
SOFTWARE REVIEW Open Access

IHE cross-enterprise document sharing for
imaging: interoperability testing software
Rita Noumeir*†, Bérubé Renaud†

Abstract

Background: With the deployments of Electronic Health Records (EHR), interoperability testing in healthcare is
becoming crucial. EHR enables access to prior diagnostic information in order to assist in health decisions. It is a
virtual system that results from the cooperation of several heterogeneous distributed systems. Interoperability
between peers is therefore essential. Achieving interoperability requires various types of testing. Implementations
need to be tested using software that simulates communication partners, and that provides test data and test
plans.

Results: In this paper we describe a software that is used to test systems that are involved in sharing medical
images within the EHR. Our software is used as part of the Integrating the Healthcare Enterprise (IHE) testing
process to test the Cross Enterprise Document Sharing for imaging (XDS-I) integration profile. We describe its
architecture and functionalities; we also expose the challenges encountered and discuss the elected design
solutions.

Conclusions: EHR is being deployed in several countries. The EHR infrastructure will be continuously evolving to
embrace advances in the information technology domain. Our software is built on a web framework to allow for
an easy evolution with web technology. The testing software is publicly available; it can be used by system
implementers to test their implementations. It can also be used by site integrators to verify and test the
interoperability of systems, or by developers to understand specifications ambiguities, or to resolve
implementations difficulties.

Background
The Electronic Health Record (EHR) enables access to
relevant diagnostic information in order to assist in
health decisions; and this, independently from the geo-
graphic location of the point of access or the institution
where the information was initially gathered. However,
EHR is not a single system that can be provided by a
single manufacturer. It is a virtual system that results
from the cooperation of several heterogeneous distribu-
ted systems. Interoperability is therefore essential.
Achieving interoperability requires the use of communi-
cation standards; it also requires common vocabularies,
common semantics, as well as process flows that are
agreed on. Therefore, ensuring interoperability requires

various types of testing: testing peers’ ability to commu-
nicate and exchange data; testing peers’ ability to parse
and extract information from the successfully exchanged
messages; and testing peers’ ability to react to the
extracted information by changing information in their
systems or by influencing subsequent workflow actions.
Interoperability challenges in healthcare are important:

healthcare systems have to deal with extremely diverse
clinical information such as diagnostic images, lab or
cardiology results, as well as with various healthcare
specific standards. Moreover, interoperability testing in
healthcare is very new. To our knowledge, it started in
1999 with the first Integrating the Healthcare (IHE) con-
nect-a-thon [1]. It is a face-to face testing event where
hundreds of systems from various healthcare manufac-
turers test their software implementation of IHE profiles
by executing real clinical scenarios. By putting in place
this testing event, IHE has been a pioneer in healthcare
testing.

* Correspondence: rita.noumeir@etsmtl.ca
† Contributed equally
Department of Electrical Engineering, École de Technologie Supérieure,
University of Quebec, 1100 Notre-Dame West, Montreal, Quebec, H3C 1K3,
Canada

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

© 2010 Noumeir and Renaud; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:rita.noumeir@etsmtl.ca
http://creativecommons.org/licenses/by/2.0


In order to ensure interoperability and to conduct
testing accordingly, detailed specifications are needed.
One could think that medical standards such as the
Digital Imaging and Communications in Medicine
(DICOM) [2] and Health Level 7 (HL7) are enough to
ensure interoperability. But medical interoperability his-
tory has demonstrated that this is not the case. These
standards have existed for almost three decades without
ensuring interoperability in healthcare. In fact, standards
are necessary. Without them interoperability is simply
impossible. However, standards alone are not sufficient.
They specify how systems can exchange messages or
information without specifying how messages can or
should be combined to conduct a workflow. Also, to
ensure their long term viability standards tend to
encompass many if not all possible situations. Therefore,
they suffer from various ambiguities and offer multiple
possible choices that hinder interoperability.
Filling the gap between standards and systems imple-

mentation has required expensive, site-specific interface
development to integrate even standards-compliant sys-
tems. To close that gap, a framework for the implemen-
tation of standards has become an urgent need that lead
to the creation of the IHE initiative. IHE started in 1998
and was initially jointly sponsored by the Radiological
Society of North America (RSNA) and the Healthcare
Information and Management Systems Society (HIMSS).
The first IHE integration profile, the Radiology Sched-
uled Workflow (SWF) provided a solution for integrat-
ing multiple systems involved in the fulfilment of a
radiology order [3]. IHE follows an approach where care
providers identify the key interoperability problems they
face, and where healthcare manufacturers and informa-
tion technology experts agree upon an implementation
that uses established standards to provide a solution for
each identified interoperability problem [1]. Interoper-
ability demonstrations are regularly organised at major
conferences worldwide, such as the annual meetings of
RSNA, HIMSS and the American College of Cardiology
(ACC). The main objective of such demonstrations is to
inform and educate end users about existing integration
profiles ready to solve their interoperability problems.
During the interoperability demonstrations, real clinical

scenarios are executed by sharing health information
between participating systems from various manufac-
turers. Therefore, to ensure the success of such demon-
strations, participating systems test their interoperability
capabilities in advance, during a weeklong live-testing
event where participants’ systems are gathered in the
same place at the same time. During this face-to-face
testing event, systems test their ability to exchange infor-
mation with peer systems from multiple other vendors.
Again, to ensure the success of the live-testing event,

participants test their implementation with a software-

testing tool, beforehand. This testing tool consists of
documents and software that simulates communication
partners, in addition to providing test data and test
plans. Succeeding in all tests for a specific actor in a
specific integration profile is required to participate in
the face-to-face testing event, and to subsequently parti-
cipate in demonstrations.
Currently, IHE has expanded over several clinical

domains, and its activities are solving, every year, new
integration problems in domains such as radiology,
laboratory services, cardiology, radiation oncology,
ophthalmology and healthcare devices. Moreover, IHE is
setting up the foundation for the EHR by enabling inter-
operability amongst care domains within a single health-
care enterprise and across many healthcare enterprises.
For example, the Patient Identifier Cross-referencing
Integration Profile (PIX) enables a system to query for
other identifiers of a specific patient, and the Cross-
Enterprise Document Sharing Integration Profile (XDS)
addresses the needs for the registration, distribution and
access across health enterprises of patient’s clinical
information. Several live-testing events are taken place
around the world every year. Even though IHE testing
early purpose was to support educational demonstra-
tions, its uniqueness, its technical team experience and
the large number of systems tested, have contributed to
propel this event to the level of the de-facto testing in
healthcare.
Amongst IHE integration profiles, XDS lays the archi-

tectural foundations for EHR. The XDS architecture
enables patient’s information, from separate care deliv-
ery systems, to be shared in the form of documents,
between cooperating enterprises [4]. Another IHE inte-
gration profile, the Cross-Enterprise Document Sharing
for Imaging (XDS-I) leverages the XDS architecture to
enable the sharing of imaging information such as
images and imaging diagnostic reports [5].
In this paper we discuss the interoperability concerns

and describe the architecture of the XDS-I testing soft-
ware. We first describe the XDS architecture and intro-
duce how XDS-I enables the sharing of imaging
information. Next, we briefly present the communica-
tion protocols and discuss the challenges they introduce.
Then, we discuss the interoperability concerns, describe
the software architecture and detail design decisions to
overcome challenges and constraints. We also present
the software functionalities and discuss their extensibil-
ity and limitations.

XDS Architecture
The XDS architecture enables patient information to be
shared, in the form of documents, between multiple
institutions. It is document content neutral so that any
type of document encoded in compliance with a widely

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 2 of 15



accepted standard can be shared. Therefore, this docu-
ment centric architecture offers mechanisms to publish
query and retrieve specific clinical documents for a spe-
cific patient.
The architectural model is based on a central registry

that holds metadata describing every published docu-
ment. Documents reside in repositories and the registry
metadata includes an address that allows a consumer sys-
tem to retrieve a specific document from the repository
where it is located. The central registry is responsible for
storing information about documents. It maintains meta-
data about each registered document and responds to
queries about documents meeting specific criteria. The
registry does not store the document itself. However, it
maintains information about the location from which
documents may be retrieved. Therefore, the architecture
includes one or multiple distributed document reposi-
tories. A repository stores documents in a persistent
manner and responds to document retrieval requests.
Systems that produce information relevant to patient’s

continuity of care, such as laboratory, cardiology, or
radiology reporting systems, publish information as
documents. Figure 1 depicts the basic architecture and
data flow. Systems that are interested in accessing the
patient’s record query the registry for documents meet-
ing certain criteria. Within the response to a query, the
registry includes information about the document
address, enabling the document consumer system to
retrieve the document from its repository.
On the other hand, the XDS architecture allows

systems to share information about the identity of the
patient using a patient identity feed transaction. This
transaction is not described here because we focus on
the data flow for sharing images. The complete descrip-
tion of the XDS architecture can be found in the ITI-
Technical Framework [3].

Sharing of imaging information
Images represent important components of a patient’s
health record. Leveraging the XDS architecture to
enable the sharing of imaging information allows the
central registry and the document repository to treat
imaging documents as any other clinical document.

More importantly, a document consumer would be able
to query and retrieve an imaging report as well as any
another clinical document such as a laboratory result.
Leveraging the XDS architecture requires specifying
shared documents and metadata in addition to specify-
ing additional process flow actions on some actors.

Sharing of manifests
In order to publish a set of images, a manifest that con-
tains references to those images is the document that is
published. With this solution, the manifest is published
and not the images. Medical images are encoded in con-
formance with the DICOM standard. Accordingly, images
are grouped into Series that are grouped into Studies. Stu-
dies, Series and Instances of images are uniquely identified
with Universal Identifier (UID). Therefore, the manifest is
another type of DICOM object that contains the structure,
in terms of UIDs, of the images that are referenced. More-
over, the manifest contains, at the Series level, the Applica-
tion Entity (AE) of the DICOM server from which the
Series can be retrieved. AE can also be considered as the
name of that server.

Process flow
A system that wants to share a set of images would thus
construct a manifest that references the images and sub-
mits that manifest to the repository/registry. Figure 2
shows the process flow followed by an imaging docu-
ment source to share a set of images. Moreover, the
publishing system, or the system whose AE title is refer-
enced inside the manifest, is required to make the refer-
enced images available to be retrieved.
On the other hand, a system that is interested in

retrieving previously published images, starts by query-
ing the registry and receives the address of the pub-
lished manifest. Then, it retrieves the manifest and
decodes it to get the list of referenced images. Each
referenced object is specified by its study, series and
instance UID along with the AE title where to retrieve
it. The consumer can then issue a DICOM transaction,
such as retrieve (C-MOVE) or a Web Access to
DICOM Persistent Objects (WADO) request, to retrieve
the images.
A WADO request is an HTTP request to a WADO

server requesting a specific DICOM instance using spe-
cific WADO query keys [2]. Query keys can be specified
in a way to enable medical image streaming according
to JPEG 2000 Interactive Protocol (JPIP) [6]. Figure 3
shows the process flow followed by an imaging docu-
ment consumer to retrieve a set of images.

XDS communication infrastructure
The XDS architecture is built on the Electronic Business
Extensible Markup Language (ebXML) [7]. ebXML is a

Document & 
Metadata Document 

Registry

RepositoryDocument 
Source

Document 
Consumer

Metadata
Query
Parameters

Figure 1 XDS architecture and data flow.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 3 of 15



joint initiative by the Organization for Advancement of
Structured Information Standards (OASIS) and the Uni-
ted Nations Centre for Trade Facilitation and Electronic
Business (UN/CEFACT). Its goal is to create a global
electronic market place where enterprises can find each
other electronically, conduct business by exchanging
XML messages in accordance to standard business pro-
cess sequences and with clear business semantics. The
ebXML specifications are intended to cover the entire
business-to-business process.
A registry is a central piece of to the ebXML architec-

ture. An ebXML registry provides a set of services that
enables the sharing of information between trading part-
ners. It maintains metadata for a registered item. Access
to an ebXML registry is provided through standard
interfaces exposed by Registry Services (RS). Moreover,
ebXML Registry Information Model (RIM) defines the
type of metadata that is stored in the Registry as well as
the relationships among metadata classes. An ebXML
registry serves as the index and a gateway for a reposi-
tory to the outside world; it is a sort of a database for

sharing relevant company information needed in
ebXML business transactions, such as business process,
order forms, or invoices.
The XDS architecture is built on the ebXML RIM and

RS. This allows generic ebXML registry to be used as an
XDS registry. However, XDS assigns the responsibilities
of indexing a document and that of archiving it to sepa-
rate actors: a Document Registry and Document Reposi-
tory respectively. This separation of duties offers an
important additional flexibility in the healthcare domain,
which consists in having a single document registry
indexing content for multiple document repositories.
According to the XDS specifications, a document source
submits the metadata and the documents to the docu-
ment repository actor who forwards the metadata to the
document registry actor. A detailed description about
how ebXML has been specialized to build XDS can be
found in [4].
Of relevance here is that XDS metadata specifications

add constraints on the ebXML registry information
model. While conforming to ebXML RIM, several XDS

: XDS Document
Repository

:Imaging 
Document Source :XDS Document 

Registry

Provide and Register 
Document Set

Register Document Set

Create Key Object Selection

Figure 2 Process flow for publishing a set of images.

Retrieve Document

: XDS Document
Repository

:Imaging 
Document Source :XDS Document 

Registry
:Imaging Document 

Consumer

Query Documents

Retrieve Images

Decode Manifest 

Figure 3 Process flow for retrieving a set of images.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 4 of 15



metadata content are derived from other medical stan-
dards data types such as HL7, and are encoded as such
in the registry. Moreover, in addition to the definition of
an XDS metadata vocabulary, additional requirements
on metadata are defined such as required presence or
uniqueness enforcement of specific data, as well as par-
ticular metadata content validation. Therefore, con-
straints are imposed on metadata and specific validation
is required from the XDS registry.
Although XDS registry is needed to implement any

XDS-I process flow, it is not specific to XDS-I. To the
contrary, an XDS registry has many specific responsibil-
ities, mainly with regards to metadata validation and
query implementations, as defined by the XDS specifica-
tions. Therefore, it is common sense to reuse an XDS
registry implementation in order to put in place the
architecture needed for XDS-I testing. Such XDS regis-
try implementation is provided by the National Institute
of Standards and Technology (NIST) and is publicly
available [8].

Related Work
The objective of testing can be either to validate confor-
mance to standards, or to validate interoperability
according to integration profiles.
Conformance testing consists in validating that rele-

vant requirements in a standard have been correctly
implemented. It follows a black box approach where the
tester sees the system under test as a closed box without
having any knowledge about neither its internal struc-
ture nor its implementation. This is usually done by
sending messages to the system under test and by obser-
ving its response in terms of acknowledge or response
messages that are sent back. If at least one error is
encountered, the system under test does not conform to
the standard. However, the absence of errors, while a
prerequisite to interoperability, does not guarantee it;
this is the same thing as acknowledging that a standard
is necessary to interoperability but not sufficient. Intero-
perability testing on the other hand is a way to ensure
that different systems can co-operate to perform a speci-
fied business sub-process. By exchanging messages that
conform to one or multiple standards, the co-operating
systems react to the received information by changing
their internal data or state, or by triggering actions or
message exchanges with the same peer or others. Intero-
perability testing aims at observing that the system
under test, not only can exchange information with
peers, but also reacts correctly according to an agreed
interoperability profile.
Conformance and interoperability testing are not new

to the communication industry. One only needs to think
of the Bluetooth technology for which many private
companies offer interoperability testing. ebXML

conformance and interoperability testing is another
example from the electronic business industry. In this
domain, interoperability is pushed a bit further: in order
to support testing, the OASIS ebXML Implementation,
Interoperability and Conformance Technical Committee
has defined detailed specification for a test conformance
framework [9] for which some implementations exist
[10,11]. This test framework describes a standard archi-
tecture for the test system, as well as standard specifica-
tions for defining test scripts. Designing a new test case
is eased and reduced to writing a new test script. But,
interoperability testing in this case is defined as a way to
verify that two implementations or more can interope-
rate according to an agreement which is compliant with
the specification, along with additional restrictions. The
main gap here is that the agreement is neither standar-
dized, nor shared. It has to be defined every time het-
erogeneous systems decide to cooperate together. In the
domain of robots communication, [12] describes a test
suite for conformance and interoperability testing of
web service communication between different robots.
Although the test suite validates syntax, communication
and message sequencing, the emphasis is put on reliable
communication and therefore, the test suite provides
tests for errors cases by simulating various forms of
intentional communication errors.
In healthcare, conformance and interoperability testing

are at their very early stages. As pointed out by [13],
conformance testing, interoperability tools and techni-
ques are needed in all healthcare domains to ensure the
integration of healthcare enterprises. Also in [13], the
authors reviewed many healthcare domains such as elec-
tronic health records and bio-imaging to analyse specific
aspects where additional standards are needed in order
to achieve automation; they pointed out that current
standards deal only with syntactic issues whereas the
disparate nature of healthcare vocabularies requires the
development of semantic interoperability too. Very few
projects exist for interoperability testing in healthcare.
In [14], a test framework is proposed to design and exe-
cute testing of HL7 communication, document, and
business layers. The business layer is described in terms
of scenarios that are expressed in the HL7 specifications.
These scenarios usually require the exchange of mes-
sages between two actors. Their test system can also act
as proxy between two testing peers. This framework
enables the fast and easy design of new tests. It follows
the Upper-Lower Tester model described by [15] and
tests only HL7 interoperability, as opposed to our sys-
tem that is based on an actor approach [15] to test a
specific interoperability profile using several communi-
cation standards for information exchange. The frame-
work described in [14], as well as our system, propose
tests for HL7 communication, document and business

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 5 of 15



layers as opposed to document validation only for the
Picasso platform [16]. This is a commercial tool that
acts as a central interface between various communicat-
ing peers to transform a message from one version of
HL7 to another. The Picasso interoperability platform is
based on an internal HL7 version 3 structured represen-
tation of the data and uses style sheet transformation
technology to transform data between different formats.
In [16] a method for automatically validating such trans-
formations is presented and discussed.
As mentioned earlier, two different approaches for

testing are identified and discussed in [15]. The com-
mon approach to healthcare system testing is the
Upper-Lower Tester. Using this approach, the system
under test communicates with a Lower Tester via a spe-
cific communication protocol, and with the Upper Tes-
ter being the user or the business application under test.
Although this approach is widely used, it suffers from
many limitations: it usually allows the testing of one sys-
tem and one message at a time. In other words, the test-
ing environment does not simulate the working
environment in which communication between multiple
applications take place by exchanging a series of mes-
sages in order to collaboratively conduct a business pro-
cess. Even when this approach is expanded to test a
choreography, e.g. more than one message between
more than one system as in [14], it still suffers from the
lack of business level testing that can be achieved with
the actor based testing. An actor is an application that
has specific business responsibilities and communicates
with other actors according to constrained messages
that all cooperating actors agree on. Actor based testing
allows the construction of an environment that simu-
lates the real operation environment in which the sys-
tem under test is expected to operate. Actor based
testing does not suffer from the limitation of the Upper-
Lower Tester. However, it requires the business process
to be specified in terms of profiles between actors with
identified responsibilities.
Our testing system is based on an actor testing

approach. Testing can take place at the communication
level and the content level by validating the content of
exchanged messages. Moreover, testing can take place at
a high business level by validating that the system under
test has either changed its internal data or triggered
data exchange with other parties. Validating the change
to the internal data can be achieved by exchanging dif-
ferent messages with the tested system. Validating the
triggering of data exchange can be achieved by simulat-
ing the other peers or by monitoring the communica-
tion with them. IHE testing is based on actor testing.
The Mesa testing tools [17] have been used to test inter-
operability in preparation for connectathon [1]. IHE
Gazelle project, also an actor based approach, is a

multi-organization work in progress effort that allows
the testing of multiple systems.

Implementation
Specifications
For defining the specifications of our testing system, we
based our analysis on: 1- a detailed study of the XDS-I
integration profile specific requirements in terms of addi-
tional communication constraints, semantic and business
requirements; 2- the integration concerns as identified by
a study [18] whose objective was to analyze the losses
encountered in the U.S. automotive supply chain due to
integration problems. Such losses, in the billions each
year, are incurred due to: 1- the lack of information
flows; 2- the flow of incomplete, inaccurate, or impro-
perly represented data; 3- or the misinterpretation of
received data [19]. In an attempt to analyze and study
potential automations for this particular integration pro-
blem, a NIST report [18] has identified several integration
concerns; these concerns are based on the Model for
Open Distributed Processing (RM-ODP) [20]. This model
is developed by the International Organization for Stan-
dardization (ISO) in collaboration with the International
Electro-technical Commission (IEC) and the International
Telecommunication Union (ITU). RM-ODP defines
essential concepts necessary to specify open distributed
processing systems from five viewpoints:
1-Technical: where integration aspects relate to the

underlying communications, message structures and
content as well as control flow.
2- Semantic: where integration aspects concern the

consistent interpretation of the exchanged information
which requires an agreement on common concepts and
terms used to refer to those concepts.
3- Functional: where integration aspects concern beha-

viors of systems in consistency with their roles in the
overall process; these concerns include the objects to be
acted on and the actions to be done.
4- Policy: where integration aspects concern the ability

to support the business process in an acceptable way;
these aspects include security, reliability, availability,
accuracy, and timeliness.
5- Logistical: where integration aspects relate to trade-

offs between limitations to integration and the overall
value of the system such as cost, flexibility and
openness.
Our system verifies technical, semantic and functional

integration aspects. Likewise other IHE testing tools, the
possibility of verifying not only technical aspects but
also semantic and functional integration concerns is due
to interoperability requirements that constrain commu-
nication standards and that are defined and detailed in
integration profiles. These integration profiles are pub-
licly available; they are also agreed on by almost all

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 6 of 15



vendors in the targeted domains. Conversely, most other
testing projects deal only with the verification of techni-
cal concerns. Even verifying the choreography, as speci-
fied by HL7 version 3, lies in our opinion under a
technical concern as it can be considered a control
conflict.
In Tables 1, 2 and 3, we describe the technical,

semantic, and functional concerns respectively along
with their impact on the specifications of our system.
For each type of concerns a list of conflicts as identified
in [18] are given in the first column; a brief definition of
each conflict is provided in the second column along
with examples from the healthcare domain for clarifica-
tions when necessary; in the third column we describe
how testing for the specific conflict has influenced the
specifications of our system.

Challenges: discussion and solution
XDS is built on ebXML and uses Simple Object Access
Protocol (SOAP) [21] as its transport mechanism.
ebXML as well as SOAP have evolved recently; this
introduces challenges that will be discusses hereafter.
On the other hand, NIST registry provides the valida-
tion and the functionalities of an XDS registry, but it
imposes architectural constraints that will also be pre-
sented and discussed.

Leveraging of NIST Registry
NIST Registry is accessible over the Internet; it will be
used in our overall architecture to fulfil the role of an
XDS registry because it provides an extensive validation
for the registry functionalities, transactions and data.

However, in order to use NIST registry, any published
document needs to belong to a patient that is already
known to it; therefore, the patient identification that is
used must be already known to NIST registry. As a
solution, a patient is registered using a specific web page
provided by the NIST registry, beforehand. The patient
identification obtained is then used throughout testing
sessions by including it in a specific configuration file.

Different versions of the underlying communication
protocol
XDS transactions are wrapped into SOAP message and
transported over HTTP. However, SOAP has evolved
recently to overcome some challenges. Its newer version
includes the ability to attach binary parts in an opti-
mized way; it also includes the ability to insert, part of
the message and in a standard way, addressing informa-
tion for more flexible networking topologies. This has a
direct impact on our testing software.
In fact, the communication between the document

source and the document repository involves the trans-
mission of metadata along with documents whose origi-
nal format may be in binary (i.e. DICOM manifest).
With SOAP 1.1, two approaches are possible for hand-
ling the issue of binary data communication: 1- Embed-
ding such data in XML as text-encoded (base64) octets
which increases the message size and impacts perfor-
mance; 2- referencing the binary data in the XML docu-
ment, with the binary data bundled as an attachment
(SOAP with attachments). The initial version of XDS
adopted the second approach by specifying a standard
way to bundle the ebXML message and the binary

Table 1 Technical concerns

Conflict
name

Definition Impact on specifications

Connection
conflict

There is a disagreement at the communication level including
the lower layers.

Since we do not execute conformance testing, we only require
that the communication successfully takes place while verifying
additional communication requirements when necessary. Such
additional communication requirements include for example the
presence of web addressing at the SOAP level as required by the
integration profile.

Syntactic
conflict

Different data structures or representations are used between
peers.

In addition to verifying the structure of a message, we verify the
presence of all required data, and the correct structure of any
published document: published documents are constrained to be
of specific types such as CDA or DICOM manifest.

Control
conflict

The communication peers do not agree on their roles (e.g. which
peer is the server) or in the flow of control of a communication
interaction (e.g. immediate or deferred acknowledgment).

We do not perform any specific verification of this conflict, as we
only require that the communication be successful.

Quality-of-
service
conflict

The behavior of a communication peer does not satisfy technical
requirements derived from “policy” concerns, such as a timely
response to a communication response.

Using a timeout, our system will consider the communication as
failed, if not timely achieved.

Data
consistency
conflict

Peers do not consistently use information that is not directly
communicated in the interaction (e.g. configuration data). In our
case, such data include information about peers’ addresses,
procedure codes, document types and other codes that would
generally be shared in a healthcare enterprise.

Our system requires that the tested system uses shared
configuration information with the testing software.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 7 of 15



attachments in a MIME multipart package. This
approach does not describe how intermediaries should
deal with this referenced data, limiting therefore net-
working flexibility.
SOAP 1.2 brings a solution for these problems by

adopting the Message Transmission Optimization
Mechanism (MTOM) along with the XML-binary Opti-
mized Packaging (XOP). XOP defines how to serialize
the binary data as parts of a MIME multipart related
packaging format, while MTOM describes how to serial-
ize a SOAP envelope using XOP. More information on
the dependencies of XDS on SOAP can be found in [4].
What is of relevance here is that two different versions
of SOAP exist and each one is used in a different ver-
sion of XDS. This variability introduces challenges
because both versions need to be tested by the same
software. We have designed the system with the ability
to run the tests in either flavour.

Different versions of specifications
With the new version of SOAP (version 1.2), and the
release of a new version of ebXML (version 3.0), a new
version of XDS (XDS-b as opposed to the initial version
that was renamed XDS-a) has been designed to benefit
from the advancements in these fields. From the testing
point of view, this is a challenge. While, the process
flow and medical content exchange is not changed, the
underlying communication mechanism is different

between the two versions. But, both versions need to be
tested, even though the newer version is expected to
deprecate the initial one. The definition of a new version
of the specifications does not eliminate the need for
testing of the version to be deprecated in the future. In
fact, the initial version is being deployed presently in
many national projects; therefore testing of systems
cooperating according to this initial version will still be
needed. The testing software is designed to test imple-
mentations according to one version or the other.
The initial version of XDS (XDS-a) is based on SOAP

1.1 and ebXML 2.1. It specifies the usage of SQL queries
to query the registry. This specification requires the
consumer system to know about the registry data
model, therefore puts limitations on the evolution of
that data model. In order to hide the registry data
model from the outside world, stored queries have been
introduced where the knowledge of the data model is
no more needed at the consumer system. The end result
is an infrastructure with two possible ways of imple-
menting registry queries. Moreover, each query type has
been designed with a different ebXML version: SQL
queries are specified with ebXML 2.1 and stored queries
are specified with ebXML 3.0. Therefore, XDS-a comes
with 2 flavours of queries, each specified with a different
version of ebXML.
The new version of XDS (XDS-b) is based on SOAP 1.2

and ebXML 3.0. ebXML data structure is different from

Table 2 Semantic concerns

Conflict name Definition Impact on specifications

Conceptualization
conflict

Communicating applications have incompatible representation
of the same concept. Examples include how to describe an
address, a person, a document.

IHE integration profiles define common concepts. In our
system, concepts central to sharing documents are validated
by NIST registry while those specific to sharing images are
validated by our system. Amongst validated concepts is the
manifest that must relate to specific images; this is validated
by verifying the manifest content.

Conceptual scope
conflict

An important concept is not communicated by one of the
peers.

Important concepts are made required in IHE profiles and their
presence is validated in communication transactions.

Interpretation
conflict

The message has a different meaning to the listener than it
does to the speaker; in other words, the technical
communication is completely successful, but the intent is not
fulfilled.

In IHE profiles, expected actions are specified and our testing
software validates that expected actions have been
accomplished mainly in two ways: if the receiving system is
required to trigger a communication, the testing software
awaits this and validates the communication content; if the
receiving system is required to change its internal state, the
testing software triggers a transaction to the tested system
and validates the response content. When testing an imaging
document source, the testing software verifies that the images
referenced in a published manifest are available by issuing
WADO transactions to the image archive. Likewise, when
testing an imaging document consumer, the testing software
awaits for image query from the tested system to ensure that
the received manifest has been successfully decoded and
interpreted.

Reference conflict The communicating applications use different systems of
reference for identical concepts. Examples include how to
reference an imaging procedure, whether this is done with the
accession number or the procedure id.

The testing software validates the structure used to reference
images inside a manifest, as well as the consistent
identification of the manifest i.e. the use of the manifest UID
to identify the document inside the ebXML message.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 8 of 15



the one of ebXML 1.2. Moreover, it uses Web Service
Addressing specification (WS-Addressing) and provides
informative Web Services Description Language (WSDL)
contracts for its transactions [22]. WS-Addressing per-
mits the specification of endpoint addresses as part of the
SOAP header to allow routing flexibility. But most
importantly, it enables an abstract separation between
the application layer, the Web services messaging infra-
structure layer, and the message transport layer. These
abstraction layers allow the developer to concentrate on
the application layer by using special framework such as
Apache AXIS2 [23]. AXIS2 takes care of the infrastruc-
ture layer according to the rules set in the WSDL. There-
fore, it simplifies the implementation and we have
chosen to use it.
One last difference between the two versions is that

the initial version uses HTTP GET to retrieve a docu-
ment while the newer version uses Web Service Retrieve
instead. The later uses MTOM and offers the possibility
to retrieve multiple documents with a single request.
Our system design isolates the business logic from the

communication mechanisms. The business logic consists

in specific test flows along with specific validation, while
high level transactions may differ by the underlying
communication protocols. The software implements
different versions of the same high level transactions
and can instantiate a specific version depending on a
user’s setup.

Web Services technology
XDS-a uses SOAP with attachments. SOAP, HTTP
requests and HTTP retrieves can be implemented with
standard Java API in addition to some external libraries.
XDS-b brought in more advanced Web technologies
that are not implemented in standard Java API. That is
why we have decided that AXIS2 could bring an impor-
tant value added.
AXIS2 is a core engine for Web services [23]. It pro-

vides the capability to add Web services interfaces to
Web applications and can also be used as a standalone
server application.
AXIS2 uses its own XML model called AXIOM (AXIS

Object Model) for parsing XML. The SOAP implementa-
tion within AXIS2 is based on AXIOM. It is a pull parser

Table 3 Functional concerns

Conflict
name

Definition Impact on specifications

Functional
model
conflict

Two applications have incompatible factorings of the process
activity space: there may be a task that each expects the other to
do ("nobody’s job”), or a task that both expect to do themselves
("overlapping roles”).

Roles and responsibilities are specified in the IHE integration
profile. When testing a system, our software tests a specific role
and therefore tests all responsibilities associated with that role as
required by the profile.

Functional
scope
conflict

One party’s behavioral model for a function contains more
activities than the other party’s model: 1- when the requester’s
model is larger than the performer’s model, the performing
application executes a subset of the expected behavior, leaving
some expected tasks not done; 2- when the requester’s model is
smaller than the performer’s model, the performing application
executes unexpected activities as well as those requested. One
example of functional scope from the IHE radiology technical
framework relates to the Modality Performed Procedure Step
(MPPS) transaction where the expected behavior of the receiving
system is not specified in details; therefore this transaction is
usually successfully received but does not trigger actions or state
change as implicitly expected.

In the profile of interest here, functional scope conflict is avoided
as far as the applications implement the required responsibilities
of the specific role they play; these responsibilities are verified by
the testing software as stated above.

Embedding
conflict

The behavior of an application is affected by the integration with
other peers. This happens when the application is capable of
some adaptability in behavior which might be configured.

This kind of conflict is supposed to be detected and fixed by the
testing engineers while using the testing software. The testing
software does not detect en embedding conflict per se; but
performing the testing with the help of our testing software
simulates the integrated environment in which the application is
supposed to operate in a real situation; therefore, an eventual
embedding conflict would be fixed before deployment.

Intention
conflict

The application is being used in a way its design did not
anticipate, resulting in unexpected behaviors. This relates to
differences in the details of the application specification versus the
specification as needed for the role of that application in the
larger system. This kind of conflict is hard to grasp. One example
of such conflict is encountered in the way x-ray images are
organized into series: one acquisition equipment may group
multiple x-ray images into one series, while another one may put
each image in a different series. Although both equipments have
the right to do so, the receiving system may not be able to
function with one or the other type of image grouping.

Even though the testing software helps in detecting some
intention conflicts, such conflicts may arise anytime during the
operation of the integrated larger system.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 9 of 15



as compared to DOM or XOM that are push parsers. This
means that AXIOM controls the parser and builds the
XML representation in memory only when specific infor-
mation is needed as opposed to parsing the complete XML
tree at once. Therefore, it can partially build the tree so
unnecessary data won’t be loaded in memory. This trans-
lates into a performance gain therefore, overcoming one of
the major disadvantages of XML which is slow parsing.
We have decided to use AXIS2 because it takes care

of the web infrastructure. As a result, we can focus on
interoperability testing while mitigating the risk caused
by the evolution impact of web technologies on our test-
ing software.

Architecture
The objective of our system is to test an application that
can play the role of either an imaging document consu-
mer or an imaging document source. Each of these two
roles is tested separately and the tests are described in
section 3. In order to implement the various tests, our
system simulates the peers needed by the tested applica-
tion. Moreover, it controls the data used during the
tests, imposes a specific test flow and validates the con-
tent of all received transactions.
An overview of the system architecture is depicted in

Figure 4. Components with gray background are third-
party software available for public use: DICOM Toolkit
provides the functionalities of a DICOM archive [24];
pixelMed provides software tools for converting between
multiple image and report formats [25]; AXIS2 provides
a high level API for web services, SOAP and XML pro-
gramming. Moreover, our system relies on NIST public
registry to provide the functionality of an XDS registry.
In the following sections, we describe the testing sys-
tem’s components.

Registry adaptor
The adaptor is as a proxy to NIST registry/repository. It
logs the SOAP messages and the attachments for testing

purposes. It analyse the incoming SOAP messages to
decide whether it is a submission request or a query.
In case of a submission request, it archives the attached
files in the local repository before sending the request to
the registry. In this sense, it acts as a document reposi-
tory as it archives the published documents.
It also receives requests for retrieving documents from

a tested document consumer system. To serve a retrieve
request, it forwards the query to NIST, modifies the
response so it references the local documents, and sends
the response to the query initiator.
When testing an imaging document source system,

the adaptor acts as document consumer because it
queries NIST for the submitted manifest.

Simple Publisher
This software component constructs a manifest along
with a submission request to be sent to the registry.
It retrieves images from the WADO server, creates the
manifest, and publishes it to the registry.
It is used by the testing software for publishing the

manifest to NIST Registry in order to test an imaging
document consumer system. It can also be used by a
software developer to publish his/her own manifest to
the registry.

Registry Client
This registry client is a utility software that can be used
by a software developer to interact with NIST Registry.
It can be used to publish or to query for a document.

Image Database/DICOM Retrieve SCP
This is a DICOM Server provided by a third party soft-
ware [12]. It accesses and manages a database for
archiving DICOM instances.

WADO server
The WADO Server receives a HTTP GET request and
returns the required DICOM instance. The WADO

XDS-I TESTKIT

NIST PUBLIC
ONLINE REGISTRY

REGISTRY CLIENT
Imaging Document Consumer /
Imaging Document Source

AXIS2
CLIENT

REGISTRY ADAPTOR (Acts as Registry, Repository
and Document Consumer)

AXIS2
SERVER

AXIS2
CLIENT

WADO
SERVER
(dcmtk)

IMAGE
DATABASE
(dcmtk)

PixelMed
Java DICOM
Toolkit

Forward query

Send back response

TESTED APPLICATION
Imaging Document Consumer /
Imaging Document Source

Send transaction to adaptor

Forward response to client

FILE
SERVER

TEST
MODULES

TEST
CONTROL
INTERFACE

WADO / SCP retrieve

DICOM file

WADO / SCP retrieve

DICOM file

Send transaction to adaptor

Forward response to client INFORMATI-
ON LOGGER

NIST PUBLIC
ONLINE

REPOSITORY

R
eg

is
te
r

do
cu

m
en

t

Forward provide document

Send back response

Figure 4 Overview of the system architecture.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 10 of 15



server contacts the DICOM SCP Server to retrieve the
required DICOM instance. It converts the instance
before sending the response according to the requested
content type. For its conversion needs, it uses the
DICOM Toolkit [12] for converting reports into XML
or HTML and uses PixelMed [13] for converting images
into JPEG.

Information logger
The logger logs information gathered at various steps of
a test so it can be verified at the end of the test execu-
tion. Information logged includes all messages content
(requests as well as responses), third party console out-
put (such as DCMTK output), and explicit test output.
Logger also saves attachments.

Web Test Control Interface
The control interface provides the GUI to the user and
controls the test flow. It presents to the user available
tests and instantiate a specific test execution that is
associated with the chosen test. During a test execution,
it presents to the user information on expected next
actions and the test state. A test is divided into multiple
stages. This controller calls ‘next Stage’ or ‘cancel’
method on the test. Upon reaching the final stage, an
evaluation is performed and the evaluation result is pre-
sented to the user. The test instance logs valuable infor-
mation in a XML format; also, it evaluates the XML
logs using an XSLT.

Test modules
These modules group different classes and software
responsible for specific test flows and test evaluation.

AXIS2 Client
AXIS2 Client uses AXIS2 API for sending SOAP mes-
sages to a remote WEB Server.

AXIS2 Server
AXIS2 Server uses AXIS2 to act as a WEB service. It
provides to AXIS2 a file describing its WEB Server end-
points allowing the received message to be redirected to
the appropriate class capable of handling the business
logic.

Design for dealing with two different versions of
specifications
The main differences between the two different versions
are the following:
Profile A: SQL Query, ebXML 2.1, SOAP 1.1, SOAP

with attachment, HTTP GET, and Stored Query that
requires ebXML 3.0.
Profile B: Stored Query only, ebXML 3.0, SOAP 1.2,

MTOM/XOP, WS-Addressing, and WS-Retrieve.

Our design goal is to have a single version of the com-
mon business logic for an easier maintenance and evolu-
tion. Therefore, this logic has been factored out in
abstract classes whereas specific logic has been imple-
mented with sub-classes. The Abstract Factory [26]
design pattern has been used as shown in figure 5 to
manage the instantiation of the family of classes. In fact,
there are two different versions of factories; each is
responsible of instantiating classes for a specific version
of the profile. Both factories inherit from the same
abstract factory. Furthermore, factory instantiation is
managed by a singleton that reads information from a
configuration file and decides the type of factory to
instantiate. This design decision ensures that, both client
and web service, function according to the same version
even though they run each in a completely different
environment. A mechanism to override the default
ebXML version to be used has also been implemented
to allow for various underlying communication versions.

Results
Tests description
Testing an imaging document consumer actor
To test a specific actor, the testing software simulates
the other actors involved in the test flow. For testing an
imaging document consumer actor, the software simu-
lates the document registry, the document repository,
and provides an imaging document source actor. This
test consists of the following steps:
Preparation of the testing data The testing software
builds its internal DICOM archive by loading in it the
image instances to be published. It ensures that its
archive is able to receive connections. The user is asked
to use a software tool, part of the testing software pack-
age, in order to publish a manifest referencing the
images in the archive.
Query to the registry The imaging document consumer
system under test is required to query the registry. It
sends a query to the XDS adaptor that forwards it to
NIST registry after validation; the XDS adaptor receives
NIST response, changes the reference to the published
document so it points to the local one and sends it to
the system under test.
Retrieve of the manifest The imaging document consu-
mer system under test is required to extract, from the
response to its query, the reference to the manifest of
interest and to retrieve it. The testing software logs
every retrieved manifest for evaluation.
Image retrieve The testing software starts its internal
archive so it can accept retrieve transactions (by
C-MOVE or WADO). The imaging document consumer
system under test is required to parse the manifest, to
extract the referenced UIDs and to use them in order to
retrieve, at least one of the referenced DICOM

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 11 of 15



instances, using either WADO or DICOM C-MOVE
from the testing software archive. The output of the
archive software (DICOM Toolkit) is logged in a file for
evaluation.
Testing an imaging document source actor
The process flow of this test is depicted in Figure 6,
where references to IHE transactions are indicated
within square brackets. The test’s steps are as follows:
Preparation of the testing data The imaging document
source system under test is required to send a submis-
sion request with a DICOM manifest to the XDS adap-
tor. The manifest references images that are managed
by the system under test.
Publishing of the manifest The testing software verifies
that the newly submitted manifest has not been pre-
viously submitted to NIST registry. It does so by query-
ing the NIST registry for the identification of the
manifest to be published. After the registration with
NIST registry is completed, the testing software verifies
that the registration step with NIST registry was suc-
cessfully completed by querying for the new document
identification.
Image retrieve The testing software parses the received
manifest, extracts all referenced UIDs and retrieves from
the imaging document source system under test, all
DICOM instances that are referenced in the published
manifest. The test completes successfully if at least one
instance is retrieved. The image retrieve transaction is
done using either DICOM C-MOVE or WADO. Two
tests are provided to support each flavours of this
transaction.

Discussion
Building the testing software on top of AXIS2 is a first
step towards a better and full support of WEB Service

technologies as they become more common. In the
future, mechanisms that enable the testing software to
make use of WSDL would be implemented. At the
moment this article is written, neither NIST registry nor
AXIS2 infrastructure were ready to fully use WSDL.
However, as WSDL technology can be expected to be in
place in the very near future, the testing software would
largely benefit from relaying on it.
The design of the testing software has been carried

out to reduce the impact of schema modifications and
to allow easy extension either for adding new tests or
adding new transactions. Schemas are retrieved directly
from the WEB and used for validating messages’ con-
tent. This ensures that the latest version of the schema
is used. On the other hand, the implementation of the
testing software can be easily extended to include new
tests or to include new transactions. Adding a new test
has been simplified by the design of the software; the
test execution has been factored in a single class that
can be extended. Adding a new transaction requires the
specialization of some message-type classes along with
the implementation of their adequate evaluation.

Conclusions
We have presented the architecture of a web application
for testing interoperability in healthcare. The proposed
software provides functionalities to test peers involved
in sharing images between different institutions. We
have also presented various challenges encountered and
discussed the elected solutions. Furthermore, we have
described the web technologies underlying the XDS fra-
mework, corner stone of the Electronic Health Record
that is in deployment in several countries.
This software, available from [27,28], can be used by

system implementers to test their implementations.

Abstract Class Abstract Factory

Concrete Factory 
Profile B

<< Creates >>

Concrete Class 
Profile B

Concrete Class 
Profile A

Concrete Factory 
Profile A

<< Creates >>

Figure 5 Overview of the software design for dealing with various versions of standards.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 12 of 15



It can also be used by site integrators to verify and test
the interoperability of systems, peers in the same health-
care process. Moreover, developers can use it to under-
stand specifications ambiguities, if present, and to
resolve implementations difficulties.
The software is built on evolving technologies. XDS

specification is evolving; it evolved recently to benefit
from new versions of ebXML and of SOAP; XDS

specifications also evolved to enhance interoperability,
maintainability, flexibility and efficiency: one such exam-
ple was the introduction to Stored Queries as compared
to ad-hoc Queries. XDS underlying technology is also
evolving; web technologies are continuously developing
and they directly impact XDS and XDS-I. The architec-
ture and design of the testing software were worked out
to mitigate the impact of such changes. More precisely,

Figure 6 Process flow for testing an Imaging Document Source.

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 13 of 15



relying on Apache AXIS2 infrastructure to effectively
handle web communications, message packaging and
XML efficient parsing, is expected to have contributed
to isolate the software from the web infrastructure layer.
Thus, we think that the proposed testing software is
ready to support new web development easily, and that
it will evolve without major difficulties.

Availability and requirements
Project name: IHE-XDS-Imaging
Project home page: http://sourceforge.net/projects/ihe-

xds-imaging/
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 1.6, Apache Tomcat 6.0,

dcmtk 3.5.4
License: GNU GPL version 3
Any restrictions to use by non-academics: None

Acknowledgements
The development of the initial version of the software has been funded by
Canada Health Infoway. The development of additional features has been
funded by the Radiological Society of North America. The architecture
refactoring has been funded by the Natural Sciences and Engineering
Research Council of Canada. Thanks to Stephan Friese who implemented
the initial version of the software, and to Richard Labbé-Moreau who
implemented the stored queries as well as the integration with NIST public
Registry. Renaud Bérubé, co-author of this paper, re-engineered the software
to use Apache AXIS2 infrastructure.

Authors’ contributions
RB implemented the refactoring of the software to integrate AXIS2 and to
support two versions of XDS. RN carried out the test specifications, the
analysis and interpretation of data as well as writing the article. All authors
read and approved the final manuscript

Authors’ information
RN has been actively involved with Integrating the Healthcare Enterprise, at
the international level, since its inception. She is the author of several IHE
Integration profiles in radiology. In particular, she authored the Cross-
enterprise Document Sharing for Imaging. She also directed the
implementation of IHE testing software with the support of Canada Health
Infoway. The testing software includes XDS-I testing tools, Patient
Identification Cross-Reference (PIX) using Health Level 7 (HL7) version 3 (v3)
and Patient Demographics Query (PDQ) with HL7 v3. She also directed the
XDS-I demonstration during the Radiological Society of North America
(RSNA) scientific assembly and annual meeting in November 2006 along
with the face-to-face interoperability testing event (connect-a-thon) in
preparation to the demonstration.
RN is a professor at the Department of Electrical Engineering of the
University of Quebec, École de Technologie Supérieure in Montreal. She
holds a Master’s and Ph.D. degrees in Biomedical Engineering from École
Polytechnique, University of Montreal. Her main research interest is the
Healthcare Information Technology, specifically, Interoperability, Electronic
Patient Record, Security, Information Confidentiality and Image Processing.
Dr Noumeir has provided consulting services in architecture analysis,
workflow analysis, technology assessment and image processing for several
software and medical companies including Canada Health Infoway.
RB graduated recently in Electrical Engineering with a major in computer
science from University of Quebec, École de Technologie Supérieure in
Montreal. During a research internship under the supervision of Dr Noumeir,
he participated to the development of the IHE XDS-I testing software by re-
engineering the software in order to integrate web services and to support

multiple versions of the integration profile. He also provided technical
support for developers and implementers that used the testing software.

Competing interests
The authors declare that they have no competing interests.

Received: 24 September 2009 Accepted: 21 September 2010
Published: 21 September 2010

References
1. Noumeir R: Integrating the Healthcare Enterprise Process. Int J Healthcare

Technology & Management 2008, 9:167-180.
2. The Digital Imaging and Communications in Medicine (DICOM)

standard, (2010, Apr. 20). [http://medical.nema.org], [Online].
3. IHE Technical Framework and supplements, (2010, Apr. 20). [http://www.

ihe.net/Technical_Framework/index.cfm], [Online].
4. Noumeir R: Sharing Medical Documents and Images: Architecture and

Communication infrastructure. accepted for publication in IEEE IT-
Professional 2010.

5. Noumeir R: IHE Cross-Enterprise Document Sharing for Imaging: Design
Challenges. Progress in Biomedical Optics and Imaging, Proc. SPIE, v 6145,
Medical Imaging, p 61450Q 2006.

6. Noumeir R, Pambrun JF: Images within the Electronic Health Record. IEEE
International Conference on Image Processing ICIP09 2009.

7. OASIS ebXML, (2010, Apr. 20). [http://www.ebxml.org], [Online].
8. National Institute of Standards and Technology, NIST XDS Public

Registry Test Facility, (2010, Apr. 20). [http://ihexds.nist.gov], [Online].
9. OASIS ebXML Implementation, Interoperability and Conformance

Technical Committee, ebXML Test Framework Committee Specification,
version 1.1. 2004.

10. NIST Manufacturing Business to Business (B2B) InteroperabilityTestbed.
(2010, Apr. 12). [http://www.mel.nist.gov/msid/b2btestbed], [Online].

11. Dongsoo K, Jung-Hee Y: Development of an ebXML Conformance Test
System for e-Business Solutions. Lecture Notes in Computer Science, LNCS
Springer-Verlag/Heidelberg 2003, 2738:145-154.

12. Narita MIK, Shimamura M, Yamaguchi T: Verifying reliability interactions
for the robot communication platform and contribution to the
international standards. SMCia/08 - Proceedings of the 2008 IEEE Conference
on Soft Computing on Industrial Applications 2008, 281-286.

13. Sriram RD, Lide B: The role of standards in healthcare automation. 2009
IEEE International Conference on Automation Science and Engineering (CASE
2009) 2009, 79-82.

14. Namli T, Aluc G, Dogac A: An interoperability test framework for HL7-
based systems. IEEE Transactions on Information Technology in Biomedicine
2009, 13(3):389-99.

15. Gebase L, Snelick R, Skall M: Conformance testing and interoperability: a
case study in healthcare data exchange. Proceedings of the 2008
International Conference on Software Engineering Research & Practice 2008,
143-9.

16. Pascale M, Roselli M, Rugani U, Bartolini C, Bertolino A, Lonetti F,
Marchetti E, Polini A: Automated testing of healthcare document
transformations in the PICASSO interoperability platform. 2009 31st
International Conference on Software Engineering - Companion Volume - ICSE-
Companion 2009, 163-71.

17. MESA software, IHE Test Tools. (2010, Apr. 12). [http://ihedoc.wustl.edu/
mesasoftware/index.htm], [Online].

18. Barkmeyer EJ, Barnard Feeney A, Denno PO, Flater DW, Libes DE, Steves MP,
Wallace EK: Concepts for Automating Systems Integration. NIST
Interagency/Internal Report (NISTIR) 6928 2003.

19. Brunnermeier S, Martin S: Interoperability Cost Analysis of the US
Automotive Supply Chain. Research Triangle Institute 1999.

20. ISO/IEC 10746-1:1998 Information technology - Open Distributed
Processing: Reference Model - Part 1: Overview. International
Organization for Standardization, Geneva, Switzerland 1998.

21. Simple Object Access Protocol (SOAP): W3C Recommendation (Second
Edition) 27 April 2007, (2010, Apr. 20) [http://www.w3.org/TR/soap], [Online].

22. Web Services Addressing (WS-Addressing), W3C Member Submission 10
August 2004, (2010, Apr. 20). [http://www.w3.org/Submission/ws-
addressing], [Online].

23. Apache AXIS2, (2010, Apr. 20). [http://ws.apache.org/axis2], [Online].

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 14 of 15

http://sourceforge.net/projects/ihe-xds-imaging/
http://sourceforge.net/projects/ihe-xds-imaging/
http://medical.nema.org
http://www.ihe.net/Technical_Framework/index.cfm
http://www.ihe.net/Technical_Framework/index.cfm
http://www.ebxml.org
http://ihexds.nist.gov
http://www.mel.nist.gov/msid/b2btestbed
http://www.ncbi.nlm.nih.gov/pubmed/19304492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19304492?dopt=Abstract
http://ihedoc.wustl.edu/mesasoftware/index.htm
http://ihedoc.wustl.edu/mesasoftware/index.htm
http://www.w3.org/TR/soap
http://www.w3.org/Submission/ws-addressing
http://www.w3.org/Submission/ws-addressing
http://ws.apache.org/axis2


24. DCMTK DICOM Toolkit, (2010, Apr. 20). [http://dicom.offis.de/dcmtk],
[Online].

25. PixelMed Publishing, (2010, Apr. 20). [http://www.pixelmed.com], [Online].
26. Grand M: Patterns in Java. Wiley 2002, 1.
27. IHE-XDS-Imaging, Testing Software Source Code, (2010, Apr. 20). [http://

sourceforge.net/projects/ihe-xds-imaging], [Online].
28. IHE-XDS-Imaging, Testing Software Installation bundle, (2010, Apr. 20).

[http://ihe.etsmtl.ca], [Online].

doi:10.1186/1751-0473-5-9
Cite this article as: Noumeir and Renaud: IHE cross-enterprise document
sharing for imaging: interoperability testing software. Source Code for
Biology and Medicine 2010 5:9.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Noumeir and Renaud Source Code for Biology and Medicine 2010, 5:9
http://www.scfbm.org/content/5/1/9

Page 15 of 15

http://dicom.offis.de/dcmtk
http://www.pixelmed.com
http://sourceforge.net/projects/ihe-xds-imaging
http://sourceforge.net/projects/ihe-xds-imaging
http://ihe.etsmtl.ca

	Abstract
	Background
	Results
	Conclusions

	Background
	XDS Architecture
	Sharing of imaging information
	Sharing of manifests
	Process flow
	XDS communication infrastructure

	Related Work
	Implementation
	Specifications
	Challenges: discussion and solution
	Leveraging of NIST Registry
	Different versions of the underlying communication protocol
	Different versions of specifications
	Web Services technology
	Architecture
	Registry adaptor
	Simple Publisher
	Registry Client
	Image Database/DICOM Retrieve SCP
	WADO server
	Information logger
	Web Test Control Interface
	Test modules
	AXIS2 Client
	AXIS2 Server
	Design for dealing with two different versions of specifications

	Results
	Tests description
	Testing an imaging document consumer actor
	Testing an imaging document source actor


	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	References

