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A proof of the DBRF-MEGN method, an algorithm
for deducing minimum equivalent gene networks
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Abstract

Background: We previously developed the DBRF-MEGN (difference-based regulation finding-minimum equivalent
gene network) method, which deduces the most parsimonious signed directed graphs (SDGs) consistent with
expression profiles of single-gene deletion mutants. However, until the present study, we have not presented the
details of the method’s algorithm or a proof of the algorithm.

Results: We describe in detail the algorithm of the DBRF-MEGN method and prove that the algorithm deduces all
of the exact solutions of the most parsimonious SDGs consistent with expression profiles of gene deletion mutants.

Conclusions: The DBRF-MEGN method provides all of the exact solutions of the most parsimonious SDGs
consistent with expression profiles of gene deletion mutants.
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Background
Identification of gene regulatory networks (hereafter
called gene networks) is essential for understanding cel-
lular functions. Large-scale gene deletion projects [1-4]
and DNA microarrays [5,6] have enabled the creation of
large-scale gene expression profiles of gene deletion
mutants [7,8]; these large-scale profiles comprise the
expression levels of thousands of genes measured in
deletion mutants of those genes. Such profiles are
invaluable sources for identifying gene networks. Many
procedures have been developed for inferring gene net-
works from such profiles [9-18].
Kyoda et al. developed the DBRF-MEGN (difference-

based regulation finding-minimum equivalent gene net-
work) method, an algorithm for inferring gene networks
from large-scale gene expression profiles of gene dele-
tion mutants [14]. In this algorithm, gene networks are
modeled as signed directed graphs (SDGs) in which a
regulation between two genes is represented as a signed
directed edge whose sign - positive or negative - repre-
sents whether the effect of the regulation is activation or
inhibition and whose direction represents which gene

regulates which other gene; the most parsimonious
SDGs consistent with the expression profiles are thus
deduced. Kyoda et al. showed that the method is applic-
able to large-scale gene expression profiles of gene dele-
tion mutants and that networks deduced by the method
are valid and useful for predicting functions of genes
[14]. However, details of the method’s algorithm and a
proof of the algorithm have not previously been
published.
Here we describe in detail the algorithm of the DBRF-

MEGN method and prove that the algorithm provides
all of the exact solutions of the most parsimonious gene
networks consistent with expression profiles of gene
deletion mutants.

Implementation
The software of the DBRF-MEGN method was written
in C++ under Linux. The complete source code files, a
binary Linux executable file, and the software manual
are available [see Additional File 1].

Results
Difference-based deduction of initially deduced edges
and the minimum equivalent gene networks
The DBRF-MEGN method consists of five processes,
namely (1) difference-based deduction of initially
deduced edges, (2) removal of non-essential edges from
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the initially deduced edges, (3) selection of the uncov-
ered edges in main components from the non-essential
edges, (4) separation of the uncovered edges in main
components into independent groups, and (5) restora-
tion of the minimum number of edges from each inde-
pendent group [14]. First, we define a gene network
modeled as an SDG:
Definition 1: A signed directed graph (SDG) is given

by a tuple G = (V, E, f) with a set V of nodes (genes), a
set E⊆V×V of directed edges, and an edge sign function
f:E®{± 1}, which is an integral part of an SDG.
The first process of the DBRF-MEGN method is

“difference-based deduction of initially deduced edges”
(Figure 1b), which uses an assumption that is commonly
made in genetics and cell biology [14], i.e., there exists a
positive (negative) regulation from gene A to gene B
when the expression level of gene B in the deletion
mutant of gene A is significantly lower (higher) than in
the wild-type (Figure 1a). For each possible pair of genes
in the profiles, the process determines whether positive
(negative) regulations between those genes exist and
deduces all edges consistent with both the assumption
and the profiles by detecting the difference in expression
levels between the wild type and deletion mutants; we
call these edges initially deduced edges.
Definition 2: Let us assume the intervention experi-

mentshave been performed for the gene set J, J ⊆V. Let
D = (djk)ÎR

J×V be a matrix such thatdjk represents the
expression of gene kafter an intervention in gene j (rela-
tive to wild-type expression). From this, we deduce the
graph initially deduced edges, Gide = (V,Eide,f). We
assume a negative regulation of k by j if djk > a for
some suitably chosen constant a. Analogously, a positive
regulation of k by j is postulated whenever djk <b for
some b (sensibly, we require b < 0 < a). Formally,

Eide =
{(
j, k

) ∈ J × V|djk > α or djk < β
}

and f:Eide®{± 1} is given by f((j,k)) = 1 if there is a
positive regulation of k by j, and otherwise f((j,k)) = -1.
The thresholds a and b determine the significance of

the difference in expression levels between the wild type
and deletion mutants. These thresholds can be specified
by various procedures such as by using fold-change or
the statistical significance of the expression level
[7,8,14,19,20].
The DBRF-MEGN method deduces the most parsimo-

nious SDGs consistent with the SDG that consists of
the initially deduced edges. Before defining the most
parsimonious SDGs, we need to introduce the function
exp and the concept cover (Figure 2).
Definition 3: If, and only if, ∃ (i, j), (j, k), (i, k) | f(i, j) × f

(j, k) = f(i, k), then exp(i, j, k) = 1; otherwise, exp(i, j, k) = 0.

Definition 4: Let Ep ⊆ Eide be a set of edges. Define

E(0)
p = Ep and by induction E(r+1)

p = E(r)
p ∪ {(

j, k
) ∈ Eide|∃

(
j, i

)
, (i, k) ∈ E(r)

p

such that exp(j,i,k)=1}. Moreover, let Ecovp = E(∞)
p .

Remark: The family of edge sets on V is partially
ordered by set inclusion. If E1⊆E2, note that by a trivial
induction on r, E(r)

1 ⊆ E(r)
2 , and hence Ecov1 = ∪∞

c=0E
(c)
1 ⊆ ∪∞

c=0E
(c)
2 = Ecov2 .

This means that the mapping .cov : E �→ Ecov is monotonic.
Let E ⊆ Eide. By construction, an edge (j, k) from

(
Ecov

)cov
is an element of

(
E(r))(s)

= E(r+s) for suitable r,s Î N. This

implies Ecov ⊆ (
Ecov

)cov ⊆ ∪∞
c E(c) = Ecov. Thus

(
Ecov

)cov = Ecov, and
the mapping .cov �→ Ecov is a so-called closure operation.
Lemma 1: If E1⊆E2, Ecov1 ⊆ Ecov2 .
Proof: The remark proves lemma 1.
Lemma 2: If E1 ⊆ Ecov2 , then Ecov1 ⊆ Ecov2 .
Proof: Ecov1 ⊆ (

Ecov2

)cov = Ecov2 by monotonicity and
closure of the mapping .cov.
Lemma 3: If E1 ⊆ Ecov2 and E3 ⊆ Ecov1 , then E3 ⊆ Ecov2 .
Proof: By E3 ⊆ Ecov1 ⊆ (

Ecov2

)cov = Ecov2 by monotoni-
city and closure of the mapping.cov.
Now, we define the most parsimonious SDGs consis-

tent with the expression profiles of gene deletion
mutants. A most parsimonious SDG consists of the mini-
mum number of edges that “cover” all initially deduced
edges. By this definition, an edge can be redundant only
when it is “explained” by two other initially deduced
edges. Importantly, an edge is not redundant when it is
“explained” by only three or more initially deduced edges
(Figure 3a). We call the most parsimonious SDGs mini-
mum equivalent gene networks (MEGNs).
Definition 5: G0 =

(
V,E0, fE0

)
(where fE0 is the restric-

tion of f to E0) is a most parsimonious SDG, named a
MEGN, of G = (V,Eide,f) if and only if it satisfies the fol-
lowing conditions: (1) E0⊆Eide, (2) Ecov0 = Eide, (3) ∀ Ep ⊆
Eide such that Ecovp = Eide, |E0| �

∣∣Ep
∣∣. Since we keep G =

(V,Eide,f) fixed for the rest of the paper, we often call G0

simply a MEGN, without explicit reference to G.

Removal of non-essential edges from the initially
deduced edges
The second process of the DBRF-MEGN method
removes all non-essential edges from the initially deduced
edges. The process removes all edges that are explained
by two other initially deduced edges (Figure 1c). The
resulting edges are called essential edges and the removed
edges are called non-essential edges.
Definition 6: If there exist (i, j), (j, k), (i, k) Î Eide

such that exp(i, j, k) = 1, then (i, k) is called a non-essen-
tial edge. Let Enes be the set of non-essential edges. The
set Ees of essential edges is the complement of Enes in
Eide, Ees = Eide\Enes.
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Figure 1 An example of the deduction of MEGNs from the expression profiles of gene deletion mutants. (a) An assumption used in the
DBRF-MEGN method. (b) Deduction of the initially deduced edges. The matrix represents a set of expression profiles and the schematic
represents a set of initially deduced edges. In the matrix, A, B, ... represent expression levels of gene A, gene B, ..., and aΔ, bΔ, ... represent
deletion mutants of gene A, B, ... The up (down) arrows indicate that the gene expression levels are higher (lower) in the deletion mutant than
in the wild type. (c) Essential edges. Non-essential edges are gray-dotted. (d) Uncovered edges. Uncovered edges are gray-dotted and covered
edges are black-dotted. (e) Exclusion of uncovered edges in peripheral components. (O, J) ∈ E(0)

ucv, (N, J) ∈ E(1)
ucv, (M, J) ∈ E(2)

ucv, and
(I, J) ∈ E(3)

ucv are uncovered edges in peripheral components. The resulting four gray-dotted edges are uncovered edges in main components.
(f) Independent groups of uncovered edges in main components. For each group, the minimum number of edges with which essential edges
can explain all edges in the group are shown: (E, J) or (F, J) for G0, and (H, K) or (H, L) for G1. (g) Four MEGNs of the profiles. Combinations of
the minimum numbers of edges of two independent groups (G0 and G1) produce all four MEGNs.
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Essential edges and non-essential edges have the
following properties.
Lemma 4: If Ep ⊆ Eide and Ecovp ⊇ Ees, then Ep ⊇ Ees.
Proof: Assume that there exists (i, j) ÎEes such that (i, j)

∈ Ecovp and (i, j) ∉ Ep. Because (i, j) ∈ Ecovp and (i, j) ∉ Ep,

there exist (i, k), (k, j)∈ Ecovp such that exp(i, k, j) = 1. This
contradicts our assumption (i, j) ∉ Ees.
Lemma 5: If G0 =

(
V,E0, fE0

)
is a MEGN, Ees ⊆ E0.

Proof: Ecov0 = Eide ⊇ Ees, hence E0 ⊇ Ees by lemma 4.
When the essential edges cover all initially deduced

edges, the SDG consisting of the essential edges is the
only MEGN consistent with the profiles.

Theorem 1: If Ecoves = Eide, then Ges =
(
V,Ees, fEes

)
is the

unique MEGN of G = (V, Eide, f).
Proof: By hypothesis, conditions (1) Ees ⊆ Eide, and (2)

Ecoves = Eide, of a MEGN are met. It remains to show the
uniqueness and minimality of Ees. (3) Let G0 =

(
V,E0, fE0

)
be an arbitrary MEGN. Then by lemma 5, Ees ⊆ E0, and
by minimality of E0, it follows that Ees = E0. The theorem
is proved.

Selection of the uncovered edges in main components
from the non-essential edges
The essential edges sometime fail to cover all initially
deduced edges because some edges in the initially deduced
edges represent direct gene regulations even when they
are explained by two other edges (Figure 1d). In this case,
the method restores the minimum number of non-essen-
tial edges so that the resulting edges (essential edges and
the restored non-essential edges) cover all initially deduced
edges. The SDG, consisting of essential edges and of the
restored non-essential edges, is a MEGN. Before selecting
the sets of non-essential edges to be restored, the method
distinguishes non-essential edges that have a chance to be
included in the MEGNs from those that do not in order
to reduce the number of non-essential edges to be con-
sidered for the restoration and thus to reduce the

Figure 2 Introduction to the function “exp” and the concept
“cover”. (a) Initially deduced edges (Eide). (b) A set of edges (Ep). (c)
Four cases of exp(a, b, c) = 1. In each case, (a, c) is explained by (a,
b) and (b, c). (d) The set of edges that are covered by edges in Ep
(Ecovp ). (A, C) and (C, D) explain (A, D); the (A, D) and (B, A) explain
(B, D). Thus, (A, D) and (B, D) are covered by edges in Ep. (D, E) is not
covered by edges in Ep because (D, E) cannot be explained by edges
in Ep. (e) Edges that are covered by edges in Ep (black) and those
that are not covered by edges in Ep (gray-dotted).

Figure 3 Difference between MEGN and MEG. Deduction of the
MEGN (a) and the MEG (b) from the same graph is shown. The
MEGN includes the edge from A to D because no two edges explain
the edge. In contrast, the MEG does not include the edge from A to
D because A can reach D without using the edge from A to D
(A®B®C®D). The MEGN consists only of the essential edges.
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computational cost to find non-essential edges to be
restored. This third process of the DBRF-MEGN method
consists of two sub-processes, namely (a) selection of
uncovered edges and (b) selection of uncovered edges in
main components. The resulting non-essential edges are
called uncovered edges in main components, and from
these edges the later processes of the DBRF-MEGN
method select edges that are included in the MEGNs.
a) Selection of uncovered edges
The first sub-process distinguishes the non-essential
edges that are covered by the essential edges from those
that are not (Figure 1d). Those edges are called covered
edges and uncovered edges, respectively.
Definition 7: Let Ecv = (Ees)

cov\ Ees be the set of
covered edges. Let Eucv = Eide \( Ees ∪ Ecv) be the set of
uncovered edges. The set of initially deduced edges is
thereby partitioned into three disjoint edge sets: Eide =
Ees ∪ Ecv ∪ Eucv.
Here, we prove that the MEGNs do not include cov-

ered edges.
Lemma 6: If G0 =

(
V,E0, fE0

)
is a MEGN, then Ees ⊆

E0 ⊆ Ees ∪ Eucv.
Proof: First, Ees ⊆ E0 by lemma 5. By definition 7, Ees ⊆

E0\Ecv, hence (E0\Ecv)cov ⊇ (E0\Ecv) ∪ Ecoves ⊇ E0 by monoto-
nicity of.cov. It follows that (E0\Ecv)cov ⊇ Ecov0 = Eide by
lemma 2. By minimality of E0, E0 = E0\ Ecv, which is
equivalent to E0 ∩ Ecv = F. By definition 7, this implies E0
⊆ Ees ∪ Eucv, completing the proof.
b) Selection of uncovered edges in main components
The second sub-process distinguishes uncovered edges
that have a chance to be included in the MEGNs from
those that do not (Figure 1e; Figure 4). Those edges are
called uncovered edges in main components and uncov-
ered edges in peripheral components. The uncovered
edges in peripheral components are defined as follows:
Definition 8: Define E(0)

ucv be the set of uncovered
edges (i,j) Î Eucv which cannot be used to directly
explain another uncovered edge in Eucv with the other
edges (k,i) Î Eide or (j,k) Î Eide.
Lemma 7: (Eide\E(0)ucv)cov ⊇ E(0)ucv.

Proof: By definition 8, the edges in E(0)
ucv cannot explain

another uncovered edges in Eucv. Therefore, the edges in
E(0)
ucv can be explained by the edges in Eide\E(0)

ucv. The
lemma is proved.
Definition 9: Following the definition 8, define

E(r+1)
ucv = E(r)

ucv ∪ {(
i, j

) ∈ Eucv\ E(r)
ucv which cannot be used

to directly explain another uncovered edge in Eucv\E(r)
ucv

with the other edges (k,i) Î Eide or (j,k) Î Eide}. Let

Epcucv = ∪∞
c=0E

(c)
ucv be the set of uncovered edges in periph-

eral components. Let Emc
ucv = Eucv\Epcucv be the set of uncov-

ered edges in main components. The set of initially

deduced edges is thereby partitioned into four disjoint
edge sets: Eide = Ees ∪ Ecv ∪ Emc

ucv ∪ Epcucv.
In the following, we prove that the MEGNs do not

include uncovered edges in peripheral components.
First, we prove that uncovered edges in peripheral com-
ponents have the following properties.

Lemma 8: (Eide\ ∪r
c=0 E

(c)
ucv)cov ⊇ ∪r

c=0E
(c)
ucv.

Proof: We prove lemma 8 by mathematical induction.
(1) By lemma 7, lemma 8 is true when r = 0. By

Figure 4 Example of uncovered edges in peripheral and main
components. (a) Initially deduced edges (Eide). (b) Essential edges
(Ees). Non-essential edges are dotted. (c) Uncovered edges (Eucv).
Because all non-essential edges cannot be covered by essential
edges, the non-essential edges are called uncovered edges (Eucv). (d)
Uncovered edges in peripheral components (gray-dotted). (B, D)
and (B, E) are uncovered edges in peripheral components because
(B, E) does not explain any other edges in Eucv with an edge in Eide,
and (B, D) does not explain any other edges in Eucv except (B, E)
with an edge in Eide. (A, C) and (B, C) are uncovered edges in main
components. If edges in a MEGN cover (A, C) and (B, C), the edges
also cover (B, D) and (B, E). (B, D) and (B, E) cover no edges except
themselves. Thus, (B, D) and (B, E) are not included in the MEGNs.
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definitions 8 and 9,
(
Eide\

(
E(0)
ucv ∪ E(1)

ucv

))cov ⊇ E(1)
ucv, hence(

Eide\
(
E(0)
ucv ∪ E(1)

ucv

))cov ⊇ (
Eide\

(
E(0)
ucv ∪ E(1)

ucv

)) ∪ E(1)
ucv =

(
Eide\E(0)

ucv

)
.

By lemmas 2 and 7,
(
Eide\

(
E(0)
ucv ∪ E(1)

ucv

))cov ⊇ E(0)
ucv. Thus,

lemma 8 is true when r = 1. (2) Assume that
lemma 8 is true when r = m. This means that we
assume that

(
Eide\ ∪m

c=0 E
(c)
ucv

)cov ⊇ ∪m
c=0E

(c)
ucv (2a). By

definition 9,
(
Eide\ ∪m+1

c=0 E(c)
ucv

)cov ⊇ E(m+1)
ucv (2b). Because(

Eide\ ∪m+1
c=0 E(c)

ucv

)cov ⊇ Eide\ ∪m+1
c=0 E(c)

ucv and (2b),(
Eide\ ∪m+1

c=0 E(c)
ucv

)cov ⊇ Eide\ ∪m
c=0 E

(c)
ucv (2c). Because (2a),

(2c) and lemma 3,
(
Eide\ ∪m+1

c=0 E(c)
ucv

)cov ⊇ ∪m
c=0E

(c)
ucv (2d).

Because (2b) and (2d),
(
Eide\ ∪m+1

c=0 E(c)
ucv

)cov ⊇ ∪m+1
c=0 E(c)

ucv.
Thus, lemma 8 is true when r = m +1, if it is true when
r = m. By (1) and (2), lemma 8 is true.
Lemma 9: (Eide\Epcucv)cov ⊇ Epcucv.
Proof: By lemma 8,

(
Eide\ ∪∞

c=0 E
(c)
ucv

)cov ⊇ Eide\ ∪∞
c=0 E

(c)
ucv.

Because ∪∞
c=0E

(c)
ucvu = Epcucv, lemma 9 is true.

Now we prove that the MEGNs do not include uncov-
ered edges in peripheral components.
Lemma 10: If G0 =

(
V,E0, fE0

)
is a MEGN,

E0 ⊆ Ees ∪ Emc
ucv.

Proof: Assume that there exists
(
i, j

) ∈ Epcucv ∩ E0.
Because of lemma 5 and definition 7,
Ecov0 ⊃ (

E0\
{(
i, j

)})cov ⊇ Ees ∪ Ecv, hence Ecov0 \(E0\
{(
i, j

)})cov ⊆ Eucv by
lemma 6. By the assumption

(
i, j

) ∈ Epcucv ∩ E0 and defini-
tion 8, Ecov0 \(E0\

{(
i, j

)})cov ⊆ Epcucv, hence
(
E0\

{(
i, j

)})cov ⊇ Eide\Epcucv.
By lemmas 2 and 9, (

E0\
{(
i, j

)})cov ⊇
(
Eide\Epcucv

)cov
⊇

(
Eide\Epcucv

)
∪ Epcucv = Eide.

This contradicts our assumption that G0 =
(
V,E0, fE0

)
is

a MEGN. Therefore, E0 ∩ Epcucv = φ. By definition 9 and
lemma 6, this implies E0 ⊆ Ees ∪ Emc

ucv, completing the
proof.

Separation of the uncovered edges in main components
into independent groups and restoration of the minimum
number of edges from each independent group
The fourth process of the DBRF-MEGN method sepa-
rates uncovered edges in main components into “inde-
pendent groups” so that edges to be restored can be
deduced independently for each group (Figure 1f; Figure
5). For each group, the fifth process of the DBRF-
MEGN method deduces the minimum number of edges
with which essential edges can cover all edges in the
group. All sets of such edges are deduced for each
group. The essential edges and any possible combination
of these sets from each group generate a MEGN of the
profiles (Figure 1g).
The independent groups are generated so that the

edges in one group do not cover those in other groups.
Definition 10: Define Emc(0)

ucv be a set of

an edge
(
i, j

) ∈ Emc
ucv, and by induction

Emc(r+1)
ucv = Emc(r)

ucv ∪ {(
i, j

) ∈ Emc
ucv\Emc(r)

ucv |∃ (
j, k

) ∈ Eide, (i, k) ∈ Emc(r)
ucv

such that exp(i, j, k) = 1 or ∃ (k, i) ∈ Eide,
(
k, j

) ∈ Emc(r)
ucv

such that exp(k, i, j) = 1 or ∃ (i, k) ∈ Emc(r)
ucv ,

(
k, j

) ∈ Eide
such that exp(i, k, j) = 1 or ∃ (i, k) ∈ Eide,

(
k, j

) ∈ Emc(r)
ucv

such that exp(i, k, j) = 1}. Let Eig0ucv = Emc(∞)
ucv be

the set of edges in an independent group.
Let Eigs+1ucv = Emc(∞)

ucv , where Emc(0)
ucv is a set of an

edge
(
i, j

) ∈ Emc
ucv\ ∪s

c=0 E
igc
ucv and by induction

Emc(r+1)
ucv = Emc(r)

ucv ∪
{(
i, j

) ∈
(
Emc
ucv\ ∪s

c=0 E
igc
ucv

)
\Emc(r)

ucv |∃ (
j, k

) ∈ Eide, (i, k) ∈ Emc(r)
ucv

such that exp(i, j, k) = 1 or ∃ (k, i) ∈ Eide,
(
k, j

) ∈ Emc(r)
ucv

such that exp(k, i, j) = 1 or ∃ (i, k) ∈ Emc(r)
ucv ,

(
k, j

) ∈ Eide
such that exp(i, k, j) = 1 or ∃ (i, k) ∈ Eide,

(
k, j

) ∈ Emc(r)
ucv

such that exp(i, k, j) = 1}. Then, ∪∞
c=0E

igc
ucv = Emc

ucv.
The essential edges and a combination of sets of the

minimum number of edges for each independent group
generate a MEGN of the profiles.

Definition 11: Let Eigiucvmin be the set of edges in ith

independent group that satisfies (1) Eigiucvmin ⊆ Eigiucv, (2)

Figure 5 An example of independent groups. (a) Initially
deduced edges (Eide). (b) Essential edges (Ees). Uncovered edges in
main components (Emc

ucv) are dotted. (c) Independent groups of
uncovered edges in main components. Uncovered edges in main
components are separated into two independent groups G0 (Eig0ucv)
and G1 (Eigiucv). Edges in one group do not explain those in other
group. Eig0ucv consists of E

mc(0)
ucv =

{
(A, D)

}
and

Eigiucv. E
igi
ucv consists of E

mc(0)
ucv =

{
(D, G)

}
, Emc(1)

ucv =
{
(E, G)

}
,

Emc(3)
ucv =

{
(E, F) , (H, F)

}
, Emc(3)

ucv =
{
(E, F) , (H, F)

}
,

and Emc(4)
ucv =

{
(E, C), (H, I)

}
.
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Emc(4)
ucv =

{
(E, C), (H, I)

}
, and (3) ∀Ep ⊆ Eigiucv such that∣∣∣Eigiucvmin

∣∣∣ �
∣∣Ep

∣∣,
∣∣∣Eigiucvmin

∣∣∣ �
∣∣Ep

∣∣.
We prove that the essential edges and a combination

of sets of the minimum number of edges for each inde-
pendent group generate a MEGN of the profiles as
follows:
Lemma 11: If there exist (i, j) Î Eigiucv, (i, k), (k, j) Î

Eide such that exp(i, k, j) = 1, then {(i, k), (k, j)} ∩ Eucv ⊆
Eigiucv.
Proof: By definition 10, lemma 11 is true.

Lemma 12: (∪∞
c=0E

igc
ucvmin ∪ Ees)cov = Eide.

Proof: By definitions 7 and 11,

(∪∞
c=0E

igc
ucvmin ∪ Ees)cov ⊇ ∪∞

c=0E
igc
ucv ∪ Ees ∪ Ecv. Because

(∪∞
c=0E

igc
ucvmin ∪ Ees)cov ⊇ Emc

ucv ∪ Ees ∪ Ecv = Eide\Epcucv,
(∪∞

c=0E
igc
ucvmin ∪ Ees)cov ⊇ Emc

ucv ∪ Ees ∪ Ecv = Eide\Epcucv. By

lemmas 2 and 8, (∪∞
c=0E

igc
ucvmin ∪ Ees)cov ⊇ Epcucv. Therefore,

(∪∞
c=0E

igc
ucvmin ∪ Ees)cov = Eide.

Theorem 2: Gmin = (V,Emin = ∪∞
c=0E

igc
ucvmin ∪ Ees, fEmin )

is a MEGN.

Proof: (1) (∪∞
c=0E

igc
ucvmin ∪ Ees) ⊆ Eide by the condition of

theorem 2.(2) By lemma 12, (∪∞
c=0E

igc
ucvmin ∪ Ees)cov = Eide.

(3) By lemmas 4, 11 and definition 11, ∀ Ep ⊆ Eide

such that Ecovp ⊇ ∪∞
c=0E

igc
ucv ∪ Ees,

∣∣∣∪∞
c=0E

igc
ucvmin ∪ Ees

∣∣∣ �
∣∣Ep

∣∣.
Because (∪∞

c=0E
igc
ucv ∪ Ees)cov ⊇ (∪∞

c=0E
igc
ucvmin ∪ Ees)cov = Eide

and lemma 2, ∀ Ep ⊆ Eide such that Ecovp = Eide,∣∣∣∪∞
c=0E

igc
ucvmin ∪ Ees

∣∣∣ �
∣∣Ep

∣∣. The theorem is proved.

Remark: When there exist more than one solution
of the minimum number of edges for independent
groups, the SDGs each of which consists of the essen-
tial edges and a possible combination of sets of the
solutions for each independent group are MEGNs
because these SDGs must satisfy the conditions in
definition 5.

Algorithms of the DBRF-MEGN method
We are concerned with algorithms that are computa-
tionally efficient for deducing MEGNs from expression
profiles of single-gene deletion mutants. We list these in
a form easily translatable into a computer program.
(A1) Algorithm for deducing initially deduced edges
double d[n][n]: gene expression profiles
int t[n][n]
void dbrf()
int i, j;
for i = 1 to n do
for j = 1 to n do
if d[i][j] <b &i ≠ j then

t[i][j]: = +1;
else if d[i][j] > a &i ≠ j then
t[i][j]: = -1;

else
t[i][j]: = 0;

The matrix d[n][n] represents the gene expression
profiles. Each entry d[i][j] represents the log-ratio of
the expression of gene j in gene i deletion mutants to
that in the wild-type. The non-zero entries of the
resulting matrix t[n][n] represent the initially deduced
edges. If an entry t[i][j] is +1 or-1, it represents a posi-
tive or negative edge from gene i to gene j, respec-
tively. The number of complete iterations is bounded
by n2.
(A2) Algorithm for distinguishing the essential edges from
the non-essential edges
int t[n][n]: initially deduced edges
void ess_noness()
int i, j, k;
for j = 1 to n do
for i = 1 to n do
if t[i][j] ≠ 0 then
for k = 1 to n do
if t[j][k] ≠ 0 &t[i][k] ≠ 0 &t[i][k] = t[i][j]× t[j][k]

then
check(t[i][k]);

The checked entries of the matrix t[n][n] represent
non-essential edges. The unchecked non-zero entries of
the resulted matrix t[n][n] represent essential edges. We
created this algorithm by modifying Warshall’s algo-
rithm [21]. The number of complete iterations is
bounded by n3.
(A3.1) Algorithm for distinguishing uncovered edges from
covered edges
int t[n][n]: initially deduced edges
int e[n][n]: essential edges
void covered_edge()
int i, j, k;
bool finished;
finished : = false;
while finished = false do
finished : = true;
for i = 1 to n do
for j = 1 to n do
if e[i][j] ≠ 0 then
for k = 1 to n do
if e[j][k] ≠ 0 &t[i][k] ≠ 0 &t[i][k] = e[i][j] ×

e[j][k] then
e[i][k]: = t[i][k];
check(e[i][k]);
finished : = false;

The checked entries of the matrix e[n][n] represent
covered edges. The non-zero entries of the matrix t[n]
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[n] that differ from the non-zero entries of the resulted
matrix e[n][n] represent uncovered edges. This algo-
rithm iterates over the while loop to find edges in Enes
that can be covered by the essential edges. Thus, the
number of iterations is bounded by |Enes| · n3.
(A3.2) Algorithm for finding uncovered edges in peripheral
components
int t[n][n]: initially deduced edges
int u[n][n]: uncovered edges
void peripheral_uncovered()
int i, j, k;
bool flag, sflag;
flag : = false;
while flag = false do
flag : = true;
for j = 1 to n do
for i = 1 to n do
if u[i][j] ≠ 0 then
sflag : = false;
for k = 1 to n do
if t[j][k] ≠ 0 &u[i][k] ≠ 0 &t[i][k] = t[i][j] × t[j]

[k] then
sflag : = true;
if t[k][i] ≠ 0 &u[k][j] ≠ 0 &t[k][j] = t[k][i] × t[i]

[j] then
sflag : = true;
if sflag = false then
check(u[i][j]);
flag : = false;
rm_checked_edge(); // set all checked entries to 0

The entries of the resulted matrix u[n][n] that have
been changed from +1 or -1 to 0 represent uncovered
edges in peripheral components. The non-zero entries
of the resulted matrix u[n][n] represent uncovered edges
in main components. This algorithm iterates over the
while loop to find edges in Eucvthat are to be included
in Epcucv. Thus, the number of complete iterations is
bounded by n3 · |Eucv|.
(A4.1) Algorithm for dividing uncovered edges in main
components (Emc

ucv) into independent groups
int t[n][n]: initially deduced edges
int e[n][n]: uncovered edges in main components
ig indgrp : independent group
list <edge >el : edge list
list <ig >igl : independent group list
void independent_group()
int i, j;
for i = 1 to n do
for j = 1 to n do
if e[i][j] ≠0 then
el.clear();
el.append(eij);
append_group(i, j);

indgrp.init();
indgrp.set_el(el); // store edge list el in indgrp
igl.append(indgrp); // indgrp : an independent

group
void append_group(int i, int j)
int x;
for x = 1 to n do
if t[i][x] ≠0 &t[x][j] ≠0 then
if t[i][j] = t[i][x] × t[x][j] then
if e[i][x] ≠0 then
el.append(eix);
e[i][x]: = 0;
append_group(i, x);

if e[x][j] ≠0 then
el.append(exj);
e[x][j]: = 0;
append_group(x, j);

if t[x][i] ≠0 &t[x][j] ≠0 then
if t[x][j] = t[x][i] × t[i][j] then
if e[x][j] ≠0 then
el.append(exj);
e[x][j]: = 0;
append_group(x, j);

if t[j][x] ≠0 &t[i][x] ≠0 then
if t[i][x] = t[i][j] × t[j][x] then
if e[i][x] ≠0 then
el.append(eix);
e[i][x]: = 0;
append_group(i, x);

The number of complete iterations of indepen-
dent_group() is bounded by n2. The number of complete
iterations of append_group(int, int) is bounded
(|Emc

ucv| − 1) · n. Thus, the number of complete iterations
is bounded by (|Emc

ucv| − 1) · n3.
(A4.2) Algorithm for finding all sets of minimum number of
edges to be restored in each independent group
int e[n][n]: essential edges and uncovered edges in
peripheral components
ig indgrp : independent group
list <ig >igl : independent group list
list <edge >el, tmp_el : edge list
list <edge list >combi_el : combination of edge list
void find_min_ig()
int i, num_edge;
for i = 1 to igl.size() do
combi_el.clear(); el.clear();
indgrp ¬ igl.get_ig(i); // copy the ith indepen-

dent group from igl
el ¬ indgrp.get_el();
for num_edge = 1 to el.size() do
add_edge(num_edge, 1);
if (combi_el.size() > 0) then
break;
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set_min_combi_el(i, combi_el); // store
combi_el in the ith independent group

void add_edge(int num_edge, int start)
int j;
if start + num_edge - 1 >el.size() then
return;

for j = start to el.size() do
set_edge(j); // set the entry of e[n][n] corre-

sponding to the jth edge
// in el to +1 or -1 according to the sign of

the edge
check(el.get_edge(j)); // check the jth edge in el
if num_edge > 1 then
add_edge(num_edge - 1, j + 1);

else
if (confirm() = true) then
tmp_el.clear();
set_tmp_el(); // append all checked edges to

tmp_el
combi_el.append(tmp_el); // tmp_el : a set of

the minimum number of
// edges to be restored

reset_edge(j); // set the entry of e[n][n] corre-
sponding to the jth edge

// in el to 0
uncheck(el.get_edge(j)); // uncheck the jth edge

in el
bool confirm(): when resulting edges e[n][n] can

covered all edges in the group, return true.
The number of complete iterations is bounded by∑G

j=1

∑mj

i=1
RjCi ·

(
Rj − i

) · n3j , where G is the number of

independent groups, Rj is the number of edges in the jth
independent group, nj is the number of genes in the jth
independent group, and mj is the number of edges to be
restored in the jth independent group.
(A5) Algorithm for deducing all MEGNs by making all
possible combinations of sets of the minimum number of
edges for each independent group
int e[n][n]: essential edges
int megn : the number of MEGNs
list <ig >igl : independent group list
list <edge list >tmp_combi_el : combination of edge

list
list <edge >tmp_el : edge list
void megn()

int i;
i : = 1; megn : = 0;
sub_megn(i);
if megn = 0 then

e[n][n]: MEGN // e[n][n] represents the
MEGN when Ecoves = Eide
void sub_megn(int i)

int x, y, count;

if i >igl.size() then
return;

tmp_combi_el ¬ get_min_combi_el(i); // copy com-
bi_el of the ith independent
// group
for y = 1 to tmp_combi_el.size() do

tmp_el ¬ tmp_combi_el.get_el(y); // copy the
yth edge list of tmp_combi_el

set_edges(tmp_el); // set the entries of e[n][n]
corresponding to the edges in

// tmp_el to +1 or -1 according to the signs of
the edges

if i = igl.size() then
megn++;
e[n][n]: MEGN // e[n][n] represents a MEGN

when Ecoves 
= Eide
else
sub_megn(i + 1)

reset_edges(tmp_el); // set the entries of e[n][n]
corresponding to the edges in

// tmp_el to 0
The number of complete iterations is bounded by∏G

j=1
Sj, where Sj is the number of sets of minimum

number of edges to be restored for the jth independent
group.

Discussion
We have described in detail the algorithm of the DBRF-
MEGN method and have proved that the algorithm pro-
vides all of the exact solutions of the most parsimonious
gene networks consistent with expression profiles of gene
deletion mutants. The resulting gene networks, called
MEGNs, are the most parsimonious SDGs consistent
with an SDG that consists of the initially deduced edges.
In graph theory, many algorithms have been developed
for deducing the most parsimonious unsigned directed
graphs consistent with a given unsigned directed graph;
these graphs are called minimum equivalent graphs
(MEGs) [22-25]. MEGN is not just an “SDG version” of
MEG, as is explained below. Although both MEGN and
MEG are the most parsimonious graphs of a given graph,
the parsimoniousness of the graph is defined differently
between these graphs. MEGN consists of the minimum
number of edges that cover all edges of a given graph
(initially deduced edges), whereas MEG consists of the
minimum number of edges that retain the reachability of
a given graph [22]. MEGNs use the cover instead of the
reachability because a MEGN is a prediction of a gene
network consisting only of direct gene regulations [14].
When positive regulations from gene A to gene B, from
gene B to gene C, from gene C to gene D, and from gene
A to gene D are detected and regulation from gene A to
gene C is not detected, the regulation from gene A to
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gene D is likely to be a direct regulation instead of an
indirect regulation as a result of the other three regula-
tions (Figure 3a). The use of cover makes MEGNs
include edges representing such likely direct regulations
(Figure 3a). In contrast, the MEGs, using reachability, do
not include those edges (Figure 3b). Therefore, the
DBRF-MEGN method, which deduces MEGNs, is funda-
mentally different from algorithms that deduce MEGs or
algorithms for transitive reduction of SDG [16-18].
The selection of uncovered edges in main components

(the third process) and the generation of independent
groups (the fourth process) make the DBRF-MEGN
method applicable to large-scale gene expression profiles.
Without these processes, the computational cost for find-
ing all sets of non-essential edges to be included in the

MEGNs is n3
∑m

i=1
|Enes |Ci · (|Enes| − i) where n is the

number of genes and m is the number of non-essential
edges to be included in a MEGN. This computation is
impractical for large-scale gene expression profiles because
|Enes |Cm increases rapidly as |Enes| or m increase. The selec-
tion of uncovered edges in main components reduces the

computational cost to n3
∑m

i=1 |Emc
ucv|Ci

· (∣∣Emc
ucv

∣∣ − i
)
and the

generation of independent groups further reduces it to∑t

j=1

∑mj

i=1
∣∣∣Eigjucv

∣∣∣Ci ·
(∣∣∣Eigjucv

∣∣∣ − i
)

· n3j , where t is the num-

ber of independent groups, nj is the number of genes in
the jth independent group, and mj is the number of edges
in the jth independent group to be included in a MEGN.∣∣∣Eigjucv

∣∣∣ and mj are usually far smaller than |Enes| and m.

Because of these reductions of the computational cost, the
DBRF-MEGN method successfully deduced MEGNs from
sets of large-scale gene expression profiles [14] [see Addi-
tional file 2, Table S1; Additional file 3]. Although there is
no guarantee that the method will deduce MEGNs from
any given expression profiles in an acceptable time, the
method would most probably deduce MEGNs from most
sets of expression profiles in an acceptable time.
Because MEGNs are deduced from initially deduced

edges, the accuracy of MEGNs depends on that of initi-
ally deduced edges. The primary source for the inaccu-
racy in initially deduced edges is the noise of the
expression profiles. Importantly, the number of false-
positive edges in MEGN depends more on that of fal-
sely-detected edges than that of falsely-missed edges in
initially deduced edges; the number of false-negative
edges in MEGN depends more on that of falsely-missed
edges than that of falsely-detected edges in initially
deduced edges [see Additional file 2, Table S2; Addi-
tional file 2, Figure S1]. These dependencies suggest
the following guideline for the thresholds a and b (Defi-
nition 2): when the number of false-positive edges is
more important than that of false-negative edges in

MEGN, a (b) should be a little higher (lower) than the
optimal value; in contrast, when the number of false-
negative edges is more important than that of false-posi-
tive edges in MEGN, a (b) should be a little lower
(higher) than the optimal value.
The DBRF-MEGN method is applicable not only to

gene expression profiles of deletion mutants but also to
those of gene overexpressions and conditional knock-
downs/knock-outs [26-28]. We cannot obtain gene
expression profiles of deletion mutants for essential
genes. Thus, the method cannot deduce gene networks
including essential genes when we use gene expression
profiles of deletion mutants. A possible solution for this
problem is to use the expression profiles of gene overex-
pressions or conditional knock-downs/knock-outs.
Applications of the DBRF-MEGN method to those
profiles will deduce gene regulations that cannot be
deduced from gene expression profiles of gene deletion
mutants.
A limitation of the DBRF-MEGN method is its inabil-

ity to deduce (1) self-regulation of genes, and (2) combi-
natorial gene regulations such as regulation in which the
expression of gene A is down-regulated only when both
gene B and gene C are inactive. Self-regulation could be
deduced by using chromatin immunoprecipitation [29].
Combinatorial gene regulations could be deduced by
using the expression profiles of multiple gene deletion
mutants [30]. Synthetic genetic arrays can systematically
construct a collection of double-gene deletion mutants
[31]. A combination of the DBRF-MEGN method and
the above techniques would provide more accurate
information about gene networks.
When the DBRF-MEGN method is applied to gene

expression profiles measured by using DNA microarray,
each of the deduced edges represents regulation of one
gene’s mRNA level by another gene’s activity. Therefore,
the deduced MEGNs do not include edges that repre-
sent post-transcriptional gene regulations although they
play major roles in the cell. However, because the algo-
rithm of the DBRF-MEGN method is based on logic
that is most commonly used in genetics and cell biology
to infer gene networks from small-scale experiments, we
can predict post-transcriptional modulators of transcrip-
tional activity from those MEGNs. We predicted total
72 transcriptional regulators and 232 post-transcrip-
tional modulators of 18 transcriptional regulators from
the MEGNs deduced from a set of gene expression pro-
files for 265 Saccharomyces cerevisiae genes [14]. The
DBRF-MEGN method is applicable not only to gene
expression profiles measured by using DNA microarray
but also to those measured by using other technologies
such as 2D-PAGE-MS [32] and protein chips [33].
MEGNs deduced from those non-DNA microarray
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expression profiles will include edges that represent
post-transcriptional gene regulations in the cell.

Conclusions
We described in detail the processes of the DBRF-
MEGN method and proved that these processes provide
all of the exact solutions of the most parsimonious gene
networks consistent with the expression profiles of gene
deletion mutants, which are called MEGNs. The DBRF-
MEGN method provides invaluable information for
understanding cellular functions.

Availability and requirements
Project name: DBRF-MEGN
Project home page: http://so.gsc.riken.jp/dbrf-megn
Operating system: Linux
Programming language: C++
Other requirements: None
Licence: GNU LGPL
Any restrictions to use by non-academics: Licence

required

Additional material

Additional file 1: The complete source code files, a binary Linux
executable file, and the software manual.

Additional file 2: Supporting text for the applicability of the DBRF-
MEGN method to the large-scale expression profiles and the
sensitivity of the DBRF-MEGN method to the noise of the
expression profiles.

Additional file 3: The MEGNs deduced from large-scale gene
expression profiles.
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