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Background: Commonly when designing studies, researchers propose to measure several independent variables in
a regression model, a subset of which are identified as the main variables of interest while the rest are retained in a
model as covariates or confounders. Power for linear regression in this setting can be calculated using SAS PROC
POWER. There exists a void in estimating power for the logistic regression models in the same setting.

Methods: Currently, an approach that calculates power for only one variable of interest in the presence of other
covariates for logistic regression is in common use and works well for this special case. In this paper we propose
three related algorithms along with corresponding SAS macros that extend power estimation for one or more
primary variables of interest in the presence of some confounders.

Results: The three proposed empirical algorithms employ likelihood ratio test to provide a user with either a power
estimate for a given sample size, a quick sample size estimate for a given power, and an approximate power curve
for a range of sample sizes. A user can specify odds ratios for a combination of binary, uniform and standard normal
independent variables of interest, and or remaining covariates/confounders in the model, along with a correlation

Conclusions: These user friendly algorithms and macro tools are a promising solution that can fill the void for
estimation of power for logistic regression when multiple independent variables are of interest, in the presence of

Introduction

The purpose of this work is to propose and demonstrate
the %LRpowerCorrl0 algorithm (and two related algo-
rithms) which estimates power and sample size for logistic
models in settings where one or more predictors are of
primary interest (Additional file 1). Additionally, covari-
ates (confounders) may be present in the model. All the
potential predictors can have a specified correlation struc-
ture and may be from a mixture of different univariate
distributions, namely normal, uniform, and binomial. The
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user inputs several conjectured attributes including sam-
ple size, correlation, and odds ratios for association be-
tween independent variables and the outcome, and the
result is an estimate of power. Two other related algo-
rithms are also described. In short, a second algorithm, %
Quickpower provides the inverse of %LRpowerCorri0, that
is, sample size for a given power. A third algorithm, %
LRpowerCorrlOC provides an approximate power curve
for a given range of sample sizes.

Background

The motivation for this work stems from methods that
are in use to estimate power and sample size for standard
linear regression models [1-4]. The MULTREG statement
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within SAS PROC POWER [1,5] allows the investigator to
determine the power to detect significance for a model
with set of primary predictors of interest in the presence
of covariates which are included in the model, but not of
primary interest. For example, suppose an investigator
proposes a linear model with four total predictors X1, X2,
X3, and X4 but is primarily interested in X1 and X2 while
controlling for X3 and X4. To power this setting the full
model would be:

Y = By + B X1+ B, X2 + By X3 + B, X4
while the reduced model would be:
Y = B, + BsX3 + B, X4
This corresponds to testing the null hypothesis:
H():8,=B,=0

in the full model. In the best case scenario to accurately
estimate power, we would like to know the difference in
the R-square of the full model and R-square for the re-
duced model. As an illustration, the short SAS code
below would return a power value of 0.864.

SAS code

/proc power ; \

multreg
model=fixed
alpha= .05
nfullpredictors= 4
ntestpredictors= 2
rsqfull=0.45
rsqreduced=0.34
ntotal= 60
power=. ;

\run;

/

The MULTREG statement works nicely, but requires esti-
mates of R-squared that investigators may not know in ad-
vance. However, with some matrix algebra investigators can
arrive at estimates for the R-squared for both the full and re-
duced models if they can provide a set of assumed correla-
tions between each predictor X and Y, along with assumed
correlations among each of the variables X. The details fol-
low. R-squared can be expressed with the matrix expression,

R = pyxR;;pyx
where p,, is the 1 x p vector of simple correlations be-
tween each of the individual p predictors and the
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response variable y, and R} is the inverse of the p x p
correlation matrix among each of the predictors. Next,
one can calculate R-square for the reduced model by
doing the identical calculation with the removal of the
predictors of interest from the rows of p,, and the rows
and columns of R;!. An example of these calculations is
as follows,

-1
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where the leading row vector is the set of simple correla-
tions of Y with each of the four predictors X1, X2, X3,
and X4. The middle matrix is the correlation of all four
predictors X1, X2, X3, X4 among themselves, and the
last column vector is the transpose of the leading vector.
The correlation values are from a particular data set and
are intended for demonstration. If we are interested in
investigating power for X1 and X2 while controlling for
X3 and X4 we would use the calculation,

1 5] [6
Ry iced = 16 A% [.5 1] * LJ =0.34

in which it can be seen that the first two columns of the
leading vector and the first two rows and columns of the
middle matrix (which correspond to X1 and X2) have
been omitted. The difference in these two calculations
results in,

R =Ry educed = 0-45-0.34 = 0.11

which represents another approach to providing the
difference in R-squares, a quantity needed in order to
calculate power for this regression model setting. A
corresponding set of calculations can be done for any
size set of p predictors with a set of predictors of inter-
est with the compliment of this set representing the
predictors that are serving for controls. It is a reason-
able approach in that researchers in many instances will
have some idea of the simple correlations among the
response and the predictors before their study, so this
approach does have its merit.

Our objective was to provide a power estimation
method for logistic regression settings that work in a
somewhat corresponding manner to the matrix ap-
proach above for ordinary least squares regression. Cur-
rently, all the software the authors are aware of (e.g,
SAS, PASS, nQuery), estimate logistic model power of
only one predictor of interest in the presence of some
number of other covariates [1,4]. A well written and
documented SAS macro intended for this scenario is the
%PowerLog macro [6]. The %PowerLog macro works
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nicely for this scenario but is not able to estimate power
for a corresponding setting as was discussed above, that
is, having more than one predictor of interest in a model
controlling for other covariates. Furthermore, all these
methods and software require inputs that are not always
user friendly to researchers and require some initial
knowledge of relationships as well as preliminary calcu-
lations. The proposed approach has the user providing
the conjectured odds ratios associated with each predictor
and the binary outcome, in addition to the correlations
among all the predictors which seems more intuitive to
many users. This approach has merit since the values of
regression coefficients are equal to the natural log of the
odds ratio. Demidenko et al. [7], published a similar
approach using odds ratios, and currently provides an
online applet (http://www.dartmouth.edu/~eugened/power-
samplesize.php), however, it is applicable only to one in-
dependent variable in the presence of one confounder.
Therefore our proposed methods and SAS tools ex-
tend the currently available methodology so that one
can power studies for multiple independent variables
of interest, in the presence of multiple covariates or
confounders. In the next section we outline our algo-
rithm to estimate power for a given sample size in this
manner. It is worth noting that the SAS macros LRPo-
werCorrl0, LRPowerCorr10C, and QuickPower that
use the algorithm can accommodate up to 10 predic-
tors, X1-X10. Another feature of the SAS macros is
that X1 and X2 are binomial predictors, X3-X6 are
uniform (-3,3) predictors, and X7-X10 are standard
normal (0,1) predictors. The investigator may use any
or all of these that may fit their setting.

Methods
LRpowerCorr10 algorithm steps

1. Define OR1-OR10 (the odds ratio associated with
predictors X1-X10), AVEP (the average proportion
of outcome Y =1 when covariates X1 — X10
equal zero), and P, the correlation matrix of the
predictors.

2. Create W, a n x 10 data matrix by simulating n rows
of ten univariate distributions with given means and
standard deviations.

3. Create Z by standardizing each element of W by
subtracting the appropriate column mean and
dividing by the corresponding standard deviation.

4. Define P the correlation matrix of the 10 predictor
variables. Calculate the Cholesky decomposition of
P, that is, the matrix U such that U'U =P.

5. Calculate X=Z U’

6. Multiply each element of X by its column’s standard
deviation and then add the column appropriate
mean.
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7. Calculate: logit = In(AVEP/(1-AVEP)) + In(OR1)X1 +
... +In(OR10)X10. Next calculate phat = exp(logit)/
(1 + exp(logit)). Phat represents the probability that
Y =1 for a particular case.

8. If phat is less than or equal to a random uniform (0,1)
draw then Y =1, otherwise Y = 0. This step is needed
to convert a phat probability to an appropriate binary
value in order to run PROC LOGISTIC.

9. Using SAS PROC LOGISTIC, fit the full model y =
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 and save the -2
log likelihood value.

10. Using SAS PROC LOGISTIC, fit the reduced
model which has the predictors of interest omitted
from the full model and save the -2 log likelihood
value.

11. Save the difference in the full and reduced model -2
log likelihood values (likelihood ratio test; LR) [8] and
determine if this value is greater or equal to the
appropriate critical value. If this is the case, record
this single simulation run as a ‘rejection’.

12. Repeat steps 1-10 m times and tabulate the
proportion of rejections. This proportion will be
the estimate of the power for the specified
scenario. Experience suggests that m =100 is
adequate to quickly evaluate scenarios. When a
precise final power estimate is required, m =1000
provides an estimate with a standard error of
about 0.01.

The %LRpowerCorr10 SAS macro

The user must define several variables as shown in Table 1.
The macro variable SAMPLESIZE corresponds to the
sample size that the macro is evaluating. NSIMS is the
number of simulation runs required by the user, while P is
the correlation among all of the predictors. AVEP is the
average proportion of ‘yes’ responses (Y = 1) when all the
predictor values are theoretically equal to zero. ORI1
through OR10 are odds ratio values associated with the
predictor variables X1-X10. X1 and X2 are binomial vari-
ables with probability of success defined by PCX1 and
PCX2. X3 through X6 are uniformly (-3,3) distributed
and X7 through X10 follow the standard normal distribu-
tions. The FULLMODEL macro variable has the user list
the predictor variables in the full model. It should be
noted that this is the literal script that is placed to the
right of the equal sign in the model statement of the
PROC LOGISTIC routine inside the macro, so care
should be taken for accuracy. In a like manner, the
REDUCEDMODEL variable is the list of predictors left
in the model after the terms of interest are removed
from the FULLMODEL list. ALPHA is the level of sig-
nificance and DFTEST is the degrees of freedom for
the likelihood ratio test [8]. This will correspond to the
number of predictor terms of interest, that is, the
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Table 1 LRpowerCorr10 macro variables

SAMPLESIZE The sample size to be evaluated

NSIMS The number of simulation runs

P The correlation among the predictors

AVEP The average number of “1” responses in the samples

OR1 The odds ratio associated with X1 (Binomial)

OR2 The odds ratio associated with X2 (Binomial)

OR3 The odds ratio associated with X3 (Uni(=3,3) )

OR4 The odds ratio associated with X4 ( Uni(=3,3) )

OR5 The odds ratio associated with X5 (Uni(=3,3) )

OR6 The odds ratio associated with X6 ( Uni(=3,3) )

OR7 The odds ratio associated with X7 (N (0,1))

OR8 The odds ratio associated with X8 (N (0,1) )

OR9 The odds ratio associated with X9 (N (0,1) )

OR10 The odds ratio associated with X10 (N (0,1) )

FULLMODEL The predictor terms in the full model among X1-X10

REDUCEDMODEL The predictor terms in the reduced model among
X1-X10

ALPHA The significance level of the testing

DFTEST The degrees freedom of the testing

PCX1 The probability of success for X1

PCX2 The probability of success for X2

difference in the number of terms in the FULLMODEL
and REDUCEDMODEL lists. Users should provide a
value for ORI through ORI10. If particular predictor
variables are not used in a power calculation, their cor-
responding OR should be set to ‘1’ to avoid matrix alge-
bra calculation problems. This point can be seen in
practice in the provided examples.

The %QuickPower SAS macro

The %QuickPower macro outputs a sample size needed
to achieve user specified power. The user inputs the
exact same set of input variables as %LRpowerCorrl0
except SAMPLESIZE. Instead of SAMPLESIZE user in-
puts desired POWER, for instance 0.8. In addition user
inputs number of terms in the full model (NTERMS-
FULL) right after the reduced model is specified. This
macro allows the user to get a quick approximate idea
of what sample size will be required for a given sce-
nario. It is sometimes beneficial to run this macro first
to get a ball park idea of required sample size, followed
by %LRpowerCorrl0 macro, instead of repeating simu-
lations in order to reach desired power.

The %LRpowerCorr10C SAS macro
The %LRpowerCorrl0C macro creates an approximate
power curve for a user supplied interval of sample
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sizes, which can be useful for grants and papers.
Instead of SAMPLESIZE or POWER, user supplies the
input variable LOWER and UPPER (desired sample
size range) in addition to the rest of the input set for
the %LRpowerCorrl0 macro. LOWER is the minimum
value on the horizontal axis of the output graph and
UPPER is the maximum value.

User notes and cautions

1. To minimize numerical problems that can arise
from complete separation, ensure that the product
n*AVEP (the product of the sample size and the
average proportion where Y = 1), as well as the
product n*(1 — AVEP), is at least 10.

2. Caution and thought should go into the value(s)
of OR and average sample proportion being
evaluated for multiple logistic regression model
power. If one evaluates OR3 = 2 along with
AVEP = 0.1 in the setting in which the X3 is
from the uniform (-3, 3) distribution, roughly
implies that the P(Y = 1) approximately doubles
for each one unit increase in X3, which is not
always reasonable. Thoughtful values of
conjectured odds ratios are vital to the macro’s
usefulness to supply meaningful sample size and
power values.

3. The %LRpowerCorrl0 macro uses the LR chi-square
test statistic to evaluate power [8]. Some other
power approaches use the Wald chi-square test
for the power evaluation [7]. These statistics have
asymptotically the same type I error and are
locally equivalent, however globally they are
different tests so while close, they don’t always
produce exactly same estimates of sample size
and/or power [7]. Most statisticians would agree
that the LR chi-square is generally a bit more
sensitive and this implies that if one compared
equivalent scenarios, it is likely that the LR
chi-square approach would be slightly more
powerful, but still very close.

Application and results

In the first example we demonstrate %LRpowerCorrl0
macro by specifying a sample of 700 for a scenario with
four independent covariates of interest X1-X3 and X7,
two of which are binary (X1 and X2), one uniform (X3)
and one standard normal (X7), with hypothesized ORs
of 1.5, 1.5, 1.1 and 1.1 in bold font below, respectively.
Full model also includes 4 additional covariates, X4, X8-
X10. Hypothesized correlation between variables is 0.2,
and P(Y=1) = 0.1.
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Figure 1 %LRpowerCorr10C macro example output.

%LRPowerCorr10 macro example commands

~

/ %LRPowerCorr10(700, 1000, .2, .1,
15,15
1.1, 1.02, 1.02, 1.02,
1.1, 1.02, 1.02, 1.02,
cx1 cx2 cx3 cx4 cx7 ¢x8 ¢x9 ¢x10,
cx4 cx8 ¢x9 ¢cx10,
.05,
4,
0.25,0.5);

\_ /

After running the algorithm described above 1000
times, macro yields the power estimate of 80% with 95%
ClIs ranging from 77% to 82%.

%LRPowerCorr10 macro example output

Sample size = 700; Simulations = 1000; Rho = .2; P(Y=1) = .1

OR1=1.5, OR2=1.5, OR3=1.1, OR4=1.02, OR5=1.02, OR6=1.02,
OR7=1.1, OR8=1.02, OR9=1.02, OR10=1.02

Full Model: cx1 cx2 cx3 ¢x7 cx4 cx8 ¢x9 cx10
Reduced Model: cx4 cx8 c¢x9 cx10

Power LCL UCL

80% 77% 82%

In the second example we show how to use %Quick-
power macro. The purpose of this macro is to provide a

user with a quick sample size estimate for a given sce-
nario. Below we specify the same model as in the first
example with the same ORs. Instead of a sample size in
this case we input the desired power, which is 0.8 in bold
font. This macro also requires the number of variables
in the full model which is 8, also in bold font. Other pa-
rameters remain the same.

%QuickPower macro example commands

~

/ %Quickpower (0.8,1000, .2, .1,
1.5,1.5
1.1, 1.02, 1.02, 1.02,
1.1,1.02,1.02, 1.02,
cx1 ¢cx2 cx3 cx4 cx7 cx8 ¢x9 ¢x10,
cx4 cx8 ¢x9 ¢cx10,
8, 05,
4,
25,.5)

\_ /

The %Quickpower macro estimate of the sample size
was 671. Within %Quickpower macro call this estimate
was inserted into %LRpowerCorrl0 macro and after run-
ning the algorithm 1000 times, macro yields the power
estimate of 77% with 95% CI ranging from 74% to 80%.
Since the sample size of 671 appears to be slightly
underpowered we could adjust it to 700 or higher as
needed, and rerun the %LRpowerCorrli0 to get the
power in desired range.
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%QuickPower macro example output

Sample size = 671; Simulations = 1000; Rho = .2; P(Y=1) = .1
ORI1=1.5, OR2=1.5, OR3=1.1, OR4=1.02, OR5=1.02, OR6=1.02,
OR7=1.1, OR8=1.02, OR9=1.02,0R10=1.02

Full Model: cx1 ¢x2 cx3 cx7 cx4 cx8 cx9 cx10
Reduced Model: cx4 cx8 cx9 cx10

Power LCL UCL

7% 74% 80%

In the third and final example we present the use and
the results of the %LRpowerCorr10C macro which pro-
vides an approximate power curve for the user specified
range of sample sizes. Again we use the same scenario
as above for consistency purposes, and we input the
sample size range from 600 to 1100, in bold font below.
The rest of the parameters remain the same.

%LRPowerCorr10C macro example commands

~

f %LRpowerCorr10C(600, 1100, 1000, .2, .1,
1.5, 1.5,
1.1, 1.02, 1.02, 1.02,
1.1, 1.02, 1.02, 1.02,

cx1 ¢cx2 ¢x3 cx4 cx7 cx8 ¢x9 ¢x10,

cx4 cx8 ¢x9 ¢cx10,
.05,
4,
25,.5);

N /

The resulting figure below shows that a sample of 600
has a power of slightly below 75%, and as sample ap-
proaches 1100 power reaches 95%. Sample size of 700
has approximate power of 80%, therefore based on ones
needs, desired sample size can be gauged (Figure 1).

Conclusions

The %LRpowerCorrl0 macro and the algorithm it is based
on (as well as other two algorithms proposed in this paper),
shows promise to fill a void for estimating power for multi-
variable logistic models when multiple covariates are of
interest. It is able to match the approach that researchers
use for multiple regression when estimating the power of a
model in which one or more predictors are of interest
while controlling for a number of other variables or con-
founders. There doesn’t exist another tool on the market
quite like this one, which allows us to power multiple inde-
pendent covariates in the presence of additional variables
in the model. Furthermore, unlike some other tools, inputs
for the proposed algorithms are more intuitive in the form
of odds ratios that most researchers are familiar with, and
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can test several possible magnitudes based on their as-
sumptions. It allows us to specify the amount of correlation
among all the predictors and attempt to match real data
analysis settings that researchers commonly encounter.

Additional file

Additional file 1: Text file that contains the three SAS macros
discussed in this manuscript.
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