Source Code for Biology and

-] \,J
Medicine

BiolVled Central

HitKeeper, a generic software package for hit list management
Jorg Hau!, Michael Muller? and Marco Pagni*3

Software review

Address: 'Nestlé Research Center, Department of BioAnalytical Science, PO Box 44, CH-1000 Lausanne 26, Switzerland, 2EPFL Database
Laboratory, CH-1015 Lausanne, Switzerland and 3Swiss Institute of Bioinformatics, Vital-IT group, CH-1015 Lausanne, Switzerland

Email: Jorg Hau - joerg.hau@rdls.nestle.com; Michael Muller - michael.muller@gmail.com; Marco Pagni* - marco.pagni@isb-sib.ch
* Corresponding author

Published: 28 March 2007
Source Code for Biology and Medicine 2007, 2:2 doi:10.1186/1751-0473-2-2

Received: 8 February 2007
Accepted: 28 March 2007

This article is available from: http://www.scfbm.org/content/2/1/2

© 2007 Hau et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The automated annotation of biological sequences (protein, DNA) relies on the
computation of hits (predicted features) on the sequences using various algorithms. Public
databases of biological sequences provide a wealth of biological "knowledge", for example manually
validated annotations (features) that are located on the sequences, but mining the sequence
annotations and especially the predicted and curated features requires dedicated tools. Due to the
heterogeneity and diversity of the biological information, it is difficult to handle redundancy,
frequent updates, taxonomic information and "private" data together with computational
algorithms in a common workflow.

Results: We present HitKeeper, a software package that controls the fully automatic handling of
multiple biological databases and of hit list calculations on a large scale. The software implements
an asynchronous update system that introduces updates and computes hits as soon as new data
become available. A query interface enables the user to search sequences by specifying constraints,
such as retrieving sequences that contain specific motifs, or a defined arrangement of motifs
("metamotifs"), or filtering based on the taxonomic classification of a sequence.

Conclusion: The software provides a generic and modular framework to handle the redundancy
and incremental updates of biological databases, and an original query language. It is published under
the terms and conditions of version 2 of the GNU Public License and available at http:/
hitkeeper.sourceforge.net.

of such a public resource that, by definition, covers only

Background

The automated annotation of protein or DNA sequences
is performed using a rather heterogeneous collection of
motif predictors, which include regular expressions, gen-
eralized profiles, hidden Markov models and neural net-
works. Since the search for hits by a motif on a sequence
is expensive in terms of processing time, the lists of hits
obtained by comparing collections of motifs with collec-
tions of sequences are usually stored and distributed as
dedicated databases. InterPro [1] is a canonical example

publicly available sequences and motifs.

However, biological research is often carried out using
sequences and motifs that are derived from public, as well
as private, sources. There is a clear need to incorporate
both sources of data into the same workflow; however,
since the software used to generate, manage and keep the
public data up-to-date is usually not available, it is diffi-
cult to reproduce and maintain similar hit lists locally.

Page 1 of 8

(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17391514
http://www.scfbm.org/content/2/1/2
http://creativecommons.org/licenses/by/2.0
http://hitkeeper.sourceforge.net
http://hitkeeper.sourceforge.net
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Source Code for Biology and Medicine 2007, 2:2

Further issues that complicate matters are the update fre-
quency of public databases, which can lead to an almost
continuous data flow, and the redundancy between differ-
ent databases. As an example, redundancy is visible by the
fact that the same protein sequence may appear in differ-
ent entries, in different databases, or in different releases
of the same database. Since most computations are CPU-
expensive, repeating the same computation should obvi-
ously be avoided.

To satisfy these requirements and to simplify the in-house
management of data from very different sources in various
formats, we have developed HitKeeper. It is a software for
the fully automatic handling of multiple sequence and
motif databases, as well as classification (taxonomy)
information, on a large scale. In addition, HitKeeper
implements an elaborate and original query syntax to
retrieve information. The distribution provides the core
programs, a number of test scripts, and a manual with
detailed instructions for the set-up of a pilot installation.
Since the software architecture is designed to be customiz-
able and extensible, it should be relatively easy for a user
with some proficiency in the Perl programming language
to introduce new data types and algorithms into the sys-
tem.

Implementation

Program architecture

The following description is focused on the essential fea-
tures and algorithms of HitKeeper. The installation and a
number of technical details are explained in-depth in the
Reference Manual, which is part of the distribution pack-
age.

HitKeeper is a collection of scripts that interact as concur-
rent clients with a relational database management sys-
tem (RDBMS). The software is mostly written in Perl and
was developed and tested under various flavours of Linux
and Mac OS X using MySQL as RDBMS; it is currently
being extended to other RDBMS.

Fig. 1 is a schematic representation of the logical organi-
zation of HitKeeper. Starting from the abstract concept of
"data", the structure is built around three kinds whose
properties are reflected in the organization of the software
and that are hardcoded in the application: seq, biological
sequences; mot, motifs for predicting hits on the
sequences, and cla, hierarchical classification (currently
limited to taxonomy).

For each kind, HitKeeper allows multiple types of data to be
dealt with. As an example, seq allows multiple types of
sequence data, such as "pep" (for peptide) and "nuc"(for
nucleotide). Similar to this, mot may comprise the type
"pattern” as well as "profile" or "HMM". All types, and all

http://www.scfbm.org/content/2/1/2

computation algorithms between them (e.g. which pro-
gram is used to run a pattern search on a peptide
sequence), are defined in a central configuration file.
Besides some general parameters (database server, etc.),
this file also holds the list of the modules and external
programs that are used (a) for parsing the flat files, (b)
performing the actual computations, and (c) dispatching
and/or mirroring to any external computing elements.
Custom modules written in Perl can be added, either
derived from the existing modules or written "from
scratch". Parsing of the input data is based on lazy parsing
that extracts only the relevant information. This mini-
mizes the amount of maintenance that might be induced
by format changes in the source data. Custom modules
can also be provided for the mirroring of the databases to
external computing elements (e.g. formating for a BLAST
server).

Five distinct clients are available. Three of them,
HKLoader, HKUpdater and HKPublisher, are used for
RDBMS housekeeping and control of the data flow. They
operate concurrently in the background, similar to a sys-
tem daemon. The two other scripts, HKReader and HKAd-
min, are used to interact with the RDBMS. While the
former is solely intended for querying the system, the lat-
ter also allows the administration of HitKeeper; as an
example, the HitKeeper administrator defines interactively
which database (UniProt, Prosite, etc.) is actually parsed
and used for the calculations. Both scripts provide the
functionality of a command-line tool, and the interactiv-
ity of a "shell-like" environment; they accept input from
STDIN and can thus be controlled through other scripts
and pipes. This allows automation and enables perform-
ing tasks in batch mode, either directly from the com-
mand line or by reading commands from a file.

Data lifecycle and computations

As mentioned above, HitKeeper reads three kinds of input
data. Each is associated with a "pipeline" where several
versions of a database, such as weekly releases, can coexist.
However, only the version with the status 'current' is in
the production stage and can be queried. Fig. 2 illustrates
how the seq and mot pipelines are synchronized with
respect to the incremental updates of the hit list.

Computations are set up on a per-database basis, so that
all entries in a given sequence database are expected to be
calculated against all entries in a motif database. However,
not all databases are necessarily calculated against each
other: the software uses a "subscription" model, defining
which database pairs are to be calculated. In this wayj, it is
possible to set up calculations as needed and to adjust the
allocation of computing resources.

Page 2 of 8

(page number not for citation purposes)

Source Code for Biology and Medicine 2007, 2:2

data

— T

seq mot cla

AR

nuc pattern HMM

/

Prosite Pfam fs

pep

/N

UniProt RefSeq

Figure |

taxonomy

http://www.scfbm.org/content/2/1/2

(abstract)

kinds (built—in)

types (from config file)

databases (using HKAdmin)

HitKeeper ontology. Logical organization of the data and software. See text for discussion.

All hit list computations are performed by calling external
software, i.e. they are not hardcoded in HitKeeper. A sim-
ple implementation of a pattern-matching algorithm is
provided and can be used as template for custom exten-
sions.

If a sequence or motif database is updated, repeating the
same computations for sequences or motifs that have not
changed should be avoided. This is the purpose of the
incremental update algorithm in HitKeeper. The algorithm
is identical for sequence and motif database updates.
Complications arise from the optional subscriptions and
from the handling of redundancy; a typical case handled
by our algorithm is outlined in Fig. 3.

Results and discussion

Installation, validation and scalability

The prerequisites for the installation of HitKeeper are the
availability of a MySQL server and a few Perl modules
from CPAN; according to our experience, the presence of
the system administrator is preferable at this stage. The
deployment of a HitKeeper installation as such is essen-
tially performed through a shell script within a few sec-
onds.

The validation of a HitKeeper installation concerns in par-
ticular the incremental updates and the query mechanism.
Two tests are provided in the distribution and imple-
mented as shell scripts, thus emulating commands as they
would be typed by the user instead of querying the
RDBMS directly. They should be run as "operational qual-
ification tests" and will verify the correct behaviour of the
parser, computation engine, incremental update, and
query mechanism.

Historically, HitKeeper was developed as the "back end" of
the MyHits web site [2] as depicted in Fig. 4. MyHits has
been in production status since 2003 and currently han-
dles more than 7 million non-redundant sequences with
weekly updates from a number of major databases, and
21 million hits on these (Table 1). Thus, HitKeeper can be
considered to be robust and scalable.

Queries

HitKeeper implements an elaborate and original query
syntax to retrieve information. Besides support for logical
operators (OR, AND, NOT), HitKeeper allows sequences
to be retrieved with logical constraints on the arrange-
ment of the motifs found along the sequence. An expres-
sion that specifies such a particular "motif of motifs" is
called a metamotif. Metamotif queries are expressed in a
grammar that is specific to HitKeeper, yet human readable.
This grammar is parsed and then compiled into an SQL
query. The metamotif query language was inspired by our
experience with mmsearch |3] and twofeat [4].

While presenting the full query capabilities of HitKeeper is
out of the scope of this paper, some typical examples of
the query language are given below. The setup of the fol-
lowing example dataset is described fully in the Reference
Manual; hits can be calculated overnight on a standard
Linux workstation. We make use of three common data-
bases: The Swiss-Prot protein sequences (designated with
sw hereafter) [5], the Prosite patterns (pat) [6], and the
NCBI taxonomy data (taxid) [7,8]. An additional database
of "virtual" motifs is automatically derived from the
Swiss-Prot "FT" lines (feature) with a script that produces
more than 800 of these 'virtual motifs'. The computation
yields two ‘'hit' lists (Swiss-Prot vs Prosite, and Swiss-Prot

Page 3 of 8

(page number not for citation purposes)

Source Code for Biology and Medicine 2007, 2:2 http://www.scfbm.org/content/2/1/2

Sequences Motifs

load load

HKlL.oader

wait wait

The new ones prepare HKUpdater prepare The new ones

ready ready

All current ones | current current | All current ones

HKPublisher

archive archive

Figure 2

Schematic representation of the sequence and motif pipelines. Several successive versions of a given source database
usually coexist at different stages in a pipeline. The databases are processed by three scripts running simultaneously, in a man-
ner similar to a system daemon: HKLoader watches the source data files for changes (using the date/time stamp). This script is
responsible for parsing and converting the raw data, detecting redundancy, and transferring the "clean" data into the SQL data-
base. HKUpdater updates the hit list. Once a motif database enters the prepare state, the new motifs are computed against the
sequences that are in current state. Similarly, when a sequence database comes in the states prepare, the new sequences are
computed against the motifs that are in the current state. The two computational tasks, sequences-vs-motifs and motifs-vs-
sequences, are never executed simultaneously — this keeps the two pipelines synchronized. Once the calculations are done,
HKPublisher becomes responsible for the deployment of the databases to external computing elements (e.g. a blast server) and
the database flagged as ready is promoted to current ("in production"): all subsequent queries are now applied to this database.
Previous versions can be kept as archives or deleted to reclaim space.

vs the ft motifs), and a single 'hat' list (i.e. match between =~ momy. The latter is used for filtering by taxonomy.
sequence and classification): Swiss-Prot vs NCBI taxo-

Table I: Turnover of sequence data

db versions total entries sequences

current 39 ~7-108 ~5.7- 108

total over 9 months 545 ~ 122 - 106 ~83- 108
ratio 0.07 0.06 0.69

Numbers of protein database versions, entries and sequences in HitKeeper behind the MyHits website, counted at the end of a nine-months period
and cumulated over the same time. The ratios indicate frequent updates of the database source files (545 individual releases for a final count of 39
database versions), frequent modifications of the annotations for the complete entries, but a much lower rate of sequence changes (69% remain
unchanged over time).

Page 4 of 8

(page number not for citation purposes)

Source Code for Biology and Medicine 2007, 2:2 http://www.scfbm.org/content/2/1/2

current versions
SA SB SC SD Snr

MA Mnr| sO sl s2 s3 s4

& I

m2 4+ 4+ o+ o+
mol 4+ 4+ 4+ 4+

MB

MC

NN NN NN NN

PR — 1 1100

Snr
Current

;B . . SOSlS2$3S4SS+-----------

Prepare

Snr

MA MI]I' sl s2 s3 s4 s5

m +
MB m2 + +

m3 + 4+

MD

SB (next version)

Figure 3

Example of redundancy management. This example [9] uses four motif (MA ... MD) and four sequence databases (SA ...
SD). The upper part of the figure corresponds to all data that are currently in production. The table on the upper left repre-
sents the different databases and some of their individual entries (horizontal and vertical lines). A yellow rectangle symbolizes a
subscription for computation. The small table on the right-hand side represents five "non-redundant” sequences ("Snr",
arranged in columns) and three motifs ("Mnr", in rows). The computations between individual sequences and motifs are sym-
bolised with black crosses; these do not necessary signal the presence of a match, but indicate the fact that the necessary calcu-
lations have been performed. - The bottom part of the figure shows a new version of sequence database SB that is being
prepared to replace the current version. Sequence sO will be deleted from database SB, sequence s5 will be inserted, s3 and s4
are new to SB but already present in other databases. The computations that must be performed are indicated by the red
crosses. Note that there is no need to compute s4 against m3, since it was already present in SD which, in turn, is already sub-
scribed to MD. - The same principle applies for updating a database of motifs.

Page 5 of 8

(page number not for citation purposes)

Source Code for Biology and Medicine 2007, 2:2

o

Private
Data
ﬂ

webserver
http://...

Query Engine

Incremental
Updates

http://www.scfbm.org/content/2/1/2

Computing Services

F
t

Public
Data

SQL Server

Figure 4

Database Mirroring

Schematic structure of the MyHits webserver. The tasks provided by HitKeeper are shown in blue. Services that provide
infrastructure (MySQL, Apache) are displayed in green, and computing services in pink. The different tasks are distributed over
different hosts, and synchronization of data is controlled by HitKeeper.

The original text entries can be retrieved using alternative
but unique designations. As an example, the Prosite entry
for the pattern with id CORNICHON can be retrieved
using its name, ID, or accession number:

mot_fetch_entry pat: CORNICHON
mot_fetch_entry PS01340

Queries can be "stored" using a query identifier, indicated
by -ref=... in the examples below. These identifiers are
used to repeat, refine or even string together queries. The
following example will refer to all bird sequences from
Swiss-Prot:

hat_query cla_parent=Aves
seq_source=sw -ref=$BIRDSEQ

Re-using the same query, count the sequences and the spe-
cies, then retrieve the non-redundant sequences of all
birds in Swiss-Prot:

query_stat $BIRDSEQ
seq_fetch_nr $BIRDSEQ

Since the taxonomy data are available, it is easy to list all
species covered by that query:

cla_fetch_desc $BIRDSEQ

A list of all matches of Prosite patterns against these
sequences can be obtained as follows:

hit_query seq_name=$BIRDSEQ mot_source=pat

Page 6 of 8

(page number not for citation purposes)

Source Code for Biology and Medicine 2007, 2:2

Table 2: Match counts

http://www.scfbm.org/content/2/1/2

#sequences #motifs #hits condition
374 2 737 X OR Y
231 2 542 X /</ Y metamotif
8l | 8l X NOT IN (X /</ Y)
68 | 72 Y NOT IN (X /</ Y)

Counts documenting the occurence of a match by a THIOREDOXIN pattern (X), and by an annotated Thioredoxin domain (Y) in the "FT" lines of
Swiss-Prot. The metamotif detects only those matches were X is located within Y. The numbers may change with a different release of Swiss-Prot.

HitKeeper also has the capability to perform negative
matching, such as finding all bird sequences with no
match by any Prosite pattern:

hit_query seq_source=sw mot_source=pat
-ref=$PROSITE

seq_query seq_name=$BIRDSEQ
not_seq_name=$PROSITE

A simple example is to retrieve all existing hits for the pro-
tein VAV_RAT [Swiss-Prot:P54100]:

hit_query seq_name=sw:VAV_RAT

Note that these include DOMAIN sh2 (one hit),
DOMAIN sh3 (two hits) in a particular arrangement. To
search all sequences that fulfill a similar arrangement, a
metamotif query with the followed by operator ~~ is used:

mom_query
(DOMAIN_sh3~n DOMAIN_sh2~vv DOMAIN_sh3)

At the time of writing, there are about 22 proteins meet-
ing this criterion in Swiss-Prot.

As another example, Prosite has a pattern pat:THIORE-
DOXIN that targets the active site of the thioredoxin
domain [Prosite:PS00194]. In Swiss-Prot, the thioredoxin
domain itself is annotated and was extracted from the FT
line as f:DOMAIN_Thioredoxin. The hit by the pattern is
usually present within the domain annotation, but not
always. In addition, some domain annotations do not
include an active site that the pattern would match. The
analysis is not straightforward since many proteins have
multiple hits with the pattern and domain annotations.
The following commands were used to obtain the counts
as shown in Table 2:

First, a hit query for hits by either of the two motifs
pat: THIOREDOXIN or ft:DOMAIN_Thioredoxin is per-
formed and is saved under the query identifier $all_hit.
The comma between the two motif names is the OR oper-
ator:

hit_query-ref=$all_hit
mot_name=pat:THIOR-DOXIN, ft: DOMAIN_Thioredoxin

Next a search for hits is carried out where the motif
pat THIOREDOXIN is 'embedded' in the motif
f:DOMAIN_Thioredoxin. Since there are proteins with
multiple thioredoxin domains, a metamotif with the is
included operator /</ was used to associate the pattern and
the annotation. As this is a metamotif query, mom query
is used instead of hit query:

mom_query(pat: THIOREDOXIN)/</(f:DOMAIN_Thioredoxin)
-ref=$mom_hit

In a third step, hits that contain the motif pat:THIORE-
DOXIN but that are not included in those that bind the
metamotif are identified:

hit_query mot_name=pat:THIORED OXIN
not_hit_list=fmom_hit -ref=$pat_not_mom

and the last dataset consists of hits with the motif
ft: DOMAIN_Thioredoxin, but that are not in the meta-
motif hit list:

hit_query mot_name=ft: DOMAIN_Thioredoxin
not_hit_list=$mom_hit -ref=$ft_not_mom

Finally, the results of all four queries are reported:

query_stat $all_hit $mom_hit $ft_not_mom
$pat_not_mom

The result is summarised in Table 2 and shows that there
are 81 matches by patterns that are not included in the
matches by domains. On the other hand, there are 72
domains where the corresponding pattern is not present.
The execution time of this last example is typically only a
few seconds.

Conclusion
HitKeeper provides a generic, modular and extensible
framework to handle the redundancy and incremental

Page 7 of 8

(page number not for citation purposes)

http://www.ebi.ac.uk/cgi-bin/dbfetch?db=swall&id=P54100

Source Code for Biology and Medicine 2007, 2:2

updates of biological databases and calculations between
them. It allows any user to manage his/her own "private"
collections of protein sequences and motifs, in addition
to the public ones. HitKeeper implements an elaborate
query syntax to retrieve information. These queries enable
the user to specify constraints for searching proteins, such
as retrieving sequences that contain specific motifs, or a
defined arrangement of motifs ("metamotifs"), or queries
based on the classification of sequences.

While it is not a "ready-to-use" annotation software, the
system is designed to be modular, extensible and scalable.
New data formats can easily be incorporated by writing
custom parsers. The command-line interface of HitKeeper
allows straightforward integration and interaction with
standard tools in the Unix environment, such as scripting,
piping, etc.

HitKeeper is used at the production stage in the "back-end"
of the MyHits web site. Hence it is actively maintained;
bug fixes and new functionalities are being added into the
distribution on a regular basis.

Availability and requirements
Project name: HitKeeper

Project home page: http://hitkeeper.sourceforge.net

Operating system: Linux, Mac OS X, Solaris
Programming language: Perl, bash, SQL

Other requirements: MySQL 4.1 or higher, a few Perl
modules from CPAN

License: GNU General Public License version 2
Any restriction to use by non-academics: None

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions

MP had the original idea and implemented most of the
software. MM investigated the incremental update algo-
rithm and the query language [9]. JH developed the setup
and testing procedures and wrote the documentation. All
authors read and approved the final manuscript.

Acknowledgements

We thank many people that have contributed, be it with suggestions, test-
ing, discussions or code, to the development of HitKeeper: Vassilios loan-
nidis, Laurent Falquet, Lorenzo "Luli" Cerutti, Heinz Stockinger, Monique
Zahn-Zabal, Brian Stevenson, Dmitry Kuznetsov, Christelle Vangenot,
Fabio Porto and Victor Jongeneel. Funding to pay the publication charges

http://www.scfbm.org/content/2/1/2

was provided by the Swiss Institute of Bioinformatics. MP acknowledges
financial support from EMBRACE. The EMBRACE project is funded by the
European Commission within its FP6 Programme, under the thematic area
"Life sciences, genomics and biotechnology for health", contract number
LHSG-CT-2004-512092.

References

l. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D,
Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U,
Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn
D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic |, Mad-
era M, Maslen |, McDowall J, Mitchell A, Nikolskaya AN, Orchard S,
Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJA, Silventoinen
V, Studholme DJ, Vaughan R, Wu CH: InterPro, progress and sta-
tus in 2005. Nucl Acids Res 2005, 33:D201-205.

2. Pagni M, loannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet
L: MyHits: a new interactive resource for protein annotation
and domain identification. Nucl Acids Res 2004, 32:W332-335.

3. Junier T, Pagni M, Bucher P: mmsearch: a motif arrangement
language and search program. Bioinformatics 2001,
17:1234-1235.

4. Rice P, Longden |, Bleasby A: EMBOSS: the European Molecular
Biology Open Software Suite. Trends Genet 2000, 16(6):276-7.

5. Wu C, Apweiler R, Bairoch A, Natale D, Barker W, Boeckmann B,
Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin M, Maz-
umder R, O'Donovan C, Redaschi N, Suzek B: The Universal Pro-
tein Resource (UniProt): an expanding universe of protein
information. Nucleic Acids Res 2006, 34(Database
issue):D187-91.

6. Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-
Genevaux P, Pagni M, Sigrist C: The PROSITE database. Nucleic
Acids Res 2006, 34(Database issue):D227-30.

7. Wheeler D, Chappey C, Lash A, Leipe D, Madden T, Schuler G,
Tatusova T, Rapp B: Database resources of the National Center
for Biotechnology Information. Nucleic Acids Res 2000, 28:10-4.

8. Benson D, Karsch-Mizrachi |, Lipman D, Ostell], Rapp B, Wheeler D:
GenBank. Nucleic Acids Res 2000, 28::15-8.

9. Muller M: Analysis, design and implementation of improved
queries on an integrated biological database. Master's thesis
2005.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 8 of 8

(page number not for citation purposes)

http://hitkeeper.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608177
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11751236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10827456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592170
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Program architecture
	Data lifecycle and computations

	Results and discussion
	Installation, validation and scalability
	Queries

	Conclusion
	Availability and requirements
	Competing interests
	Authors' contributions
	Acknowledgements
	References

