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Abstract

Background: Traditional flow cytometry data analysis is largely based on interactive and time consuming analysis of
series two dimensional representations of up to 20 dimensional data. Recent technological advances have increased
the amount of data generated by the technology and outpaced the development of data analysis approaches. While
there are advanced tools available, including many R/BioConductor packages, these are only accessible
programmatically and therefore out of reach for most experimentalists. GenePattern is a powerful genomic analysis
platform with over 200 tools for analysis of gene expression, proteomics, and other data. A web-based interface
provides easy access to these tools and allows the creation of automated analysis pipelines enabling reproducible
research.

Results: In order to bring advanced flow cytometry data analysis tools to experimentalists without programmatic
skills, we developed the GenePattern Flow Cytometry Suite. It contains 34 open source GenePattern flow cytometry
modules covering methods from basic processing of flow cytometry standard (i.e., FCS) files to advanced algorithms
for automated identification of cell populations, normalization and quality assessment. Internally, these modules
leverage from functionality developed in R/BioConductor. Using the GenePattern web-based interface, they can be
connected to build analytical pipelines.

Conclusions: GenePattern Flow Cytometry Suite brings advanced flow cytometry data analysis capabilities to users
with minimal computer skills. Functionality previously available only to skilled bioinformaticians is now easily
accessible from a web browser.

Keywords: Flow cytometry, Data analysis, GenePattern, FCS, Data preprocessing, Quality assessment, Normalization,
Clustering

Background
Flow cytometry
Flow cytometry (FCM) is a technique for counting and
examining microscopic particles, such as cells, by sus-
pending them in a stream of fluid and passing them
individually past a detector. It allows the simultaneous
multi-parametric analysis of the physical and chemical
characteristics of up to thousands of particles per second.
For more than 30 years, FCM has been widely used by
clinicians, immunologists, and cancer biologists to distin-
guish different cell types in mixed cell sub-populations,
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based on the expression of cellular markers. In both health
research and treatment this analytical method is used for
a variety of tasks, in particular the diagnosis and monitor-
ing of HIV infection and cancer, cross-matching organs
for transplantation, and for research involving stem cells,
vaccine development, apoptosis and phagocytosis.
In the last decade, advances in FCM instrumentation

and reagent technologies have enabled simultaneous sin-
gle cell measurement of surface and intracellular mark-
ers, including cellular-activation markers, intra-cellular
cytokines, immunological signaling, and cytoplasmic and
nuclear cell cycle and transcription factors, thus position-
ing FCM to play an even bigger role in health care and
medical research [1-3]. Today’s flow cytometers can mea-
sure up to 20 parameters simultaneously – two physical
parameters (cell size and granularity) and 18 fluorescent
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markers [4]. However, the rapid development of FCM
instrumentation has outpaced the development of ade-
quate approaches and tools for data analysis. Traditionally,
the majority of FCM experiments have been analyzed
visually, through time-consuming and subjective serial
inspection of one or two dimensions at a time (using a
process termed “gating”, to define boundaries or “gates”
for cell sub-populations), or by very basic comparisons
of summary statistics. With 20 dimensional data, there
are hundreds of possible pairwise parameter combina-
tions and many cell populations. This number increased
with the recent introduction of CyTOF instruments allow-
ing potentially up to 100 stable isotope labels in a single
sample and creating up to 100 dimensional FCS data files
[5]. Analyzing such complex data is time consuming and
human experts can miss important cell populations if
these are only visible in high dimensional space not clearly
distinguishable in any of the pairwise plots. For these rea-
sons, there has been recent interest in developing new
data analysis techniques that will exploit the full poten-
tial of modern flow cytometers and provide standardized,
reproducible and objective analyses [6,7]. These are often
created in the form of programming libraries, such as
R/BioConductor [8] packages, and therefore only acces-
sible to sophisticated users rather than experimentalists
who lack advanced programming skills.

GenePattern
GenePattern is a powerful web-based application offering
easy access to over 180 tools for analysis of gene expres-
sion, proteomics, and other data [9]. An additional 100
tools are under development and testing at this point.
These tools are provided in the form of modules, typi-
cally written in R, Java, Matlab, or Perl. GenePattern was
originally released in 2004 and now has more than 22,000
users world wide. Using a web-based interface, experi-
mentalists can easily submit their data and choose suitable
settings in order to perform complex analyses without
detailed knowledge of the underlying programming lan-
guage, algorithms and settings, allowing them to con-
centrate on the interpretation of biologically meaningful
results. Besides executing various modules as standalone
tools, users can also chain modules together to create
automated analysis pipelines enabling reproducible in sil-
ico research, now also facilitated by a Microsoft Word
add-in as part of the GenePattern Reproducible Research
Document that allows scientists to embed their pipelines
in a text document [10].

Methods
GenePattern is a web-based tool running within an
Apache Tomcat application server. The GenePattern Flow
Cytometry Suite (GP FCM Suite) is implemented as a

set of GenePattern modules. These are command line-
based software applications with formally defined syntax,
inputs and outputs. These definitions reside in a mani-
fest file, packaged together with the source code of the
module and documentation in a module ZIP archive. The
GP FCM Suite modules are developed in R, Java and
C. The R-based modules extensively reuse many existing
flow cytometry related R/BioConductor packages [11-18].
Java-based modules reuse a Java library called CFCS,
which is an open-source implementation of the Proposed
API for reading and writing FCS files [19]. The CFCS
library was originally developed in 2003 by Tree Star, Inc.
(Ashland, OR) and is now maintained by our group at the
British Columbia Cancer Agency (BCCA) and is available
from the flowcyt website [20].

Results and discussion
We previously proposed a general FCM data analysis
framework [7] consisting of seven steps: (1) Quality
assessment, (2) Normalization, (3) Outliers removal, (4)
Automated gating, (5)Cluster labelling, (6) Feature extrac-
tion and (7) Interpretation. Except for interpretation, the
GP FCM Suite addresses all these steps; commonly with
multiple modules and approaches (Figure 1). The last
step – interpretation – is highly dependent on the actual
experiment type (design, hypothesis, type of clinical test,
etc.). Therefore, we currently leave it up the the user to
choose an appropriate approach to interpret experimen-
tal findings. In addition to the proposed framework, the
GP FCM Suite contains several Data preprocessing mod-
ules often required before the start of data analysis. Finally,
manual gating was not considered in the general auto-
mated FCM data analysis framework [7]. While we do not
incorporate interactive manual gating in automated analy-
sis pipelines, we still allow users to reuse results of manual
gating for the analysis in GenePattern.

Data preprocessing
The GP FCM Suite includes several data preprocessing
steps such as data preview and transformations, conver-
sion between spreadsheets (i.e., CSV files) and the Flow
Cytometry data file Standard (FCS [21]), merging and sub-
sampling data as described below and shown in Figure 1,
step 0.

Data preview
The first essential step in data processing is commonly the
review of the contents of an FCS data file. This becomes
especially important if a user is not familiar with the
details about the data. The GP FCM Suite provides a
data preview module, which lists the meta information
stored in the file and provides details such as the num-
ber of events in the file (i.e., the number of particles,
such as cells, whose characteristics have been captured
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Figure 1 GP FCM Suite Modules Overview. Figure 1 enumerates modules currently available in the GP FCM Suite. These modules are assigned to
steps (0–7) based on which step they address according to the general automated data analysis pipeline. This pipeline is based on framework [7]
with an initial step (0) added for data preprocessing and with gating extended to cover both, manual and automated approaches.

in the file) and the number of parameters in the file (i.e.,
the number of distinct characteristics measured). Out-
put is available as either as an HTML report (for human
review) or an XML document (for further automated
processing).

Adding and removing FCS keywords and parameters
We provide functionality for editing, adding or removing
keyword/value pairs stored in the meta data section of
FCS files (e.g., for de-identification of clinical data prior
to sharing). In addition, we also offer modules to add or
remove FCM parameters from data files. Adding a param-
eter is useful, for example, if calculated event (cell) features
need to be stored. These may include assignments of cells
into subpopulations as the result of a clustering algorithm.
Removing parameters is useful for high content experi-
ment with many markers where only a subset is included
in a manuscript.

Adjusting data scale
In most FCM applications, fluorescence signals of interest
can range over several decades. Several transformations
have been developed to provide more complete, appropri-
ate, and readily interpretable representations. Via a dedi-
cated module (LogicleTransformFCS), the GP FCM Suite
includes support for the Logicle / Biexponential [22,23]

data transformation, the de-facto standard for contempo-
rary visualization of FCM data. Additional transformation
are supported via Gating-ML [24], including both FCM-
specific transformations (e.g., Hyperlog [25], Split-scale
[26]) as well as more generic transformations (e.g., inverse
hyperbolic sine, logarithmic).

Datamerging and sub-sampling
Merging multiple data sets into a single file can be used
to identify all the cell subpopulations that are present
among a group of subjects. We have also included sev-
eral options to sub-sample the data since including all
events from all source files creates a file whose size
approximately equals to the sum of sizes of all source
files, which may become too large to process by some
algorithms.

Conversion to and from spreadsheets
Converting between FCS files and simple spreadsheets
(i.e., CSV files) becomes important if part of an analysis
relies on customized tools that handle simple matrix-
based data but do not implement the parsing of the FCS
format. The GP FCM Suite includes modules for conver-
sion in both directions and provides additional options
allowing the specification of the details of how data shall
be stored, such as the data type, range, precision, etc.
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Compensation
Compensation is the process whereby the fluorescence
spillover originating from a fluorochrome other than the
one specified for a particular detector is subtracted as a
percentage of the signal from other detectors. The inher-
ent overlap of emission spectra from antibody fluorescent
labels makes compensation necessary before proceeding
with further analysis. The GP FCM Suite provides the
ability to perform compensation based on the fluores-
cence spillover matrix that is commonly included within
FCS files, or using compensation specification supplied
externally.

Adding noise
The GP FCM Suite also offers a way to add noise to
data sets, mainly to aid automated clustering methods as
some these are sensitive to data singularity and may fail
to deliver results unless a small amount of noise is added
[27].

Quality assessment
Data quality assessment (Figure 1, step 1) represents an
important part of any data analysis, and quality control
tests should be included at the beginning of data analy-
sis and often at other steps of an analytical pipeline to
identify differences in samples originating from changes
in conditions that are probably not biologically motivated.
Generally, methods establish a quality control criterion to
give special consideration to abnormal samples or even
exclude these from further analysis.
Quality control tests in the GP FCM Suite are largely

based on functionality implemented in the flowQ [13]
R/BioConductor package. They include tests applicable to
both, plate-based and single panel FCM data (e.g., cell
number test, time flow test, Probability Density Function
(PDF) and medians test of forward and side scatter for
cell debris). An interactive HTML report is created after
the execution of selected quality assessment tests display-
ing an overview table with rows corresponding to tested
samples and columns to selected quality control tests. The
results of these tests are color-coded with green indicating
no problems, yellow indicating a warning, and red sug-
gesting the failure of a certain test on a certain sample.
Clicking on the heading shows an overview plot for that
particular test, and clicking on a particular sample/test
result will reveal details about the execution of that test on
that sample. It is left up to the user to review flagged sam-
ples and exclude individual samples from further analysis
as appropriate. An example of a quality assessment report
of a 96 well plate of a “Normal Donor” study performed
by Becton, Dickinson and Company (BD) in order to mea-
sure immune responses to various infectious agents and
cancer antigens among healthy young adults is included as
Additional file 1.

Fingerprinting
Fingerprinting generates a description of the multivariate
probability distribution function of FCM data by trans-
forming raw FCM data into a fingerprint form suitable
for data quality assessment purposes as well as direct
input into conventional statistical analysis and empirical
modeling software tools. Fingerprinting is independent
of a presumptive functional form for the distribution,
in contrast with model-based methods such as Gaussian
Mixture Modeling. Within GenePattern, we implement
FCM fingerprinting functionalities based on the flowFP
[28] R/BioConductor package. This approach is computa-
tionally efficient and able to handle large flow cytometry
data sets of arbitrary dimensionality.

Normalization
Between-sample variation in high throughput FCM data
represents a significant challenge for analysis of large scale
data sets, such as those derived from multi-center clin-
ical trials. It is often hard to match biologically relevant
cell populations across samples due to technical variation
in sample acquisition and instrumentation differences.
Thus, normalization of data is a critical step prior to
analysis, particularly in large-scale data sets from clinical
trials, where group specific differences may be subtle and
patient-to-patient variation common. The GP FCM Suite
includes a normalization method that removes technical
between-sample variation by aligning prominent features
(landmarks) in the raw data on a per-channel basis as
described by Hahne et al. [14].

Outliers removal
Before further analysis, users may want to perform ini-
tial data clean up, such as the removal of margin channel
events. These may, for example, occur when the instru-
ment detector voltages are set too high so that cells
highly expressing certain markers create signals above the
recordable range for corresponding parameters. Events
created by these cells will condense at the parameter top
range value and eventually create artificial cell popula-
tions, which may cause problems for further analysis. The
GP FCM Suite offers a module for data clean up, includ-
ing the removal of saturated events and events believed to
be caused by instrument errors (Figure 1, step 3).

Gating
Gating is an inherent component of FCM data analysis;
it is a process where particles (i.e., cells) are subset-
ted according to physical and fluorescence characteris-
tics. These properties are reflected in parameter values
of events stored in FCS files. In practice, gating corre-
sponds to assigning classes (labels) to these events. This
can be done either manually or automatically. While man-
ual gating is still dominant in traditional FCM, automatic
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gating methods are becoming more important in con-
temporary and high throughput approaches [6]. The GP
FCM Suite supports both (Figure 1, step 4), as described
below.

Manual gating
Manual gating involves a combination of biological
domain knowledge and visual inspection of the data. Typ-
ically, gate boundaries are drawn interactively on series
of one or two dimensional data projections. Within the
GP FCM Suite, we do not support interactive manual gat-
ing as virtually all experimentalists performing manual
gating use one of several commercially available soft-
ware tools well suited for this purpose already. However,
the GP FCM Suite still supports non-interactive man-
ual gating based on the input of Gating-ML [24] files, an
open XML-based standard for encoding gating and data
transformations.

Automated gating (clustering)
Recently, several methods have been developed to auto-
mate the gating process [15-18,29-35]. These include both
model-based methods, such as multivariate mixture mod-
els, as well as non-parametric approaches. One of these
methods [33] has already been made available by their
authors in the form of a GenePattern module, and we
have added support for flowClust [15], flowMerge [16],
K-Means [36], flowMeans [18], SamSPECTRAL [17] and
FLOCK [34,35].

Number of sub-populations Most clustering algorithms
require some user input, such as the number of expected
sub-populations to search for. Computationally, the esti-
mation of the correct number of sub-populations present
in a data set is difficult and may not only depend on
the data but also on the goal of particular analysis. For
example, cells that could be considered as outliers in one
case, could also represent a rare population that may
be important for classification of a certain disease, or
they could indicate other useful information about the
subject. Therefore, in the GP FCM Suite, we typically
do not integrate the automated selection of the num-
ber of sub-populations in most clustering algorithms.
Instead, we provide a separate module that investigates
the data and suggests the number of sub-populations to
the user. This is graphically supported by the output of the
Baysian Information Criterion (BIC) and the Integrated
Completed Likelihood (ICL) score for a range of sub-
population numbers. Generally, these curves show how
well the data can be modeled as a mixture of a certain
number of populations. This approach has the advantage
that the user may either accept the suggested value or
select her/his own value based on prior knowledge and/or
inspection of the BIC and/or ICL curves.

Cluster labeling
Independent clustering of multiple flow cytometry sam-
ples (e.g., from different patients) results in dividing each
of the input data files into several subsets corresponding
to cell sub-populations in each of the particular sample.
Another analytical step (i.e., Figure 1, step 5) is required
to match (label) these sub-populations across different
samples. This label matching is usually performed by
comparison of the position of each of the identified sub-
populations. In the GP FCM Suite, we offer modules for
assigning labels to previously clustered data sets from
multiple flow cytometry samples. The data may have been
previously clustered by any clustering algorithm. The clus-
ter matching is performed using model-based clustering
of the means of the previously clustered sub-populations
and users can choose from several models to fit their
data. In addition, the user shall specify how many distinct
sub-populations are expected to be found across all the
previously clustered FCM data. Similar to estimating the
number of sub-populations in a single sample, there is also
a module in the GP FCM Suite that can help with this
estimation across multiple samples.

Feature extraction
The extraction of features (Figure 1, step 6) of identified
sub-populations typically follows after gating and even-
tually labeling of FCM data. The main feature is simply
the number (or proportion) of cells in different sub-
population (e.g., how many cells are positive or negative
for specific markers). In addition, one may be interested
in the mean value of selected parameters (e.g., the mean
fluorescence intensity – MFI – of a certain population
of cells). The MFI can, for example, indicate the cellular
response after specific antigen stimulation [37]. In the GP
FCM Suite, we offer the calculation of cell number, pro-
portion as well as mean parameter values. Other features
that can be calculated include the integrated mean fluo-
rescence intensity (iMFI) [38], obtained bymultiplying the
cell proportion by the mean fluorescence value.

Interpretation
Interpretation of analytical results (Figure 1, step 7) is
highly dependent on the actual experiment type, its
design, the hypothesis being tested, the type of clini-
cal test, etc. Therefore, it is likely impossible to create
a generally applicable solution. In GenePattern, we cre-
ated a few very specific modules to help researchers from
BCCA test hypotheses related to their projects, such as
the computational quantification of long-term reconsti-
tuting hematopoietic stem cells (HSC) from adult mouse
bone marrow [39]. However, these modules rely on a
very specific experimental design and tightly defined set-
tings and protocols, and therefore, they are only useful
for the laboratory they have been designed for. Con-
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sequently, we have not included these modules in the GP
FCM Suite and we are leaving it up the researchers to
decide about the best way to interpret their experimental
findings.

Availability and requirements
All GP FCM Suite modules are available from GenePat-
tern (http://www.genepattern.org); these can be run
directly on the public server (http://genepattern.broad
institute.org/gp/) hosted at Broad Institute of MIT
and Harvard or downloaded for use with own installation
of GenePattern server. Currently available modules are
also included in Additional file 2 and their source codes in
Additional file 3. In addition, newest modules devel-
oped in the future may be accessed from the GenePattern
beta server (http://genepatternbeta.broadinstitute.org/gp/)
before their official release through GenePattern. The
GP FCM Suite is distributed as open source under the
GNU LGPL 3.0 license. All used R libraries are freely
available and their licensing conditions are specified on
the download page of each specific library in the appro-
priate R repository, such as CRAN or BioConductor.
GenePattern server software is freely available under the
GenePattern License Agreement. The text of this license agree-
ment is available at http://www.broadinstitute.org/cgi-
bin/cancer/software/genepattern/gp_server_license.cgi.

Conclusions
Traditional FCM data analysis involves the interpretation
of individual two-dimensional scatter plots culled from
sets of simultaneous analysis of highly multidimensional
data. Recent technological advances have increased the
amount of data generated by the FCM technology and
outpaced the development of analytical approaches.
While it is becoming clear that analysis methods based
on manual gating are unsuitable for the increased amount
of data and simultaneously measured fluorescence
parameters, they still represent the main functionality in
commercial FCM data analysis software. The need for
new analytical approaches has been well recognized by
the research community; however, advanced tools being
developed are commonly released in the form of pro-
gramming libraries (such as R/BioConductor packages)
and therefore only accessible programmatically. Little
effort is invested into making these available via user-
friendly interfaces that would make these tools accessible
for experimentalists without advanced programming
skills.
In order to address this issue, we have developed the GP

FCM Suite consisting of GenePattern modules to analyze
FCM data. The modules in the GP FCM Suite can help
with quality assessment, normalization, outliers removal,
gating/clustering, cluster labeling, feature extraction and
other tasks.

To the best of our knowledge, there is no other soft-
ware tool that would provide a variety of advanced algo-
rithms for the computational analysis of flow cytometry
data via a user-friendly interface. However, a few soft-
ware tools, most of them commercial, integrate one or
two of these algorithms. For example, FlowJo (http://www.
flowjo.com/) allows users to utilize automated cluster-
ing for the purpose of analyzing flow cytometry data.
Cytobank [40] has recently included the Cyto Spanning
tree Progression of Density normalized Events (SPADE)
[41] algorithm to their hosted versions of Cytobank and
DVS Cytobank servers. The Immunology Database and
Analysis Portal (ImmPort, https://immport.niaid.nih.gov)
integrates the FLOCK [34,35] analysis (also available as
part of the GP FCM Suite). GemStone (Verity Software
House, http://www.vsh.com) offers a patented Probabil-
ity State Modeling (PSM) technology to combine multiple
samples and estimate missing parameter values. Finally,
most of the major commercial third party software ven-
dors, including Tree Star, De Novo Software, and Ver-
ity Software House, offer computational support for cell
cycle analysis. All these tools integrate some algorithms
facilitating users willing to apply computational meth-
ods for the analysis of flow cytometry data. While the
scope and variety of implemented methods is limited
compared to all the modules offered by the GP FCM
Suite, the increasing commercial support clearly shows
the new trend of users seeking advanced algorithms to
help them analyze the increasing amount of increasingly
complex data. Users with programmatic skills will always
get the most out of the advanced FCM analysis tools
if they programmatically incorporate these in an anal-
ysis pipeline. These users will have additional settings
for various algorithms as well as the choice to encode
more complex work flows compared to the options offered
by GenePattern. However, we argue that most of the
experimentalists have biology or medicine-related back-
grounds and their programmatic skills are limited. For
them, having advanced analytical functionality accessi-
ble from a simple web-based user interface becomes
very useful.

Additional files

Additional file 1: Example of a quality assessment report. Please use
any ZIP-compatible software to extract the ZIP archive file into a folder and
then open the index.html file in your web browser. The interactive report
shows an example of quality assessment with samples in rows and
performed tests in columns. The results are color-coded with green
indicating no problems, yellow indicating a warning, and red suggesting
the failure of a certain test on a certain sample. The user should review
flagged samples and decide whether further actions are required. Clicking
on a heading shows an overview plot for a particular test. Clicking on a ‘+’
sign will expand the appropriate section, revealing detailed test results.
Individual dots can be clicked on to provide the supporting analyses of
tested FCM parameters underlying the final call.

http://www.genepattern.org
http://genepattern.broadinstitute.org/gp/
http://genepattern.broadinstitute.org/gp/
http://genepatternbeta.broadinstitute.org/gp/
http://www.broadinstitute.org/cgi-bin/cancer/software/genepattern/gp_server_license.cgi
http://www.broadinstitute.org/cgi-bin/cancer/software/genepattern/gp_server_license.cgi
http://www.flowjo.com/
http://www.flowjo.com/
https://immport.niaid.nih.gov
http://www.vsh.com
http://www.biomedcentral.com/content/supplementary/1751-0473-8-14-S1.zip
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The example demonstrates a quality assessment report of a 96 well plate of
a “Normal Donor” study performed by Becton, Dickinson and Company
(BD) in order to measure immune responses to various infectious agents
and cancer antigens among healthy young adults. The ≈ 8 GB of data from
the mentioned study may be downloaded from http://www.ficcs.org/
data/data-files/.

Additional file 2: GenePattern Flow Cytometry Suite Modules. Please
use any ZIP-compatible software to extract the ZIP archive file into a folder.
After extraction, the folder will contain 34 ZIP files, each of these represents
one of the GenePattern modules in the GenePattern Flow Cytometry Suite.
If you are hosting your own GenePattern server then you can install the
GenePattern Flow Cytometry Suite from these module ZIP files by following
“Modules & Pipelines”, “Install from zip” at your local GenePattern site. The
latest version of these modules can always be obtained by navigating to
the particular module at the GenePattern public server web site (http://
genepattern.broadinstitute.org/gp/) and following the “export” link.

Additional file 3: Source Codes of GenePattern Flow Cytometry Suite
Modules.Please use any ZIP-compatible software to extract the ZIP archive
file into a folder. There will be 35 folders after the extraction. The folder
named lib contains the CFCS library that is required in order to compile the
Java-based modules. In addition, the lib folder contains a ZIP compression
tool that is being used by the FCMSinglePanelQC and PlateQAFCSmodules
to compress the results in case the server computer is a Windows-based
machine. This tool is not required for Linux/Unix or Mac based servers. The
additional 34 folders contain the source codes of each of the modules in
the GenePattern Flow Cytometry Suite.
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