time measured by the
host computer, and the time of arrival of the image is
measured. The difference between these two time values is
the acquisition latency. Because acquisition would not
normally involve the host computer generating trigger
pulses itself and because the pulse generation command
itself may take time, this measurement is an upper bound
for image transfer latency. In Figure 3A, we performed this
measurement on a Prosilica GE-680 camera (Prosilica,
Canada) using Prosilica GigE SDK v1.18 and Ubuntu
Linux 8.04 i386 on an Acer Aspire L310 computer. Cam-
era integration time ('shutter time') was set to 10 micro-
seconds. The median latency in this case was about 5
milliseconds.

The second experiment to measure latency, shown in Fig-
ure 3B, involves recording the arrival time of each frame
in the computer and comparing the difference from the
time of the trigger pulse. This trigger pulse time is esti-
mated using the computer's model of the clock onboard
the CamTrig USB device, as described above and illus-
trated in Figure 2. This measurement method is suitable
for latency measurements during ongoing recordings, and
in the results shown, gives nearly identical results to the
first method.

The third way to measure latency, shown in Figures 3C-E,
involves flashing an LED in the field of view of the camera
and is thus conceptually similar to the first method, but
latency is measured by analyzing luminance in an ongo-
ing image stream rather than arrival of an image. An addi-
tional complication in this scenario, however, is that
images are being acquired at a regular rate whereas the
LED may be illuminated at any moment relative to the
image acquisition cycle. Thus, if the LED is illuminated
immediately after integration ends, an almost full cycle
must pass before another image is acquired. Thus, latency
in this case can range from near the theoretical minimum,
if the LED was illuminated simultaneously with the trigger
pulse, to near a maximum determined by the reciprocal of
the frame rate plus the image transfer time. For example,
at a 120 Hz frame rate, with a minimum transfer latency
of 5 msec, the expected latencies are uniformly distributed
over the interval 5-13.3 milliseconds (13.3 = 5 + 8.3,
where 8.3 msec is the reciprocal of 120 Hz). Indeed, as
shown in Figure 3C, the theoretical distribution (red line)
approximates the measurements (blue histogram). The
additional 1-3 milliseconds difference between the meas-
ured and theoretical value is the result of the additional
image processing required to determine if the LED was on.
The latency caused by this image processing was not
included in the measurements of the first two methods,
thus a small amount of additional latency is expected. For
a 60 Hz frame rate, the interval is expected to be 5-21.7
milliseconds, and this is also close to the measured values
shown in Figure 3D. Finally, with a 30 Hz frame rate, the
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Figure 3

Latency measurements using Motmot. Latency measurements show that latency with the motmot software is close to
the theoretical minimum possible given a particular camera interface. A) Latency measured as time of arrival of an image after
a single trigger pulse was delivered to a camera. The camera (Prosilica GE-680) was set to 10 microsecond shutter integration
interval and is expected to have a 5 millisecond transfer time to the computer. B) Latency estimated by correlating frame trig-
ger time with computer clock time using motmot.fview_ext_trig. C) Latency measured by pulsing an LED at random times and
calculating the delay until the luminance change was measured on the computer (blue histogram). The external trigger pulse
given at 120 frames per second. Note that latency in this case includes the effects of the variable delay between the onset of
the LED and the image acquisition as described in the 'Latency measurements' section. The red line is the theoretically pre-
dicted uniform distribution, with equal probability from 5 msec to 5 msec plus the inter-frame interval. D) as in C, but with

external trigger pulses at 60 frames per second. E) as in C, but with external trigger pulses at 30 frames per second.

interval is expected to be 5-38.3 milliseconds, and again
this is similar to the measurements (Figure 3E).

Note that all experiments were performed with a very
short integration interval - ten microseconds. Longer
intervals would directly increase the latency measured
above except in the case of the LED-based method (pro-
vided that the integration interval remained shorter than
the nominal inter-frame interval).

From the measurements above, we can conclude that the
image readout and transfer time from the camera to the
Motmot software averaged 5 msec with the particular
hardware used (Figure 3A-B). As described at the begin-
ning of this section, this includes components outside of
Motmot's direct control, such as the particular camera and
interface used. The additional latency added by image
processing to extract the mean luminance (Figure 3C-E),
averages about 1 msec. Although this image processing
latency is the only aspect of latency under the direct con-
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trol of Motmot, it is the cumulative sum of all latencies
involved that determines the total system latency.

FView plugins

The FView application provides a simple plugin mecha-
nism by which users can develop their own realtime
image processing alogrithms without worrying about live
video display, saving movies, or other functionality pro-
vided by FView. The Motmot online and downloadable
documentation includes a section on the steps necessary
to write a plugin and several tutorial examples. The most
important element of the plugin is the user-written
process_frame () method. As a consequence of regis-
tering the plugin, this method gets called immediately
after image acquisition and makes the recently acquired
image available for processing. In order to minimize
latency, this method is called from the camera acquisition
thread. Therefore, care must be taken when sharing data
with other threads, such as from the GUI. The return val-
ues of this method are used to draw points and line seg-
ments on the FView live display, and other outputs may
be performed by the plugin itself, such as sending data
over the network or saving it to disk.

FlyMovieFormat

Several goals motivated the development of a new movie
file format. These were 1) single pass, low CPU overhead
writing of lossless movies for realtime streaming applica-
tions. 2) Precise timestamping for correlation with other
activities. And 3) a simple format that can be read from
Python, C, and MATLAB. These goals were acheived via
using a very simple format. After an initial header contain-
ing meta-data such as image size and color coding scheme
(e.g. monochromatic 8 bits per pixel, YUV422, etc.),
repeated chunks of raw image data and timestamp are
saved. Because the raw image data from the native camera
driver is saved, no additional processing is performed.
Thus, streaming of movies from camera to disk will keep
the CPU free for other tasks, but it will require lots of disk
space. Furthermore, the disk bandwidth required is equiv-
alent to the camera bandwidth (unless the user saves only
a region of the images or only saves a fraction of the
incoming frames). For the exact file format definition,
please see the online or downloadable documentation.

Applications built on Motmot

FlyTrax

FlyTrax is a realtime fly tracking application that tracks the
position and orientation of a fly in two dimensions (see
Figure 4, for example). Within our laboratory, we have
used FlyTrax for tracking the orientation of magnetically
tethered flies that were free to rotate about a single axis but
were otherwise constrained [6-8]. Additionally, we have
used FlyTrax to track flies as they walk freely around pla-
nar and three dimensional arenas [9].

http://www.scfbm.org/content/4/1/5

The capability to automatically track a fly moving around
an arena is a re-implementation of functionality present
in other software (e.g. [5,10,11]). Rather than being a pur-
pose-built application, however, FlyTrax is a plugin to
FView, and thus illustrates FView's flexibility. Further-
more, the realtime tracking abilities of FlyTrax enables
'virtual open loop' type experiments in which the animals
visual feedback loop is artificially broken [5].

Omitting the GUI aspects, a sketch of the operation of the
flytrax plugin in pseudocode is below. Note that this is
only an approximation of the function calls used. The
actual code is more complicated, partly because it utilizes
the motmot.realtime_image_analysis module for rapid
image analysis.

def process_frame(incoming image):
update background image(incoming image)

absdiff image =
background_image)

abs(incoming_ image-

pixel location = argmax(absdiff image)

subpixel location,

orientation = process_ image region(inc
oming image,pixel location)
save_to_disk(subpixel location, orien
tation)

update visual display(subpixel locatio
n, orientation)

def
process_image region(incoming_ image,pixel
_location):
local_image = incoming image.extract_s
mall image in neighborhood(pixel locat

ion)

subpixel location_x = local_image.mean
(axis=x)/local_ image.sum(axis=x)

subpixel location_ y = local image.mean
(axis=y)/local image.sum(axis=y)

subpixel location = (subpixel location
X, subpixel location y)

C = calc_covariance matrix(local image)

eigenvalues, eigenvectors = calc_eigen(C)
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Screenshot of FView application and FlyTrax plugin. FView is a relatively simple application which provides live image
viewing, camera parameter adjustment, saving of uncompressed movies with accurate timestamp information, and support for
plugins. FlyTrax is one such plugin that tracks a single target position and orientation in the 2D view using background subtrac-

tion.

max_eigenvalue_idx = argmax(eigenvalue)

orientation = eigenvectors
[max_eigenvalue_idx]

return subpixel location, orientation

Another plugin, called 'trackem’, is similar to FlyTrax in
that it tracks points in realtime. The main difference is that
it tracks multiple points simultatneously, detecting only
the darkest or lightest points without using background
subtraction. This plugin has been used to track a remotely
controlled helicopter and estimate its pose with suffi-
ciently low latency and high accuracy to enable a compu-
ter to perform the control [12].

External applications
For the purposes of illustration, two additional applica-
tions based on motmot are described here, but not

included with Motmot. 'Flydra' is a realtime multi-camera
3D tracking system for flying animals [13] and [Multi-
camera Realtime 3D Tracking of Multiple Flying Ani-
mals. Computer Vision and Image Understanding In review.]

This system allows the tracking of the position and orien-
tation of freely moving animals with minimal latency
using arbitrary numbers of cameras (eleven have been
tested). As such, it allows virtual open loop experiments to
be performed on freely moving animals in large experi-
mental spaces [14]. Flydra operates by having dedicated
image processing computers, each of which extract and
transfer a small amount of information about the detected
animals' image location back to a central computer on the
arrival of each frame. The central computer is also con-
nected to the CamTrig USB device and thus coordinates
the timing of all incoming image frames. Flydra is built on
Motmot, utilizing all components described in Figure 1
with the exception of FView and its plugins, which are
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replaced with a command-line program with no GUI that
does image processing using the mot-
mot.realtime_image_analysis and motmot.Fastimage
packages. FView itself is not used within Flydra for two
reasons. First, Flydra runs on computers distributed
throughout a network, and the graphical interface of
FView is a hindrance for this type of operation. Second,
FView currently supports only a single camera per running
instance, and Flydra often runs more than one camera per
computer.

'CTrax' is an offline image analysis program that tracks
multiple flies walking in an arena, while maintaining the
identity of individuals over minutes to hours [15]. In
addition to using motmot.FlyMovieFormat as a supported
movie input format, CTrax uses several software compo-
nents such as motmot.wxglvideo to implement GUI tasks
such as rapid display of video data.
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