
BioMed Central

Source Code for Biology and
Medicine

ss
Open AcceResearch
Wndchrm – an open source utility for biological image analysis
Lior Shamir*1, Nikita Orlov1, D Mark Eckley1, Tomasz Macura1,2,
Josiah Johnston3 and Ilya G Goldberg1

Address: 1Image Informatics and Computational Biology Unit, Laboratory of Genetics, NIA/NIH, 333 Cassell Dr., Baltimore, MD, 21224, USA,
2Computer Laboratory, University of Cambridge, 15 Thomson Avenue, Cambridge, UK and 3Energy and Resources Group, University of California
Berkeley, 1519 Addison St., Berkeley, CA, 94720-3050, USA

Email: Lior Shamir* - shamirl@mail.nih.gov; Nikita Orlov - orlovni@grc.nia.nih.gov; D Mark Eckley - dme@grc.nia.nih.gov;
Tomasz Macura - tm289@cam.ac.uk; Josiah Johnston - siah@berkeley.edu; Ilya G Goldberg - igg@nih.gov

* Corresponding author

Abstract
Background: Biological imaging is an emerging field, covering a wide range of applications in
biological and clinical research. However, while machinery for automated experimenting and data
acquisition has been developing rapidly in the past years, automated image analysis often introduces
a bottleneck in high content screening.

Methods: Wndchrm is an open source utility for biological image analysis. The software works by
first extracting image content descriptors from the raw image, image transforms, and compound
image transforms. Then, the most informative features are selected, and the feature vector of each
image is used for classification and similarity measurement.

Results: Wndchrm has been tested using several publicly available biological datasets, and provided
results which are favorably comparable to the performance of task-specific algorithms developed
for these datasets. The simple user interface allows researchers who are not knowledgeable in
computer vision methods and have no background in computer programming to apply image
analysis to their data.

Conclusion: We suggest that wndchrm can be effectively used for a wide range of biological image
analysis tasks. Using wndchrm can allow scientists to perform automated biological image analysis
while avoiding the costly challenge of implementing computer vision and pattern recognition
algorithms.

Background
In the past few years, pipelines providing high-throughput
biological imaging have been becoming increasingly
important, and are supported by automated microscopy
and high-performance computing and storage devices.
Applications include profiling drug responses, screening
for small molecules, classification of subcellular localiza-

tion, and more. While image acquisition systems, network
bandwidths, and storage devices are capable of supporting
vast pipelines of biological images, human analysis can be
impractically slow. Therefore, machine vision algorithms
for analysis of biological images are necessary to complete
a fully automated process for interpreting biological
experiments.

Published: 8 July 2008

Source Code for Biology and Medicine 2008, 3:13 doi:10.1186/1751-0473-3-13

Received: 14 March 2008
Accepted: 8 July 2008

This article is available from: http://www.scfbm.org/content/3/1/13

© 2008 Shamir et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 13
(page number not for citation purposes)

http://www.scfbm.org/content/3/1/13
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18611266
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
Some highly useful applications have been proposed and
made available to the scientific community. OME [1,2], as
well as its derivative product OMERO [3], provide a
widely used enterprise solution to storing, handling and
processing biological and medical images. Another useful
application is CellProfiler [4], which is a tool designed
specifically for analyzing microscopy images of cells.
Other tools focus on single tasks in the process of biolog-
ical image analysis. An example is the utility FindSpots,
which detects objects (e.g., cells) in an image based upon
their intensity and size.

In this paper we present wndchrm – an open source utility
for biological image analysis that can be used for a wide
range of biological datasets, which include organelles,
cells, tissues, and full organisms. Using wndchrm does not
require knowledge in computer vision or computer pro-
gramming, allowing biologists who do not have strong
programming skills to enhance their experiments with
automated image analysis capabilities. The code can be
downloaded freely via the internet, and does not require
any licensed commercial software. It can also be easily
integrated into existing or new software products.

Description of the Method
The image analysis method works by applying a first step
of computing a large number of different image features.
For image feature extraction we use the following algo-
rithms, described more thoroughly in [5]:

1. Radon transform features [6], computed for angles 0,
45, 90, 135 degrees, and each of the resulting series is then
convolved into a 3-bin histogram, providing a total of 12
image features.

2. Chebyshev Statistics [7] – A 32-bin histogram of a 1 ×
400 vector produced by Chebyshev transform of the
image with order of N = 20.

3. Gabor Filters [8], where the kernel is in the form of a
convolution with a Gaussian harmonic function [9], and
7 different frequencies are used (1,2...,7), providing 7
image descriptor values.

4. Multi-scale Histograms computed using various
number of bins (3, 5, 7, and 9), as proposed by [10], pro-
viding 3+5+7+9 = 24 image descriptors.

5. First 4 Moments, of mean, standard deviation, skew-
ness, and kurtosis computed on image "stripes" in four
different directions (0, 45, 90, 135 degrees). Each set of
stripes is then sampled into a 3-bin histogram, providing
4 × 4 × 3 = 48 image descriptors.

6. Tamura texture features [11] of contrast, directionality
and coarseness, such that the coarseness descriptors are its
sum and its 3-bin histogram, providing 1+1+1+3 = 6
image descriptors.

7. Edge Statistics features computed on the Prewitt gradi-
ent [12], and include the mean, median, variance, and 8-
bin histogram of both the magnitude and the direction
components. Other edge features are the total number of
edge pixels (normalized to the size of the image), the
direction homogeneity [13], and the difference amongst
direction histogram bins at a certain angle α and α + π,
sampled into a four-bin histogram.

8. Object Statistics computed on all 8-connected objects
found in the Otsu binary mask of the image [14]. Com-
puted statistics include the Euler Number [15], and the
minimum, maximum, mean, median, variance, and a 10-
bin histogram of both the objects areas and distances
from the objects to the image centroid.

9. Zernike features [16] are the absolute values of the
coefficients of the Zernike polynomial approximation of
the image, as described in [13], providing 72 image
descriptors.

10. Haralick features [17] computed on the image's co-
occurrence matrix as described in [13], and contribute 28
image descriptor values.

11. Chebyshev-Fourier features [18] – 32-bin histogram
of the polynomial coefficients of a Chebyshev-Fourier
transform with highest polynomial order of N = 23.

Since image features extracted from transforms of the raw
pixels can also be informative [5], image content descrip-
tors are extracted not only from the raw pixels, but also
from several transforms of the image and transforms of
transforms. The image transforms are FFT, Wavelet (Sym-
let 5, level 1) two-dimensional decomposition of the
image, Chebyshev transform, and Edge transform, which
is simply the magnitude component of the image's Prewitt
gradient, binarized by Otsu global threshold [14].

In the described image classification method, different
image features are extracted from different image trans-
forms or compound transforms. The software allows the
user to choose between extracting a smaller set of image
features, which includes 1025 content descriptors, and
extracting a larger set of 2659 features. The larger set of
image features can be more informative, but also requires
the sacrifice of more computational resources, which
leads to a slower response time. The image features
extracted from each transform in the smaller and larger
feature sets are described by Table 1.
Page 2 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
While the set of image features provides a numeric
description of the image content, not all image features
are assumed to be equally informative for each dataset,
and some of these features are expected to represent noise.
To select the most discriminative features and reject the
noisy features, each image content descriptor is assigned
with a simple Fisher score [19] and rank ordered, so that
only the features with the highest Fisher scores are
included in the following analysis. This filtering of the
image features can be performed only after all image fea-
tures are computed. In the described software, Fisher
scores are computed before test samples are classified.

The feature vectors of given test samples are classified by a
variation of nearest neighbor classification. For feature
vector x computed from a test image, the distance dx, c of
the image from a certain class c is measured by Equation 1

where Tc is the training set of class c, t is a feature vector
from Tc, |x| is the length of the feature vector x, xf is the
value of image feature f in the vector x, Wf is the Fisher
score of feature f, |Tc| is the number of training samples of
class c, and p is the exponent, which is set to -5. The -5
value has been determined empirically, and is thoroughly
discussed in [5]. The distance between a feature vector and
a certain class is the mean of its weighted distances (to the
power of p) to all feature vectors of that class. After the dis-
tances from sample x to all classes are computed, the class
that has the shortest distance from the given sample is the
classification result. A detailed description and perform-
ance evaluation of this method can be found in [5].

Image Similarity
Once a classifier is trained, test images can be mapped
into the image feature space. The classification of each fea-
ture vector provides a vector of the size N (N is the total
number of classes), such that each entry c in the vector
represents the similarity of the feature vector to the class c,
computed by Equation 2,

where Mf, c is the computed similarity of the feature vector
f to the class c, and df, c is the distance computed by Equa-
tion 1. This assigns each image in the test set with N values
within the interval [0, 1], representing its similarity to
each class.

Averaging the similarity vectors of all images of a certain
class provides the similarities between that class and any
of the other classes in the dataset. Repeating this action for
all classes results in a full set of similarities between any
pair of classes, which can be presented in the form of a
similarity matrix. The similarity matrix contains two sim-
ilarity values for each pair of classes. I.e., the cell n, m is the
similarity value between class n to class m, and the cell m,
n is the similarity of class m to class n. Although these two
values are expected to be close, they are not expected to be
identical due to the different images used when compar-
ing n to m and m to n. Averaging the two values provides
a single nominal distance between each pair of classes,
which can be used for visualizing the class similarity in an
intuitive fashion using phylogenies (evolutionary trees)
inferred automatically by using the Phylip package [20],
as will be described in this paper.

d
Wf X f t f

p
f
x

t Tc
Tc

x c,

[()]
=

−=∑∈∑ 2
1 (1)

M
d f c d f ii

N
f c,

,
,

=
⋅ =∑

1
1

1
(2)

Table 1: Image features

Image Features

Transform Radon Chebyshev
statistics

Gabor Multi-scale
histograms

First 4
moments

Tamura
texture

Edge
statistics

Object
statistics

Zernike Haralick Chebyshev
-Fourier

Raw Pixels Both Both Both Both Both Both Both Both Both Both Both
FFT Both Both None Both Both Both None None Both Both Both
Chebyshev Both Large None Both Both Both None None Large Both Large
Wavelet Large Large None Both Both Both None None Large Both Large
FFT-Chebyshev Both Large None Both Both Both None None None Both None
FFT-Wavelet Large Large None Both Both Both None None None Both None
Edge Large Large None Large Large Large None None Large Large Large
Edge-Fourier Large Large None Large Large Large None None Large Large Large
Edge-Wavelet Large Large None Large Large Large None None Large Large Large
Chebyshev-FFT Large None None Large Large Large None None None Large None
Wavelet-FFT Large None None Large Large Large None None None Large None

The image features extracted from the different image transforms in the smaller and larger feature sets. For each type of image feature extracted
from each transform the table specifies whether these features are extracted in the smaller feature set, larger feature set, both sets, or none of the
sets.
Page 3 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
Implementation
The software is written in C++, and uses the freely availa-
ble fftw [21] and libtiff libraries. The code is organized
such that the feature extraction and pattern recognition
algorithms are compiled into a library called "libimfit", so
that it can be easily integrated into other software prod-
ucts. The wndchrm utility does not have an integrated
graphical user interface, and all user interactions are per-
formed using simple command-line instructions. The
command line is implemented by the wrapper file "wnd-
chrm.cpp", which uses the functions implemented in
libimfit.

To allow multi-platform support, the code uses only
standard C function calls and avoids using machine-spe-
cific APIs. The code is compiled using the standard gcc
compiler, and can therefore be easily compiled under
commonly used operating systems such as OS X, Linux,
Unix, etc. Since the source code is fully open, users may
also compile it using other compilers such as Borland
C++. This can make it easier for advanced users who wish
to modify the code for their specific needs or integrate the
source files with an existing application. For compiling
the code under MS-Windows without using gcc, it is
advised to define the constant "WIN32". Windows users
can also download and use a binary executable file of wnd-
chrm.

Many computer vision experts develop their software
using MATLAB, and a substantial amount of code and
utilities have been written using that tool. Those who wish
to integrate wndchrm into their existing MATLAB code can
use MATLAB's MEX files, which are designed specifically
for calling C (and FORTRAN) functions from a MATLAB
application.

An important advantage of implementing wndchrm in
C++ is speed, especially when compared to MATLAB. For
example, a MATLAB implementation of the smaller fea-
ture set (with 1025 image features) is ~4 times slower than
the C++ implementation of the same set. This difference
can be highly significant when the dataset is large.
Another matter that should be taken into considerations
when using MATLAB is licensing. This issue can become
crucial if the computation is performed by clusters, where
each node of each cluster requires its own license.

Computational Complexity and Robustness
An obvious downside of wndchrm is its computational
complexity. Since wndchrm works by applying a chain of
feature extraction algorithms, the theoretical computa-
tional complexity is equal to that of the most expensive
algorithm in the chain. This algorithm is the Zernike fea-
ture extraction, which has a factorial complexity in terms
of its radial polynomial coefficients. However, since many

of the other feature extraction algorithms in the chain are
also computationally intensive, a very large constant is
hidden inside the theoretical complexity of wndchrm. The-
oretical space complexity is linear to the image size, with
a large constant of 100 MB used for computing the Cheby-
shev-Fourier features.

Practically, the set of image features extracted from the raw
pixels and the several transforms require significant CPU
resources. For example, the large set of image features can
be extracted from one 256 × 256 image in ~100 seconds
using a system with a 2.6 GHZ AMD Opteron and 2 GB of
RAM. Computing the smaller feature set requires ~38 sec-
onds. The time required for processing a single image
increases linearly with the number of pixels, as shown by
Figure 1. However, since memory access can become
slower when large amounts of memory are used, perform-
ance suffers considerably above a certain image size. This
can be evident by the sharp decrease in response time
when the image size gets larger than 512 × 512 pixels. In
these cases, users may consider breaking very large images
into tiles, as will be described later in the paper. Since the
images are processed sequentially, the overall response
time is linear to the number of images in the dataset.

In the sense of memory usage, wndchrm stores the original
image in the main memory along with the 10 image trans-
forms (when the larger feature set is used). Since each
pixel requires 11 bytes (eight bytes for the intensity and
one additional byte for each of the three color channels),
the total memory allocated for the image is 11 × 11 ×
width × height bytes. Computing the Chebyshev-Fourier
features requires additional 100 MB. Once image features
are extracted from an image, all memory blocks are freed,
so that the memory used by wndchrm does not grow when
more images are processed.

The response time of computing the image features can be
reduced significantly by running several instances of wnd-
chrm, each on a different processor, so that image features
of different images are computed simultaneously by dif-
ferent processors. To implement this approach, the feature
values of each image are stored in a file, which is opened
exclusively by the instance of wndchrm that processes that
image. If the file already exists, wndchrm skips that image
and moves on to the next image in the dataset. Another
advantage of storing the values of the content descriptors
of each image in a separate file is that if the image feature
computation is stopped for any reason before comple-
tion, restarting the process does not require re-computing
image features of images that have already been proc-
essed. This aspect of feature extraction can be exploited if
more data become available. If new images are added to a
dataset that has already been computed, the user can com-
pute image features for the newly added data without re-
Page 4 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
computing features for the existing images. Activating this
feature using the command-line user interface is
explained in the next section.

Wndchrm has been tested for robustness using a dataset of
~45,000 256 × 384 images, computed using four 2.6 GHZ
Opteron quad-core servers (total of 16 processors) with 2
GB of RAM per core. The 16 wndchrm instances worked for
8 days with no failure, and the memory allocated for each
instance in the last day was equal to the that of day one,
indicating on the absence of memory leaks.

Using the Command Line Utility
While the source code can be easily integrated into exist-
ing or new software products, the software tool described
in this paper can be used in the form of a command line
utility. This allows researchers who do not have program-
ming skills to apply image analysis to their data.

Supervised machine learning classification consists of two
primary steps: Training a classifier with a set of samples
that are considered as "ground truth" data, and testing the
effectiveness of the classifier using a second set of samples
such that none of the samples of the test set are also used
for training.

In order to train an image classifier, the first required task
is computing image content descriptors for all images in
the dataset. These numeric values describe the image con-
tent in a fashion that can later be processed by pattern rec-
ognition methods. This step is performed by using a
simple command line described below:

% wndchrm train [options] images feature_file

where feature_file is the resulting output file of the image
feature values, images is a path to the top folder where the
images of the dataset are stored, and [options] are optional
switches that can be specified by the user. The top folder
should consist of several sub-folders such that each sub-
folder contains images of a different class. The image for-
mats that are currently supported are TIFF and PPM. Since
the current version of wndchrm does not support three-
dimensional image features, multi-sliced tiffs are not sup-
ported at this point.

The single output file feature_file contains features for all
classes in the dataset, so that there are no separate files for
the different classes. Therefore, if a new class is added to
the dataset, a new file needs to be created using the same
command line. To avoid re-computing classes that have
already been computed, the user is advised to use the "-m"
switch that will be described later in this section.

Once all image content descriptors are computed, the
dataset can be tested for classification accuracy. This can
be done by using the following command line:

% wndchrm test [options] feature_file [report_file]

where feature_file is the output file of the train task, and
report_file is an optional html file providing detailed infor-
mation regarding the performance of the classifier. This
instruction automatically splits the images of each class
into training and test images, and the effectiveness of the
classifier is determined by the percentage of test images
that are classified correctly using the training images. The
test images are classified by computing the Fisher scores
and assigning the image features with weights. The output
of this command is a confusion matrix, a similarity
matrix, and the accuracy of the classifier (the percentage of
test images that were classified correctly).

After a classifier is trained and tested, an image can be clas-
sified using the command line:

% wndchrm classify feature_file image

where image can be a full path to the image being classi-
fied, or a folder that contains multiple images. If image
points to a specific image file, the output of this instruc-
tion is the predicted class in which the image belongs, as
well as a vector of similarity values to each of the classes
in the dataset. If image is a path to a folder, wndchrm clas-
sifies and prints the predicted class and similarity vector
for each image in that folder, followed by a brief summary
that specifies the number of images that were classified to
each class and the average similarity vector.

Splitting the Dataset Into Training and Test Data
When testing an image classifier, the user can determine
the number of images that are used for testing and the
number of images used for training. By default, 75% of
the images of each class are used for the training, and the
remaining 25% are used for testing. The user can change
this ratio by using the "-r" option. For example, "-r0.4"
allocates 40% of the images for testing, and 60% for train-
ing. The allocation of the images to training and test sets
is performed in a random fashion. Users can repeat the
test with several different random splits in a single com-
mand by specifying the "-n" option, followed by the
requested number of splits.

wndchrm also allows the user to set the number of training
images per class. This can be done using the "-i" option,
followed by the requested number of training images per
class. The remaining images are used for testing, unless the
"-j" option is used in a similar fashion to set the number
of test images per class. It should be noted that "-i" and "-
Page 5 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
j" options override the "-r" value. If only one of these
options is specified, and "-r" is also used, the number of
training or test images per class (the one that is not deter-
mined by "-i" or "-j") will be determined by the "-r" value.
We suggest using a fixed number of training images per
class ("-i") when generating similarity matrices.

Users can also use different feature files (generated by
using wndchrm's "train" command) for testing and train-
ing, so that instead of splitting a single dataset into train-
ing and test images, one dataset is used entirely for
training while a second dataset is used for testing. This can
be done by simply specifying two full paths to image fea-
ture files. If two files are specified, the first will be used for
training and the second for testing.

Changing the Number of Image Features
Since wndchrm is a multi-purpose tool designed to handle
many different image datasets, it uses very many different
image features. However, for a given dataset, not all image
features are assumed to be equally informative, and some
of these features are expected to represent noise. By
default, only the 0.15 images features with the highest
Fisher scores are used. Users who wish to change this set-
ting can specify the "-f" option in the command line, fol-
lowed by the requested portion of the image features to be
used. Changing this value can affect the performance of
the image analysis since in some datasets more image fea-
tures may be informative, so that using more features can
contribute to the discrimination between the classes. On
the other hand, in other datasets only few of the image
features provide discriminative information, and using

the non-informative features can add confusion and
degrade the efficacy of the analysis. Since image features
are weighed by their informativeness, the effect of noisy
features is expected to be lower than the effect of more
informative features. However, if very many non-inform-
ative image features are used, their large number can be
weighed against their low Fisher scores, leading to an
undesirable degradation of the performance. Therefore,
the threshold for non-informative features needs to be
determined operationally for each type of data, and the
0.15 threshold is only a starting point.

Image Tiling
In some cases it may be useful to divide large images of tis-
sues or cells into several equal-sized tiles. For example, it
has been demonstrated that when each image captures
very many cells, dividing the image into tiles can in some
cases provide better analysis than applying a first step of
global-thresholding cell segmentation [22]. Another
advantage is that using more tiles can improve the effec-
tiveness of the Fisher scores assigned to the image features,
which are expected to improve as the size of the dataset
gets larger. Using wndchrm, this can be done by specifying
the "-t" option followed by the square root of the desired
number of tiles. For instance, "-t3" divides each image
into 3 × 3 tiles.

If segmentation of the subjects (e.g., cell segmentation,
bone segmentation, etc) is required, the user has to apply
a first step of segmentation using a designated utility. The
output of the utility (the segmented subjects) can be used
as input for wndchrm, rather than the original images.

Using Multiple Processors
As discussed earlier in the paper, response time for com-
puting the image features can be reduced substantially by
using several wndchrm instances running simultaneously
on different processors. In order to use this feature, wnd-
chrm should be started with the "-m" option. This writes
the computed feature values of the images to .sig files, and
checks for the existence of these files to avoid recomput-
ing image features that have already been computed.

The purpose of the .sig files is to store the feature values of
an image or image tile. I.e., wndchrm creates a .sig file for
each tile that it processes, so that the number of .sig files
of each image is equal to the number of tiles each image
is divided into (one by default). If wndchrm finds an exist-
ing .sig file, it avoids recomputing these features and
moves on to the next tile. Since the different instances of
wndchrm communicate using the .sig files, different
machines that have access to the same disk space can
effectively process the same dataset simultaneously with-
out wasting their CPU resources by processing the same
tiles. To utilize this feature, the user should make sure that

Time required for processing a single imageFigure 1
Time required for processing a single image. The time
required for computing image features for a single image is
linear to the number of pixels for images no larger than 512
× 512 pixels.

1

10

100

1000

10000

1K 4K 16K 64K 256K 1M

Image size (pixels)

Small Feature Set

Large Feature Set
Page 6 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
the number of running instances of wndchrm is equal to
the number of available cores. For instance, a quad-core
machine will be most effective if four instances of wnd-
chrm run simultaneously. Since wndchrm does not auto-
matically determine the number of available cores, the
user should manually execute the desired number of wnd-
chrm instances (usually by repeating the same command
line).

In order to run wndchrm as a background process, the user
should add an ampersand (&) at the end of the command
line. This allows the user to start several instances of wnd-
chrm using the same terminal window, and then close the
window without stopping these processes.

This feature can also be highly useful in cases where data
(classes or images) are being added to an existing dataset.
In these cases, using the "-m" option will make wndchrm
skip the images that have already been computed, so that
the response time for generating the feature file that con-
tains the new data becomes significantly shorter.

Using the Large Feature Set
While the smaller feature set consists of 1025 features, a
user can use the larger feature set of 2659 image content
descriptors. The larger set of image features can be more
informative, but also requires the sacrifice of more com-
putational resources, which leads to a slower response
time. The image features extracted from each transform in
the smaller and larger feature sets are specified in Table 1.

In order to use the large feature set, the user can use the "-
l" option in the command line. For example, the follow-
ing command line will compute the large set of image fea-
tures:

% wndchrm train -l/path/to/images/path/to/
feature_file.fit

Using Color Features
When color information is available, wndchrm can be set
to use color information by using the "-c" option in the
command line. If this option is specified, wndchrm first
applies a color transform by classifying each pixel into one
of 16 color classes using fuzzy logic-based modeling of the
human perception of colors [23], and then assigning each
pixel with an intensity value based on the relative wave-
length of the classified color, normalized to [0,255] inter-
val. I.e., pixels classified as red are assigned with 0, pixels
classified as violet are assigned with 255, and pixels clas-
sified as other colors are assigned with values between 0
and 255, based on their relative wavelength. After trans-
forming the color image into a grayscale matrix, all image
features described in Table 1 are extracted from this trans-
form.

Additionally, each pixel of the raw image is separated into
its Hue, Saturation, and Value components, and the fea-
tures listed in Table 1 are extracted from the hue values.
The same features, except from edge features, object fea-
tures, and Gabor filters are computed on the Fourier and
Chebyshev transforms of the hue values. Although the
hue component does not necessarily represent the actual
color that the human eye perceives, it provides an objec-
tive quantification of color based on physical measure-
ments performed by image acquisition machinery.

Other Command-line Options
In addition to the command line options described
above, the user can use the following options: -w: Use
simple Weighted Nearest Neighbor instead of the WND
method described by Equation 1. If this option is used,
the distance of a feature vector x from a certain class c is
the shortest Euclidean distance between the given sample
and any training sample of that class, as defined by Equa-
tion 3

where Tc is the training set of class c, t is a feature vector
from Tc, |x| is the length of the feature vector x, xf is the
value of image feature f in the feature vector x, and Wf is
the Fisher score of feature f.

-d: Used for downsampling the images to N percents of
their original size before computing the image features.
For instance, specifying "-d50" will downsample the
image by 50%. The default value for this option is 100 (no
downsampling). This option can be used to accelerate the
computation process of datasets that contain large images.

-q: Normally, when testing the accuracy of a certain classi-
fier, a correct prediction is when the closest class is also the
ground truth class of the tested sample. However, in some
cases a user might want to consider a prediction as correct
if one of the several closest classes is the ground truth class.
For instance, if "-q5" is specified in the command line, a
prediction will be considered correct if one of the closest
five classes (as determined by the classifier) is the ground
truth class of the given sample. The default value for this
option is 1.

-N: Defines the number of classes. E.g., if a certain dataset
has 100 different classes, and the option "-N25" is speci-
fied in the command line, only the first 25 classes (in an
alphabetical order) will be included in the analysis, and
the last 75 classes will be ignored. If this option is not
specified, all classes in the dataset are used.

d W x tx c
t T

f f f

f

x

c
, min[()],= −

∈
=

∑ 2

1

(3)
Page 7 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
-v: In some cases, users might want to export or import the
weights (determined using the Fisher scores) that are
assigned to each feature. This can be done by using the "-
v" options, followed by the requested operation and the
path to a weight vector file. This gives the four following
options:

-vw/path/to/weight_vector_file – exports the weights to a
file.

-vr/path/to/weight_vector_file – reads the weights from a
file.

-v-/path/to/weight_vector_file – compute the Fisher
scores and then subtract the values in the file from the
computed weights.

-v+/path/to/weight_vector_file – compute the Fisher
scores and then add the values in the file to the computed
weights.

-s: Eliminates the messages wndchrm prints to the screen
and making it less verbose when it runs.

-h: Shows brief instructions and few examples for using
wndchrm.

Reports
An important feature of wndchrm is the exposition and vis-
ualization of the results in the form of reports that can be
distributed and viewed using a standard web browser.
This can be achieved by specifying the "-p" option and a
full path to an html file. For example, a report file
"report.html" is generated by using the following com-
mand:

% wndchrm test -p/path/to/feature_file/path/to/
report.html

Each report includes the classification accuracy, confusion
matrix, and similarity matrix of each random split into
training and test data, as well as the averaged values for all
splits. The number of splits can be determined by using
the "-n" option. For instance, if the user specifies "-n5" in
the command line, the classifier will be tested five times
such that each run uses a different random split of the data
into training and test images. The report also includes the
average accuracy, confusion matrix and similarity matrix
of the five runs. This feature can be important when the
size of the test set is small, so that averaging different splits
of the data can provide a more accurate measurement of
the performance of the classifier. The report also lists the
image features that were used for the classification along
with their assigned Fisher scores, which provide informa-
tion regarding the discriminative power of each feature.

In addition to similarity and confusion matrices, the
report also shows the classification of each individual
image. This includes the similarity values of the image to
each of the classes, and its most similar training image.
Specifying the most similar training image for any test
image can be useful for manually checking the misclassi-
fied images and getting better intuition about how the
images are being classified. In some cases it can also be
used for finding flaws in the dataset.

If the "-p" option is followed by a path to the root folder
of phylip 3.65 or 3.67 [20], the report also features a phy-
logeny of the class similarities using the similarity values
described earlier in the paper. The image of the phylogeny
is a postscript (.ps) file, which is copied to the same folder
of the report file. If ImageMagick is also installed on the
system, a jpg image of the phylogeny will be generated
and added to the html page of the report. A phylogeny can
be useful, for instance, for reconstructing biological path-
ways by visualizing the similarities between images of dif-
ferent phenotypes [24]. Figure 2 shows an example of a
phylogeny that visualizes phenotype similarities of Dro-
sophila cells with single gene knockdowns.

In some cases users may want to export the values com-
puted by wndchrm for further processing using external
tools such as spreadsheets or statistical analysis software.
This can be achieved by specifying the "+" character after
the "-p" switch. If "+" is specified, wndchrm exports the
similarity and confusion matrices in tsv (tab separated)
format, which is readable by most data processing tools.
The files are exported into a folder called "tsv", created in
the folder of the report. If the user wishes to generate the
tsv files and the phylogeny in the same command, the
path to phylip should follow the "+" (e.g., -p+/path/to/
phylip-3.67).

If the class names are numeric values, the report also
shows the Pearson correlation between the actual and pre-
dicted values, such that a predicted value is determined by
interpolating the values of the two nearest training sam-
ples that do not belong to the same class, as described by
Equation 4,

where V is the resulting predicted value, and d1, d2 are the
distances from the nearest two samples V1 and V2, such
that V1 and V2 belong to two different classes. The dis-
tances d1 and d2 are computed by Equation 1.

Using the Source Code
All features described in the previous section can be inte-
grated into existing or newly developed software products.

V
V
d

V
d d d

= +
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟1

1
2
2

1

1

1

2
(4)
Page 8 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
A detailed example of how the function calls are used can
be found in the file "wndchrm.cpp", which implements
the command line user interface.

The basic data structure of the code is the class "Training-
Set", which is implemented in the file "TrainingSet.cpp".
This class can be used to compute image features of a
given dataset, test a dataset, generate reports, and more.
Generally, computing image features for a given dataset of
images can be implemented by first creating an instance of
the class "TrainingSet", calling the method "LoadFrom-
Dir" to compute the image features of a dataset, and then
saving to a file as described by the following code:

#include "TrainingSet.h"

TrainingSet *ts;

ts = new TrainingSet();

ts->LoadFromDir();

ts->SaveToFile();

A dataset can be tested by first loading a file of computed
image features, splitting it into training and test sets, nor-
malizing the values, computing Fisher scores using the
training samples, and then testing the classification accu-
racy using the samples allocated for the test set. This
sequence of operations is summarized by the following
code:

TrainingSet *ts,*train,*test;

ts = new TrainingSet();

ts->ReadFromFile();

ts->split(train, test)

train->normalize();

train->SetFisherScores();

train->Test(test);

It is important that the "normalize()" method is called
before the Fisher scores are computed (using "SetFisher-
Scores"). The reason is that the different image features
have different ranges of values. In order to use the differ-
ences between the values of each feature as described in
Equation 1, the values should be normalized such that all
image features have the same range, which is set to [0,1].
The normalization of a certain feature f of a specific image
i is performed using Equation 5

where is the normalized value of the feature f of image

i, fi is the original feature value, and Tf is the set of all val-

ues of the feature f, computed from all images in the data-
set.

In some cases, users might want to add to the wndchrm
utility more image features that are necessary for their spe-
cific needs. This should be done by modifying the file "sig-
natures.cpp", which is the implementation of the class
"signatures". The class has two higher-level methods for
computing image features: "ComputeGroups" for com-
puting the larger set of image features, and "compute" for
computing the smaller set. Functions that compute new
image features can be called from inside these methods,

ˆ [max(|) min(|)] (min(|)),f m m T n n T f n n Ti f f i f= ∈ − ∈ ⋅ − ∈

(5)

f̂ i

An example phylogenyFigure 2
An example phylogeny. The phylogeny shows the visual
similarities of 16 classes, where each class is a set of 25
images of Drosophila cells with single gene knockdown. The
gene classes are specified by their CG numbers. As can be
learned from the phylogeny, the resulting phenotypes when
knocking down genes CG10895 and CG10873 (which have a
substrate-kinase relationship) are very similar to each other,
while the phenotypes of gene CG12284 (cell death), CG3733
(unknown function) and untreated cells are different from
the other cells.

12284

7825
3938

7538

1087310895
8711 5475

8114

 7922

3733

untreated3086

1258
Page 9 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
and the computed values can be added simply by using
the "Add" method.

Results and Discussion
The efficacy of the proposed image analysis utility was
tested using iicbu-2008 benchmark suite of biological
image datasets [25], which includes biological images of
different subjects such as organelles, cells, tissues, and full
organisms using different magnifications and different
types of microscopy. The number of classes, number of
images, microscopy, image formats, and image sizes are
specified in Table 2. This benchmark suite represents a
broad range of real-life biological imaging problems. The
performance of wndchrm on each of the datasets is
described by Figure 3. Comparing some of these perform-
ance figures to the reported performance of application-
specific image classifiers shows that wndchrm is favorably
comparable, as can be learned from Table 3. The inform-
ativeness of the different image features and their impor-
tance for each of these datasets is described in [5]. The
benchmark suite of iicbu-2008, as well as sample images
of each dataset, are available for free download at [26].

While wndchrm demonstrated convincing performance
on these benchmark datasets, it is important to note that
since there is no "typical" biological experiment, there is
also no defined scale for the expected accuracy of the clas-
sifier. The classification accuracy is influenced by very
many factors. These include the number of classes and the
number of images per class, but also parameters that are
more difficult to quantify such as the quality of the
images, the consistency of the images within each class
and the differences between the classes. To improve the
performance of a classifier, one can add more images to
the dataset and increase the size of the training set.
Another way to improve the classification accuracy is to
manually curate low quality images or images that are
inconsistent with the other images in the class. Finally,
highly similar classes can be merged into one class, and

then another classifier can be built to separate the images
classified into the merged class. This technique can
improve the classification accuracy because the second
classifier assigns higher Fisher scores to the features that
classify between these specific classes.

Many biological problems focus not only on the classifi-
cation of different sets of images, but also on assessing the
similarities between the different classes. The similarities
between the classes are reflected by the similarity table in
the report of the "test" command, and can be visualized
using a phylogeny generated by the phylip package. For
example, Table 4 shows the similarity values between dif-
ferent classes of C. elegans terminal bulb images, such that
each class of images was taken at a different age of 0, 2, 4,
6, 8, 10, or 12 days. As the table shows, the similarities
between the different classes correspond to the age differ-
ences. Visualizing these data using a phylogeny provides
an ordered list of the different ages, shown by Figure 4.
This order, inferred automatically by wndchrm, is in agree-
ment with the chronological ages of the worms. The only
exception is day 0, in which the worms still grow, and
therefore expected to be significantly different from adult
worms. An interesting observation is the large difference

Table 3: Comparison of wndchrm accuracy to application-
specific classifiers

Classification Accuracy

Dataset Benchmark
algorithm

Benchmark
accuracy (%)

Accuracy of
wndchrm (%)

Hela [29] 83 86
Pollen [30] 79 96
CHO [31] 87 95

HeLa dataset [32], consists of fluorescence microscopy images of
HeLa cells using 10 different labels, Pollen dataset [30], shows
geometric features of pollen grains, and the CHO dataset [31],
features fluorescence microscopy images of different sub-cellular
compartments.

Table 2: Test Datasets

Test Datasets

Dataset # of classes # of images # Image format Microscopy

Pollen 7 630 25 × 25 8 bit TIFF Phase contrast
RNAi 10 200 1024 × 1024 16 bit TIFF Fluorescence
C. elegans muscle age 4 252 1600 × 1200 16 bit TIFF Fluorescence
Terminal bulb aging 7 970 300 × 300 16 bit TIFF DIC
Binucleate 2 40 1280 × 1024 16 bit TIFF Fluorescence
Lymphoma 3 375 1388 × 1040 32 bit TIFF (color) Brightfield
Liver age 18 1500 1388 × 1040 32 bit TIFF (color) Brightfield
2D HeLa 10 860 382 × 382 16 bit TIFF Fluorescence
CHO 5 340 512 × 382 16 bit TIFF Fluorescence

Number of classes, number of images, format, size and microscopy of the datasets.
Page 10 of 13
(page number not for citation purposes)

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
between day 8 and day 10. This experiment demonstrates
that wndchrm can automatically deduce the continuos
nature of aging by measuring the similarities between
images taken at different ages. Example terminal bulb
images as well as a downloadable archive of the entire set
can be found at [26].

Another example uses automatically acquired microscopy
images of drosophila cells such that each class contains
images of the resulting phenotype of a single gene knock-
down. Table 5 shows the genes and the similarity values

that reflect the visual similarities between the different
phenotypes. This experiment uses wndchrm in order to

Classification accuracy using iicbu-2008Figure 3
Classification accuracy using iicbu-2008. As the graph shows, some of the image datasets were classified with very high
accuracy, such as Pollen, Binucleate, and Liver age (gender). Other datasets such as HeLa, Lymphoma and RNAi were classified
in accuracy of 80–85%, and the datasets Muscle Age, Terminal Bulb and Liver Aging (age) provided classification accuracy of
around 50%.

84

93
97

82

53
49

100

85

51

69

99

0

10

20

30

40

50

60

70

80

90

100

HeLa CHO Pollen RNAi Muscle age Terminal

bulb

Binucleate Lymphoma Liver Aging

(AL)

Liver

Gender

(AL)

Liver

Gender

(CR)

Dataset

Table 4: Similarity matrix of the terminal bulb worm aging

Similarity Matrix

day 0 day 2 day 4 day 6 day 8 day 10 day 12

day 0 1.00 0.66 0.63 0.59 0.63 0.55 0.58
day 2 0.68 1.00 1.00 0.99 0.95 0.76 0.65
day 4 0.64 0.93 1.00 1.00 0.97 0.82 0.71
day 6 0.55 0.84 0.96 1.00 1.00 0.89 0.75
day 8 0.55 0.77 0.89 0.93 1.00 0.84 0.71
day 10 0.53 0.52 0.70 0.63 0.77 1.00 0.98
day 12 0.49 0.48 0.65 0.58 0.68 0.94 1.00

Each class consists of microscopy images of the terminal bulb of C.
elegans nematodes taken at ages 0, 2, 4, 6, 8, 10, 12 days. As the table
shows, the similarity values are higher for neighboring age groups.
The dataset can be downloaded at http://ome.grc.nia.nih.gov/
iicbu2008/terminalbulb.tar.gz.

Phylogeny of the worm terminal bulb agingFigure 4
Phylogeny of the worm terminal bulb aging. The phyl-
ogeny that was automatically generated by wndchrm shows a
class order that is in agreement with the chronological ages.

day10day12

day8

day6 day2
day4

day0
Page 11 of 13
(page number not for citation purposes)

http://ome.grc.nia.nih.gov/iicbu2008/terminalbulb.tar.gz
http://ome.grc.nia.nih.gov/iicbu2008/terminalbulb.tar.gz

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
measure and quantify phenotype similarities for the pur-
pose of reconstructing biological pathways and finding
genes that are part of the same cellular mechanisms. This
type of analysis can be used for finding similarities
between genes based on the phenotypes that they pro-
duce, in contrast to finding similarities between genes by
analyzing their sequences using methods such as BLAST.
A similar analysis was used to produce the phylogeny of
Figure 2. This dataset is publicly available at [26].

Since wndchrm has been found useful for a relatively wide
range of biological imaging problems, we believe that this
utility can be useful for researchers who wish to apply bio-
logical image analysis to high content screening or other
biological experiments that involve high volumes of
image data. The source code can be integrated into other
software products using the source files or the "libimfit"
library, but is also wrapped as a command line utility that
can be easily used by researchers who have basic computer
skills and no previous knowledge in programming. We
therefore advise investigators to first use wndchrm before
taking the costly challenge of developing application-spe-
cific image classifiers.

Future plans include the addition of three-dimensional
image features, and also analysis of the images for finding
the more informative areas and differentiating them from
other areas that produce a weaker signal.

Additionally, wndchrm will be able to read images directly
from OME image server, so that all image formats sup-
ported by OME will be also supported by wndchrm.

Full source code is available for free download as part of
OME [1,2] software suite at [27], or as a "tarball" at [28].

Conclusion
The availability of biological image acquisition systems
and storage devices allows research that is based on high
content screening of vast pipelines of biological images.
However, while image analysis has been becoming
increasingly important in biological experiments,
machine vision algorithms are usually developed by pat-
tern recognition and signal processing experts, and biolo-
gists often do not have the knowledge and resources to
develop these algorithms and software tools.

Here we present a utility that can be used by experimental
biologists, and has been shown to be effective for various
actual biological experiments using real-life biological
data. While advanced users can embed the code and
libraries into their own software tools, researchers who
have basic computer skills can easily use the application
as a command line utility. This can assist experimental
biologists in obtaining effective image analysis capabili-
ties, yet without the sacrifice involved in designing, devel-
oping, and testing new software tools.

Authors' contributions
LS developed the described software and prepared the
manuscript. NO, TM, JJ, LS and IG developed an earlier
MATLAB implementation of the smaller feature set and
the WND feature classification algorithm. DME provided
data, performed software testing, edited the manuscript,
and advised on usability issues.

Table 5: Similarity matrix of 10 different phenotypes of drosophila cells

Similarity Matrix

CG10873 CG12284 CG1258 CG17161 CG3733 CG3938 CG7922 CG8114 CG8222 CG9484

CG10873 1.00 0.74 0.85 0.84 0.96 0.96 0.83 0.89 0.92 0.90
CG12284 0.61 1.00 0.75 0.67 0.68 0.69 0.68 0.79 0.77 0.68
CG1258 0.82 0.82 1.00 0.94 0.87 0.83 0.73 0.92 0.92 0.90
CG17161 0.78 0.75 0.85 1.00 0.84 0.81 0.72 0.78 0.84 0.86
CG3733 0.97 0.72 0.91 0.90 1.00 0.95 0.81 0.90 0.94 0.88
CG3938 0.99 0.82 0.88 0.86 0.95 1.00 0.93 0.89 0.98 0.94
CG7922 0.93 0.80 0.80 0.80 0.89 0.96 1.00 0.78 0.92 0.92
CG8114 0.82 0.86 0.93 0.83 0.80 0.80 0.69 1.00 0.89 0.82
CG8222 0.92 0.88 0.96 0.90 0.94 0.93 0.86 0.95 1.00 0.91
CG9484 0.72 0.74 0.87 0.81 0.78 0.81 0.79 0.84 0.83 1.00

Each class is a set of light microscopy images (60×) of drosophila cells with single gene knockdowns. The genes are the class names. The dataset is
available at http://ome.grc.nia.nih.gov/iicbu2008/rnai.tar.gz.
Page 12 of 13
(page number not for citation purposes)

http://ome.grc.nia.nih.gov/iicbu2008/rnai.tar.gz

Source Code for Biology and Medicine 2008, 3:13 http://www.scfbm.org/content/3/1/13
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Acknowledgements
This research was supported by the Intramural Research Program of the
NIH, National Institute on Aging.

References
1. Swedlow JR, Goldberg IG, Brauner E, Sorger PK: Image informat-

ics and quantitative analysis of biological images. Science 2003,
300:100-102.

2. Goldberg I, Allan C, Burel JM, Creager D, Falconi A, Hochheiser H,
Johnston J, Mellen J, Sorger PK, Swedlow JR: Image informatics
and quantitative analysis of biological images. Genome Biology
2005, 6:R47.

3. Swedlow JR: The Open Microscopy Environment: A collabora-
tive data modeling and software development project for
biological image informatics. In Imaging Cellular and Molecular Bio-
logical Functions Edited by: Spencer L, Frischknecht F. Berlin: Springer;
2007:71-92.

4. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman
O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini
DM: CellProfiler: image analysis software for identifying and
quantifying cell phenotypes. Genome Biology 2006, 7:R100.

5. Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberg I:
WND-CHARM – Multi purpose classification using com-
pound image transforms. Pattern Recognition Letters in press.

6. Lim JS: Two-dimensional signal and image processing New Haven: Pren-
tice Hall; 1990.

7. Gradshtein I, Ryzhik I: Table of integrals, series and products 5th edition.
Academic Press; 1994.

8. Gabor D: Theory of communication. Journal of IEEE 1946,
93:429-457.

9. Gregorescu C, Petkov N, Kruizinga P: Comparison of texture fea-
tures based on gabor filters. IEEE Trans on Image Processing 2002,
11:1160-1167.

10. Hadjidementriou E, Grossberg M, Nayar S: Spatial information in
multiresolution histograms. IEEE Conference on Computer Vision
and Pattern Recognition 2001, 1:702.

11. Tamura H, Mori S, Yamavaki T: Textural features corresponding
to visual perception. IEEE Trans On Systems, Man and Cybernetics
1978, 8:460-472.

12. Prewitt JM: Object enhancement and extraction. In Picture
Processing and Psychopictoris Edited by: Lipkin BS, Rosenfeld A. New
York: New York: Academic; 1970:75-149.

13. Murphy RF, Velliste M, Yao J, Porreca G: Searching online journals
for fluorescence microscopy images depicting protein sub-
cellular location patterns. Proc 2nd IEEE International Symposium
on Bioinformatics and Biomedical Engineering 2001:119-128.

14. Otsu N: A threshold selection method from gray level histo-
grams. IEEE Trans Systems, Man and Cybernetics 1979, 9:62-66.

15. Gray SB: Local properties of binary Images in two dimensions.
IEEE Trans on Computers 1971, 20:551-561.

16. Teague M: Image analysis via the general theory of moments.
Journal of the Optical Society of America 1980, 70:920-930.

17. Haralick RM, Shanmugam K, Dinstein I: Textural features for
image classification. IEEE Trans on Systems, Man, and Cybernetics
1973, 6:269-285.

18. Orlov N, Johnston J, Macura T, Shamir L, Goldberg I: Computer
vision for microscopy applications. In Vision Systems – Segmenta-
tion and Pattern Recognition Edited by: Obinata G, Dutta A. Vienna: ARS
Press; 2007:221-242.

19. Bishop CM: Pattern recognition and machine learning Berlin: Springer;
2006.

20. Felsenstein M: PHYLIP phylogeny inference package, Version
36. 2004.

21. Frigo M, Johnson SG: The design and implementation of
FFTW3. Proc IEEE 2005, 93:216-231.

22. Shamir L, Eckley DM, Goldberg IG: Image tiling vs. cell segmen-
tation – a case study. 47th American Society for Cell Biology Meeting;
Washington, DC 2007:35.

23. Shamir L: Human perception-based color segmentation using
fuzzy logic. Intl Conf on Image Processing, Computer Vision and Pattern
Recognition 2006, 2:496-505.

24. Eckley DM, Shamir L, Macura T, Orlon N, Goldberg IG: Automated
quantitative analysis of phenotype similarities. 3rd Workshop
on Bio-Image Informatics: Biological Imaging, Computer Vision and Data
Mining; Santa Barbara, CA 2008:1242.

25. Shamir L, Macura T, Orlov N, Eckley DM, Goldberg IG: IICBU 2008
– A benchmark suite for biological imaging. 3rd Workshop on
Bio-Image Informatics: Biological Imaging, Computer Vision and Data Min-
ing; Santa Barbara, CA 2008:1240.

26. IICBU-2008 [http://ome.grc.nia.nih.gov/iicbu2008]
27. Open Microscopy Environment [http://www.openmicros

copy.org]
28. Wndchrm download page [http://www.phy.mtu.edu/~lshamir/

downloads/ImageClassifier]
29. Murphy RF: Automated interpretation of protein subcellular

location patterns: implications for early detection and
assessment. Annals of the New York Academy of Sciences 2004,
1020:124-131.

30. France I, Duller AWG, Lamb HF, T DGA: A comparative study of
approaches to automatic pollen identification. British Machine
Vision Conference 1997.

31. Boland M, Markey M, Murphy RF: Automated recognition of pat-
terns characteristic of subsellular structures in florescence
microscopy images. Cytometry 1998, 33:366-375.

32. Boland MV, Murphy RF: A neural network classifier capable of
recognizing the patterns of all major subcellular structures
in fluorescence microscope images of HeLa cells. Bioinformat-
ics 2001, 17:1213-1223.
Page 13 of 13
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12677061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12677061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17076895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17076895
http://ome.grc.nia.nih.gov/iicbu2008
http://www.openmicroscopy.org
http://www.openmicroscopy.org
http://www.phy.mtu.edu/~lshamir/downloads/ImageClassifier
http://www.phy.mtu.edu/~lshamir/downloads/ImageClassifier
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15208189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751230
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Description of the Method
	Image Similarity
	Implementation
	Computational Complexity and Robustness
	Using the Command Line Utility
	Splitting the Dataset Into Training and Test Data
	Changing the Number of Image Features
	Image Tiling
	Using Multiple Processors
	Using the Large Feature Set
	Using Color Features
	Other Command-line Options
	Reports

	Using the Source Code
	Results and Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

