
Garner and Puthige Source Code for Biology and Medicine 2014, 9:20
http://www.scfbm.org/content/9/1/20
SOFTWARE REVIEW Open Access
BioFlow: a web based workflow management
software for design and execution of genomics
pipelines
Harold Garner* and Ashwin Puthige
Abstract

Background: Bioinformatics data analysis is usually done sequentially by chaining together multiple tools. These
are created by writing scripts and tracking the inputs and outputs of all stages. Writing such scripts require
programming skills. Executing multiple pipelines in parallel and keeping track of all the generated files is difficult
and error prone. Checking results and task completion requires users to remotely login to their servers and run
commands to identify process status. Users would benefit from a web-based tool that allows creation and
execution of pipelines remotely. The tool should also keep track of all the files generated and maintain a history of
user activities.

Results: A software tool for building and executing workflows is described here. The individual tools in the
workflows can be any command line executable or script. The software has an intuitive mechanism for adding new
tools to be used in workflows. It contains a workflow designer where workflows can be creating by visually
connecting various components. Workflows are executed by job runners. The outputs and the job history are saved.
The tool is web based software tool and all actions can be performed remotely.

Conclusions: Users without scripting knowledge can utilize the tool to build pipelines for executing tasks. Pipelines
can be modeled as workflows that are reusable. BioFlow enables users to easily add new tools to the database. The
workflows can be created and executed remotely. A number of parallel jobs can be easily controlled. Distributed
execution is possible by running multiple instances of the application. Any number of tasks can be executed and
the output will be stored making it is easy to correlate the outputs to the jobs executed.
Background
High throughput Next Generation Sequencing techniques
are producing data at a very rapid pace. The large data
scale has resulted in the creation of several tools for faster
processing and analysis. Bioinformatics datasets are often
processed in stages. Pipelines are created so that at each
stage a software package (usually a command line tool) is
executed and the output produced is passed as input to
the next stage.
There are multiple tools available for use at any stage in

the pipeline and these tools support their own command
formats. Such sequence analysis pipelines require re-
searchers to write scripts to control the pipeline execution.
Writing these scripts require knowledge of a computer
* Correspondence: garner@vbi.vt.edu
Virginia Bioinformatics Institute, Washington Street 0477, Blacksburg 24061,
VA, USA

© 2014 Garner and Puthige; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
programming language such as Perl, Python or bash
scripting. When multiple such pipelines have to be exe-
cuted, users resort to writing more scripts to control the
execution order of other scripts. Users should also be able
to differentiate the output files generated by various tools
and isolate any failed tasks so that they can be re-
executed.
Bioinformatics pipelines can be modeled as workflows

where each work item is a stage (executable) in the pipe-
line. Workflow management software allows for the cre-
ation and execution of workflows. They are available as
both command line controlled software tools that enable
users to program and build custom workflows or they can
contain a user-interface for predefined use cases. Web
based workflow managers provide great flexibility and en-
able users to access them from any remote location
through a browser. These allow researchers to monitor all
Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly credited. The Creative Commons Public
mons.org/publicdomain/zero/1.0/) applies to the data made available in this

mailto:garner@vbi.vt.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Garner and Puthige Source Code for Biology and Medicine 2014, 9:20 Page 2 of 5
http://www.scfbm.org/content/9/1/20
executing tasks or create new tasks with minimal pro-
gramming requirements.
Taverna [1] and Galaxy [2] are commonly used for

workflow automation in bioinformatics. Both support web
based workflow execution through the browser. Creating
workflows in Taverna is not supported through the web
interface but can be performed by installing a standalone
workflow designer. Galaxy allows the addition of new
tools for executing locally installed command line execut-
ables and scripts by writing a tool configuration XML file.
Writing this file requires knowledge of XML [3]. bPipe [4]
and Ruffus [5] are other software packages for working
with workflows. bPipe is a java tool and Ruffus is available
as a python module. bPipe allows users to define various
execution blocks that can be joined together to create data
pipelines. Ruffus module uses decorators [6] to tag func-
tions and create an ordering of tasks. But, using them re-
quires programming and scripting skills.
To overcome these shortcomings we have created a

software program called BioFlow to greatly expand the
ability for non-programmers to build sophisticated data
analysis systems. BioFlow is a web-based tool for creat-
ing and managing pipelines. It has been created to be a
simple and easy to use workflow management tool. The
aim is to reduce the effort required in writing scripts for
creating pipelines and to enable remote execution of
tasks from any browser connected to the network. It has
been designed so that the tools can be added quickly
and hence the interface has been kept simple. Once
tools are added, they can be reused and users do not
need to remember command line requirements. Creat-
ing workflows is made easy by using a workflow de-
signer. The output and status of each command is saved
and this greatly simplifies the task of identifying errors
and rerunning pipelines.

Implementation
Architecture
Ruby on Rails is a web application development frame-
work that favors convention over configuration [7]. This
allows users to quickly understand the source code and
contribute to development. It also supports a rich data-
base of user-contributed libraries called rubygems that
ease many complicated tasks. Hence, we decided to use
Ruby on Rails for the server side architecture. The work-
flow designer on the client side is javascript intensive.
jQuery is the most widely used javascript framework [8]
and BioFlow uses it for handling all client side user inter-
actions. The connections between various tools are drawn
using jsPlumb [9], a library that provides a mechanism to
drag and connect user interface components.
To store the data in the backend, we use a MySQL data-

base. A developer can easily modify the configuration files
to use any database of their choice. BioFlow can be
deployed on any operating system supported by the Ruby
on Rails runtime library, including Windows, Linux and
Mac. It is deployed on an Apache server using Phusion
Passenger [10].

Model view controller
BioFlow follows a model view controller pattern for de-
velopment. The three layers are kept separate and each
layer can be independently modified without signifi-
cantly affecting other layers.
The model layer mimics the database tables and it con-

sists of different models for representing the tools and
workflows. Each workflow consists of multiple job models
and each job contains a result model. The view layer is
built using HTML, CSS and jQuery. There are different
views for adding tools, creating workflows and displaying
outputs. Each view communicates with a different control-
ler. This makes BioFlow modular and enables the layers to
function independently of each other.
The data exchanged between the client and controller is

in JSON format. Browsers are optimized for processing
JSON and therefore it was a natural choice for the data
format. When users create workflows in the browser, a du-
plicate workflow is created on the server side which is se-
rialized and saved in the database. The order of passing
outputs from one tool to another down the pipeline is
stored along with the workflows.

Background execution
By nature, bioinformatics tasks are long running. So, there
are separate views for creating workflows and viewing out-
puts. Web applications are not tolerant of delays and so
whenever requests for executing workflows are received,
BioFlow only stores them in the job execution queue and
returns. This job is later picked up by the background exe-
cution engine and executed. BioFlow uses a gem called
delayed_job [11], which can execute tasks using job run-
ners. A job runner is used to execute a single workflow.
This allows users to control the number of parallel tasks
that run on the server. This enables easy control over the
load distribution to match the server’s computing capabil-
ities. Controlling the number of parallel tasks helps in
managing a server’s capacity and ensuring that it is not
underutilized or overly strained.

Distributed execution
BioFlow supports execution on multiple machines simul-
taneously by sharing the database among various in-
stances. By configuring all instances to point to the same
database, the workflow queue can be shared. If job run-
ners are started on different machines, they will be able to
pick up tasks from the database. But, the instances need
to share the files on which the workflows are executed.
This is easily achieved by using shared drives or network



Garner and Puthige Source Code for Biology and Medicine 2014, 9:20 Page 3 of 5
http://www.scfbm.org/content/9/1/20
mounted drives. BioFlow is built for small environments
and hence it allows users to manually select the server on
which the task should be executed. This is useful when
one of the servers is running computation intensive tasks
while another server may be idle.

Results and discussion
Features
Adding command line tools to the database
One of the main drawbacks for using graphical workflow
automation tools is the difficulty in adding new tools to
the software package. Researchers regularly experiment
with various tools. BioFlow provides an easy and intui-
tive interface for adding command line tools and scripts
to its database. Any user who wishes to use a new tool
in a workflow has to first add it to the bioflow database.
Figure 1 shows the interface that allows users to add tools

to BioFlow. Complex command lines, when converted to a
workflow tool, eliminate the need to remember the com-
mand line. For each tool, a name, summary and the parame-
ters have to be provided. Optional and workflow specific
parameters can be passed along during workflow execution.
When adding a tool, its name, a short summary and the
command line used for executing it should be specified. The
tool should be installed on the server and available in a dir-
ectory in user’s PATH settings. For example, the tool in
Figure 1, accepts one input with the parameter “-b” and the
executable name “samtools view”. Parameters to generate an
output file can also be specified or the output can be redir-
ected from the standard output to a file using the redirec-
tion operator. So, in the later case, the generated command
will be “samtools view –b INPUT_FILE >OUTPUT_FILE”.
Figure 1 Adding command to BioFlow. Command Line tools are added
a tool to the category “Converter” with the command line “samtools view”
to stdout which is redirected using “>” to a file. The generated sample com
The name of the input file is automatically passed along by
the workflow executor. The name of the output file can be
either specified by the user or automatically generated.

Workflow designer
BioFlow contains a workflow designer, which allows vari-
ous tools to be chained together to create workflows.
The designer is divided into 3 panes – the tools pane on
the left, the designer pane in the center and the optional
parameters pane on the right.
The tools pane lists all available tools within collaps-

ible panels grouped together based on category. Creating
workflows require users to choose the tools that are part
of the workflow and interconnect them to define the
flow of data in the workflow. Users can drag and drop
tools to the center panel to make them part of the work-
flow. Each tool has input and output connections avail-
able. To create a pipeline, the output connection of one
tool is connected to the input of another tool, which is
the next stage in the pipeline. This creates an internal
rule to pass the output file from one tool as input to the
other. Figure 2 shows a sample workflow where the
pipeline has 2 input files and 3 tools.
The workflows can be saved along with the parameters

provided to enable reusing workflows for performing the
same analysis on different input datasets.

Viewing outputs
BioFlow has a notifications panel which automatically dis-
plays the current status of the workflow. It provides con-
stant feedback to the user regarding the status of the
workflow. Updates are displayed when the parameters are
through the Add Tools page in BioFlow. Here, it shows the addition of
. It accepts one input along with the “-b” parameter and writes output
mand is also shown.



Figure 2 Sample workflow creation. This figure shows the creation of a workflow using visual programming techniques. Here, 2 input
files-bam files being sorted individually using samtools and then merged to create a single bam file.

Garner and Puthige Source Code for Biology and Medicine 2014, 9:20 Page 4 of 5
http://www.scfbm.org/content/9/1/20
changed or the job name is modified. Since a workflow
consists of multiple tools executed in succession, a notifi-
cation is displayed whenever a tool starts or completes.
This gives an indication to the user about the completion
progress status of the workflow.
The View Output button in the workflow designer page,

when clicked, shows the detailed output for the whole job.
A panel slides in from the right and displays output for
each tool in the workflow. The input files, output files, total
time taken by the tool, exit code, stdout(standard output)
and stderr(standard error) are collected and displayed in
the outputs page. This allows for quick identification of any
tools that have failed and helps speed debugging. All this
can be viewed from within the workflow designer page.
To view output of other concurrently running or com-

pleted jobs, users can browse to the view outputs page. This
page displays a grid in which all jobs are listed along with
their current status. Users can quickly see any failed jobs or
jobs with errors and identify the root cause. Clicking on
any row shows the detailed output of each individual tool.
In this way, BioFlow maintains a history of all workflows
that have been executed. This helps users keep track of
various files generated by each pipeline. Once the task is
complete, users can browse to the outputs page, note the
filename and do further analysis on the file. Intermediate
files are also saved. In future releases, it will be possible to
modify the workflows to create unique directories for each
workflow. This will further decrease the effort required for
finding all required outputs created by a workflow. The
outputs view as depicted in Figure 3 shows output below
the tool and the history page that contains outputs of all
previously executed workflows.
Installation
Installing BioFlow requires the Ruby on Rails runtime li-
brary, MySQL database and an Internet connection to
download the rubygems. After downloading BioFlow, users
need to run “bundle install”. This will automatically down-
load all the required gems. Next, the config/database.yml
file needs to be edited to specify the database host name.
Once the database is seeded, the application can be started



Figure 3 Output below the workflow item and History of all workflows. Bioflow provides multiple ways for viewing outputs and two of
them are shown here. The image on the left shows output within the workflow designer. The output for each tool can viewed right below the
tool. The image on the right shows the History of all workflows that were executed. The output of each tool is also availble in the history.

Garner and Puthige Source Code for Biology and Medicine 2014, 9:20 Page 5 of 5
http://www.scfbm.org/content/9/1/20
using “rails server”. By default it runs on port 3000 and can
be seen by browsing to it.

Conclusions
BioFlow has been designed to simplify the entire process of
creating and executing workflows. The simple and easy
user interface for adding tools enables users to quickly add
executables and scripts to BioFlow. The mechanism of
visually connecting tools to build workflows allows users
without programming skills to create pipelines. The func-
tionalities provided by scripting can be done using the
workflow designer. The stored outputs and history help
users in debugging errors and re run only the failed pipe-
lines. The number of parallel jobs can be controlled using
job runners. This eliminates the need to write parent scripts
that control other child scripts. BioFlow also provides basic
distributed execution capabilities allowing users to utilize
multiple servers in their environment. Hence, it greatly sim-
plifies the task of creating, executing and tracking the out-
puts of bioinformatics data processing pipelines.

Availability and requirements
The application is available at http://bioflow.vbi.vt.edu.
The source code can be downloaded at the same page or
at https://github.com/Bioflow/bioflow and is made avail-
able under the standard MIT license.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
The application was designed, developed and tested by AP under the
guidance of HG and other members of the lab. AP drafted the initial version
of the manuscript, which was later edited after receiving comments from
HG. Both authors have read and approved the final manuscript.

Authors’ information
HG is Professor at Virginia Bioinformatics Institute, Virginia Tech and Virginia
Tech Carilion School of Medicine; AP is a Masters student in the department
of Computer Science, Virginia Tech.

Acknowledgements
The project was funded by HG under Medical Informatics and Systems
Division Directors Funds.

Received: 18 November 2013 Accepted: 5 September 2014
Published: 18 September 2014

References
1. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K,

Pocock MR, Wipat A, Li P: Taverna: a tool for the composition and enactment
of bioinformatics workflows. Bioinformatics 2004, 20(17):3045–3054.

2. Goecks J, Nekrutenko A, Taylor J, Team TG: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010, 11(8):R86.

3. Galaxy Wiki – Adding tools to Galaxy. http://Wiki.galaxyproject.org/Admin/
Tools.

4. Sadedin SP, Pope B, Oshlack A: Bpipe: a tool for running and managing
bioinformatics pipelines. Bioinformatics 2012, 28(11):1525–1526.

5. Goodstadt L: Ruffus: a lightweight Python library for computational
pipelines. Bioinformatics 2010, 26(21):2778–2779.

6. Ruffus. http://www.ruffus.org.uk/tutorials/simple_tutorial/step1_follows.html.
7. RubyOnRails. http://rubyonrails.org/.
8. Usage of javascript libraries. http://w3techs.com/technologies/overview/

javascript_library/all.
9. jsPlumb. https://jsplumbtoolkit.com.
10. Phusion Passenger – App server for ruby. https://www.phusionpassenger.com/.
11. delayed_job. https://github.com/collectiveidea/delayed_job.

doi:10.1186/1751-0473-9-20
Cite this article as: Garner and Puthige: BioFlow: a web based workflow
management software for design and execution of genomics pipelines.
Source Code for Biology and Medicine 2014 9:20.

http://bioflow.vbi.vt.edu/
https://github.com/Bioflow/bioflow
http://Wiki.galaxyproject.org/Admin/Tools
http://Wiki.galaxyproject.org/Admin/Tools
http://www.ruffus.org.uk/tutorials/simple_tutorial/step1_follows.html
http://rubyonrails.org/
http://w3techs.com/technologies/overview/javascript_library/all
http://w3techs.com/technologies/overview/javascript_library/all
https://jsplumbtoolkit.com
https://www.phusionpassenger.com/
https://github.com/collectiveidea/delayed_job

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Architecture

	Model view controller
	Background execution
	Distributed execution

	Results and discussion
	Features
	Adding command line tools to the database

	Workflow designer
	Viewing outputs
	Installation

	Conclusions
	Availability and requirements
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	References

