
RESEARCH Open Access

Yabi: An online research environment for grid,
high performance and cloud computing
Adam A Hunter, Andrew B Macgregor, Tamas O Szabo, Crispin A Wellington and Matthew I Bellgard*

Abstract

Background: There is a significant demand for creating pipelines or workflows in the life science discipline that
chain a number of discrete compute and data intensive analysis tasks into sophisticated analysis procedures. This
need has led to the development of general as well as domain-specific workflow environments that are either
complex desktop applications or Internet-based applications. Complexities can arise when configuring these
applications in heterogeneous compute and storage environments if the execution and data access models are
not designed appropriately. These complexities manifest themselves through limited access to available HPC
resources, significant overhead required to configure tools and inability for users to simply manage files across
heterogenous HPC storage infrastructure.

Results: In this paper, we describe the architecture of a software system that is adaptable to a range of both
pluggable execution and data backends in an open source implementation called Yabi. Enabling seamless and
transparent access to heterogenous HPC environments at its core, Yabi then provides an analysis workflow
environment that can create and reuse workflows as well as manage large amounts of both raw and processed
data in a secure and flexible way across geographically distributed compute resources. Yabi can be used via a
web-based environment to drag-and-drop tools to create sophisticated workflows. Yabi can also be accessed
through the Yabi command line which is designed for users that are more comfortable with writing scripts or for
enabling external workflow environments to leverage the features in Yabi. Configuring tools can be a significant
overhead in workflow environments. Yabi greatly simplifies this task by enabling system administrators to configure
as well as manage running tools via a web-based environment and without the need to write or edit software
programs or scripts. In this paper, we highlight Yabi’s capabilities through a range of bioinformatics use cases that
arise from large-scale biomedical data analysis.

Conclusion: The Yabi system encapsulates considered design of both execution and data models, while
abstracting technical details away from users who are not skilled in HPC and providing an intuitive drag-and-drop
scalable web-based workflow environment where the same tools can also be accessed via a command line. Yabi is
currently in use and deployed at multiple institutions and is available at http://ccg.murdoch.edu.au/yabi.

Keywords: Bioinformatics, workflows, Internet, high performance computing

Background
Chaining a number of analysis tools together to form
domain-specific analysis pipelines or workflows is essen-
tial in many scientific disciplines [1-3]. For some scien-
tists access to a command line login is all that is
required for them to write custom scripts and programs
to link these tasks. For instance, workflows can be
implemented in programming languages such as Perl

(http://www.perl.org/), Python (http://www.python.org/)
or Java (http://java.sun.com/), utilising extensive libraries
such as Bioperl [4] and Biojava [5] and BioPython
(http://biopython.org). More recently tools and data can
be accessed via web services [6,7]. However, construct-
ing analysis workflows in this manner requires a level of
programming proficiency that typically presents a bar-
rier to many scientists [8-10]. In addition, the amount
of data and the compute intensive nature of the tasks
demand the need to run these tasks on large-scale high
performance computing (HPC) infrastructure.

* Correspondence: mbellgard@ccg.murdoch.edu.au
Centre for Comparative Genomics, Murdoch, Western Australia, 6150

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

© 2012 Hunter et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://ccg.murdoch.edu.au/yabi
http://www.perl.org
http://www.python.org
http://java.sun.com
http://biopython.org
mailto:mbellgard@ccg.murdoch.edu.au
http://creativecommons.org/licenses/by/2.0


Unfortunately, existing tools for interacting with the
Grid or HPC resources such as Globus [11] and super
computer scheduling systems are often too “low level”
and require computing knowledge that is also outside
the expertise of many scientists.
Simple, transparent access to High Performance Com-

puting (HPC) and Grid resources for non-technical
users is a significant challenge that must be overcome
to facilitate widespread adoption of large-scale compute
and data resources [8-10]. In trying to address this, sig-
nificant work has been undertaken to develop workflow
environments that attempt to alleviate the need of hav-
ing scientists write their own scripts or programs. These
are either desktop applications or more recently Inter-
net-based applications [12-16]. Two examples are now
provided.
Taverna is a powerful desktop workflow management

system [12,13]. However, to fully exploit the power of
this system requires a high level of programming com-
petence. Firstly, users are provided a desktop application
that offers extreme flexibility and configurability but can
be complex and difficult to uptake by users that simply
want to quickly chain a core set of tools together. Sec-
ondly, the application has an execution model that
either runs executables on the user’s local machine or
submits data to web services for execution. A typical
Taverna installation does not have a data model other
than to manage local files. Thirdly, scientists must
incorporate error handling for any tools they wish to
incorporate in each workflow. For example, the error
messages from a failed web service call in a given work-
flow can be quite daunting to non-HPC trained
scientists.
In other words, scientists using Taverna must manage

the complexity of the workflow, the tools to be adminis-
tered, and the error handling of the tools. The end users
of the system cannot hide these exposed details of the
compute infrastructure or manage the tools in a simpli-
fied way. For many users this is sufficient, but for many
other users who desire an intuitive browser-based work-
flow environment, systems such as Taverna may not be
appropriate.
Galaxy is a rich domain-specific Internet-based envir-

onment tailored to bioinformatics genomics data anlay-
sis [14]. The interface is considerably simplified for
scientists to use compared to Taverna. In Galaxy, the
role of maintaining tools is separated from the user,
although it requires the skills of a software developer to
add new tools to the system. For instance, XML scripts
are required to be edited for both tool configuration
and to notify Galaxy of the tool’s existence [17]. While
this is manageable in some instances, configuring a large
number of tools for a range of different user groups
would demand significant overhead. While Galaxy is

specifically designed for genomics analysis, more
recently Galaxy is being extended to introduce proteo-
mics data types [18].
As highlighted by the previous two examples, there

exists a need for scientific workflow environments that
have the following necessary features: Internet-based
and intuitive to use; tool management abstracted from
users; defined process for expanding the list of available
tools and custom scripts that do not require software
development expertise; scientists are not tied to the
workflow environment to access data and results (pre-
vent data lock in); provide comprehensive configuration
for execution and data access models to leverage exist-
ing compute and data infrastructure.
In this paper, we introduce Yabi, an Internet-based

interface to a workflow engine that solves the problem
of workflow deployment across disparate legacy HPC
resources. Yabi abstracts the complexity involved in
accessing multiple HPC resources and data stores from
the scientific researcher. In this way Yabi enables
researchers access to HPC power without requiring spe-
cialised computing knowledge.

Implementation
1 Overview
Yabi uses a three-tier architecture to enable flexibility
and reuse [19]. The first layer is the frontend web appli-
cation that provides the main user interface; the second
layer is the middleware that is responsible for process
management, tool configuration, analysis audit trails
[1,20] and user management; the third layer is the
Resource Manager that exposes data and compute
resources to the middleware. The core components are
shown in Figure 1.
Yabi simplifies the visual representation of the work-

flow to the scientist by highlighting the files and para-
meters that are relevant while hiding from the scientist
the computational structures such as branching, looping,
conditionals, dependency resolution and fault recovery.
Yabi shifts the complexities of managing the

Figure 1 Yabi Architecture. The YABI architecture outlining the
key components including Frontend Application, Middleware
Appliance and the Resource Manager.

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 2 of 10



infrastructure away from the end user and onto the sys-
tem administrator responsible for managing the HPC
resources. Yabi allows a scientist to submit, run, and
monitor jobs from multiple operating systems and both
desktop and mobile environments. It provides a
domain-agnostic environment with a comprehensive
suite of compute and data access models utilising SSH,
GridFTP, Torque [21], PBS Pro [22], SFTP, S3 and
others. This enables the Yabi system to leverage com-
pute and data resources beyond those that are available
on a local server or network. Yabi separates the roles of
user, system administrator and software developer. This
allows a system administrator to add tools to the envir-
onment using the Yabi administration web application
without the need to undertake software development
(see Section 3.1).

2 Yabi frontend application
User interaction with Yabi is via a web-based application
written in Python and built around the Django Frame-
work (https://www.djangoproject.com/). From a user’s
perspective the Yabi frontend application provides
methods for creating, naming, submitting and monitor-
ing workflows, and for accessing data on external sto-
rage systems. The Yabi frontend is designed to provide
a REST [23] style web service to allow different client
interfaces to interact with it. In the current implementa-
tion two user interfaces have been built: a web-based
client and a command line client.
2.1 Web-based client
Typically, users would interact with Yabi through the
Web-based client by establishing a session through an
initial log in and authentication. The user is then pre-
sented with an interface consisting of three views: the
design view, the jobs view and the files view, shown in
Figure 2. In this example, Yabi is configured to invoke a
simple sequence similarity search using web services
running on remote services, in this case, the European
Bioinformatics Institute (http://www.ebi.ac.uk/Tool/
webservices).
The design view allows a user to construct a workflow

by selecting each tool they wish to use and completing
the tool’s mandatory and optional inputs. The workflow
may then be optionally named before it is submitted for
execution. All workflows are stored as part of a complete
audit trail and are available to be reused. Additional
workflows may be run concurrently. Included in this
design view are enhancements to the workflow construc-
tion such as automatic filters to highlight appropriate
tools at a particular stage and providing visual cues to
users of potential dependencies that cannot be resolved.
Previously submitted workflows are accessed via a jobs

view. Comprehensive provenance for each workflow is
kept including input files, all tools and each tool’s

parameters. Searching by name, date, and arbitrary
metadata is also available.
Resulting files produced by workflows may be viewed

either directly through the workflow representation in
the jobs view, or via a files view which is a representa-
tion of the external data resources accessible by the user
allowing typical file management tasks such as copying,
deleting and renaming.
The design, jobs and files views provide drag-and-drop

interfaces that abstract away the complexities of process
management and interfacing with HPC environments.
Technically, to present the interface to the user, the cli-

ent browser makes Ajax (http://www.adaptivepath.com/
ideas/essays/archives/000385.php, 2011) calls to the fron-
tend application. When information about tools and the
state of workflows is required the frontend establishes a
secure, authenticated connection to the middleware and
retrieves the relevant information. For example, to dis-
play a list of tools for a user, an Ajax call is made from
the web browser to the frontend application. The fron-
tend application in turn makes a request to the middle-
ware. The middleware then returns a JavaScript Object
Notation (JSON) (http://tools.ietf.org/html/rfc4627, Oct
2011) list of tools, which is returned by the frontend to
the client interface. An important point to note is the dis-
tinction drawn between each of the components. The
HTML/JavaScript interface only communicates with the
frontend application. The frontend then makes all con-
nections with the middleware. Similarly, if the web client
requires a file listing, a request is sent via the frontend to
the middleware, which then requests a listing from the
Resource Manager.
2.2 Command line client
For users that prefer command line access, a command
line client for Yabi, Yabish is provided. Yabish commu-
nicates with the frontend application to authenticate
and establish a session. Once this is done it is possible
for users to construct and submit jobs to Yabi via the
command line. In addition, Yabish includes commands
to list running jobs. Using Yabish enables users familiar
with scripting languages to incorporate Yabi into their
work environment or legacy systems. Results may then
be fetched using Yabish or alternatively by logging into
the web-based client and viewing them in a web brow-
ser. This enables groups of researchers with varying
computing skills to share common tools. In this way,
external workflow environments that have naïve execu-
tion and data access models can also be configured to
utilise Yabish tools and then have access to a sophisti-
cated execution and data access environment.

3 Yabi middleware
The second layer of the Yabi three-tier architecture is
the Yabi middleware. The middleware consists of two

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 3 of 10

https://www.djangoproject.com
http://www.ebi.ac.uk/Tool/webservices
http://www.ebi.ac.uk/Tool/webservices
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://tools.ietf.org/html/rfc4627


modules; the first is referred to as “Yabi Administration”
and is a web-enabled application that handles the
description of all tools, users, data services and compute
services; the second is referred to as the “Yabi Engine”
and is an event driven system tasked with accepting and
processing workflow requests.
3.1 Yabi administration
The Yabi administration module allows a system admin-
istrator to manage all aspects of the Yabi system using a
web browser. Tools are added by creating a tool record
and filling in all necessary details. This includes the
name of the program to be run, the compute resource
that will perform the task, and where resulting files
should be stored. Further to this, the system allows full
specification of all parameters and file types used by a
tool. Later, the Yabi Resource Manager uses these
details when it executes a task and the frontend uses
these details when it presents a visual representation of
the tool to users.
The Yabi administration also controls user access to

compute and data services. It maintains records of users
and optionally caches their credentials to access com-
pute and data services. When the Yabi frontend requests
a file listing for a particular data service a request is
made to the Resource Manager with the correct creden-
tials to retrieve that listing. Similarly, when a task needs
to be run on a compute resource, a task is served to the
Yabi Resource Manager along with the correct

credentials. Figure 3 shows a section of the implemented
Yabi administration interface. Specifically, this figure
shows a summary of a running workflow including: i)
workflow details including name, user and start and end
times; ii) jobs that will be executed with a description of
each command; iii) individual tasks with the actual com-
mand that will be executed and the files that will be
staged in; iv) status of the workflow and each job and
task; and v) a “Syslog” link for each task to view the sys-
tem logging received from the Yabi Resource Manager.
3.2 Yabi engine
The second module of the Yabi middleware appliance is
the “Yabi Engine”. This module is responsible for
accepting and processing workflow requests originating
from the Yabi frontend, creating descriptions of the pro-
cessing required for the individual workflow steps
("jobs”) and submitting them to the Yabi Resource Man-
ager for execution on local or external compute
resources. External resources include existing HPC, Grid
and Cloud.
When the user creates or chooses to reuse a workflow,

and then executes it, the Yabi frontend submits a high
level description of the entire workflow to the workflow
engine. This description includes the following informa-
tion for each step of the workflow: the tool, the para-
meters of that tool and their settings, the related input
and output filenames for individual files and descrip-
tions of any dependent file input requirements. This

Figure 2 Yabi web-based client. Screenshot of the Yabi web-based client in the “design view” accessing a tool available from the European
Bioinformatics Institute via a webservice (http://www.ebi.ac.uk/Tools/webservices/).

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 4 of 10

http://www.ebi.ac.uk/Tools/webservices


allows the Yabi engine to resolve any file dependencies
dynamically as a workflow executes. For example, a par-
ticular tool may require the output from a previous tool
in a workflow. The description for the latter tool will
contain a pointer specifying that it requires the output
from a previous tool, even though the specific files out-
put from that tool are not yet known.
The Yabi engine processes incoming workflows in a

separate thread using an external message queue. The
benefit of this strategy is that it allows a timely response
to the Yabi frontend by detaching the processing of
incoming workflows from the frontend request. Once
processed the workflow is stored in an SQL database
prior to the workflow being executed.
At each step through the workflow execution, the Yabi

Engine examines the workflow, resolving dependencies.
If all the dependencies for a job are resolved, that is, all
the required input files are present and all the parent
jobs have finished executing, then the required execu-
tion tasks are created for the job. Each task represents
an execution process on an execution backend that is

associated with the tool being used in that job. When all
the tasks of a job are finished, the next step in the work-
flow is processed. Processing of the workflow continues
until all the jobs in the workflow are complete or in an
error state, at which point the workflow is marked as
complete, or with an error flag respectively.
To determine whether a job’s dependencies have been

satisfied, the Yabi Engine utilises the concept of “file
types”. One or more of a tool’s input parameters may be
marked as accepting a certain file type. These file types are
specified in the database as a unix-style filename matching
pattern. Any files that match the pattern for the tool’s
input parameter are able to satisfy the requirements of
that input parameter. For instance, if in the workflow
there is a job that requires the output of a previous step in
the workflow, then any appropriate files from that pre-
vious step are used to generate the tasks for this job.
If a tool has multiple input parameters that take differ-

ent file types, and these parameters are both specified as
coming from previous jobs in the workflow, then once the
previous jobs are complete their corresponding output

Figure 3 Yabi Admin. Screenshot of a completed workflow from a system administration perspective.

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 5 of 10



files are grouped together to create a batch of tasks for
that job. To match up an input file of one type for one
parameter with the correct input file of another type for
another parameter, then the files with minimum Levensh-
tein distance [24] are grouped together to create each task.

4 Yabi resource manager
The third layer of the YABI three-tier architecture is the
YABI Resource Manager. The Yabi Resource Manager
handles all the tasks involved in using different network
protocols to access compute resources and in the
streaming of data between different data resources. The
Yabi Resource Manager can perform any execution sub-
mission task on any execution backend. Likewise it can
perform any file system operation on, or between, any
file system backend. The Yabi Resource Manager takes
commands and credentials from the Yabi Middleware
and does so over a secure authenticated connection.
The Resource Manager is not a job scheduler, sche-

duling is handled by each external compute resource.
The various aspects of the Yabi Resource Manager are
outlined in the following sections.
4.1 Design
The Yabi Resource Manager is programmed in Python
(http://www.python.org/) and makes use of gevent
(http://www.gevent.org/) and greenlet (http://pypi.
python.org/pypi/greenlet) for more advanced features
like co-routines [25] and micro-threads. It also uses the
Twisted framework (http://twistedmatrix.com/), an
event driven network engine.
The structure of the Yabi Resource Manager is based

around the Twisted Python approach of using a small
number of threads (typically one per CPU core) but
handling a large number of network connections simul-
taneously. When a connection is made, existing threads
handle the connection rather than starting a new thread,
as is the case in typical threaded server architecture.
Each thread manages its time in an event-driven manner
while handling all the connections allocated to it. This
has the advantage of being able to handle an extremely
large number of connections simultaneously.
The Yabi Resource Manager provides two types of ser-

vices that we will discuss: data services and compute
services (Section 4.4).
4.2 Data services
This service has a plug-in architecture that allows it to
talk to a variety of different file storage systems. It uses
a Uniform Resource Identifier (URI) (http://www.w3.
org/TR/uri-clarification/) style path descriptor to define
file system locations and the protocols the resource
manager should employ to access them.
The data services exposed by the Yabi Resource Man-

ager are: directory listings; file copying (between the
same or different data resources); file deletions; and

directory creation. These are exposed as web service
calls with the requested files or directories being passed
in as HTTP parameters in the form of a URI. An exam-
ple of such a URI is ssh://username@hostname.domain/
path/to/file. By specifying different schema in the URI,
the Resource Manager can utilise different protocols to
transfer the data or perform the operation.
The Yabi Resource Manager performs file system

operations by spawning helper processes that perform
the task and keep a handle on its standard out and stan-
dard error streams. By using these streams in conjunc-
tion with the exit code of the process, the Yabi
Resource Manager can determine if a task succeeded or
failed and the reasons for this. For copy operations the
system is designed to always stream the data and no
data is written to disk when copying data from one data
service to another.
Every copy task is comprised of a subtask that writes

to a FIFO (http://www.kernel.org/doc/man-pages/
online/pages/man7/fifo.7.html), and a subtask that reads
from the same FIFO. A FIFO is a special file that may
be accessed as part of the file system. When passed data
using a FIFO, the operating system kernel handles it
internally in memory rather than writing it to disk. In
this way the transfer of the data is performed by the
underlying operating system in a very efficient manner.
As long as a file system service has a command line tool
or application programming interface (API) then it can
be integrated into the Yabi Resource Manager.
4.3 Credentials
Yabi has a comprehensive model for managing the cre-
dentials required to access external compute and data
environments. The credential model allows the require-
ments of two competing use cases to be satisfied. Firstly,
users can choose to let the application securely store
encrypted credentials on their behalf or secondly users
can exercise fine grained control of the storage and
expiry of credentials from the system.
Credentials may be stored, encrypted, in the database

to be utilised by the application as required. In this case,
the credential is encrypted with the Advanced Encryp-
tion Standard (AES) using the user’s password to gener-
ate an encryption key. When a user logs into the
frontend, the encrypted credentials for the user are
taken from the database and decrypted using their pass-
word based key. Once decrypted the credentials are
cached in RAM for use by the system.
In the case where the system asks for a credential that

is not available in a decrypted form, the running job is
placed into a blocking state so that the user can resume
the job once they provide the necessary credential.
4.4 Compute services
The compute service uses a plug-in architecture to sub-
mit jobs to a variety of different execution resources. The

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 6 of 10

http://www.python.org
http://www.gevent.org
http://pypi.python.org/pypi/greenlet
http://pypi.python.org/pypi/greenlet
http://twistedmatrix.com
http://www.w3.org/TR/uri-clarification
http://www.w3.org/TR/uri-clarification
http://www.kernel.org/doc/man-pages/online/pages/man7/fifo.7.html
http://www.kernel.org/doc/man-pages/online/pages/man7/fifo.7.html


Yabi Resource Manager periodically connects to a web
service exposed by the Yabi middleware application and
requests any tasks that are ready for execution. The Yabi
middleware returns a snippet of JSON that describes the
task including URIs for the Yabi Resource Manager to
call to report status and log messages. The Yabi Resource
Manager then handles each task as a greenlet tasklet.
When executing tasks the Yabi Resource Manager per-
forms all necessary operations such as creating relevant
directories, staging in and out the requested data, execut-
ing the remote task, monitoring the task until it is fin-
ished and cleaning up temporary files.
As it does this, the Yabi Resource Manager returns

any task status changes to the Yabi middleware, which
can in turn provide these to the Yabi frontend for dis-
play to the user. The Yabi Resource Manager also allows
for task resumption, a feature that assists in stopping
and starting the application.
4.5 Shutdown and startup
It is essential that the Yabi Resource Manager can be
restarted without affecting any running jobs. For this
reason the Yabi Resource Manager serialises all tasklets
to disk during shutdown. When it starts up again it
deserialises the tasklets from disk and attempts to
resume them. Any stale connections that fail will be
retried by the tasklet. If this fails the tasklet will attempt
to continue the task by retrying the last action.
4.6 Fault tolerance & error handling
To facilitate fault tolerance and error handling of exter-
nal transient events, such as credential errors, file

permission errors or unavailability of execution
resources, there is a subset of exceptions in Yabi that
are descended from a special “BlockingException”
object. This exception reports a “blocked” rather than
an “error” state in running tasklets. In this way, tempor-
ary failures that need user or administrator intervention
can return this blocking exception. Tasks that enter a
blocked state can be resumed once the temporary failure
has been addressed rather than failing permanently.

5 Summary features of yabi architecture
The design of the system lends Yabi to have a number of
desirable features, summarized by: i) Internet-based
application; ii) provides transparent HPC access and flex-
ible across multiple protocols (Eg. GridFTP, Globus, SSH
via pluggable backends); iii) able to link analysis tools
together across resources; iv) error handling (e.g. retry,
block, fail and report); v) web-based comprehensive
administration of tools; vi) abstract complexities from
users; vii) can incorporate any command line analysis
tool (E.g. Java, Perl, Python, C, R, etc.); viii) credential
handling; ix) simplified access to web services; x) batch
processing; and xi) command line access of Yabi tools.
The features of the Yabi user interface can be sum-

marized by: i) ease of use; ii) design/reuse workflows; iii)
audit trails/provenance; iv) data/results not locked into
system (results stored on existing file storage resources,
and not within Yabi itself); v) mix and match tools from
multiple execution environments in any given workflow;
vi) analysis tools integrated can either be open source or

Figure 4 HTP Genomic and Automated annotation workflows. Screenshots of (a) a high throughput genomic analysis workflow; and (b) a
bioinformatics workflow to predict candidate G-Protein coupling receptor proteins batched over 14,000 molecular sequences.

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 7 of 10



proprietary; vii) meta data capture of workflows and
search (available analysis tools or previous workflows);
and viii) file management between disparate storage
resources.

Results and discussion
The power and flexibility of Yabi is outlined by present-
ing three typical use cases. In the first use case [26] ana-
lysis for high throughput genomic analysis is conducted
on a relatively large molecular sequence (approximately
500 kbp in length). In Step 1 (select file) is used to
select the input file. In Step 2 an analysis tool (repeat-
masker - http://www.repeatmasker.org/) is used to iden-
tify and “mask out” the known repetitive molecular
sequence elements from the sequence. In step 3, a pre-
diction tool (genscan [27]) is used to predict candidate
genes within this sequence and step 4 (genscan2gff [4])

formats the output from Step 3 into standard GFF
(http://www.sanger.ac.uk/resources/software/gff/spec.
html) file format for uploading into genome browser
visualization tool. The screenshot of the workflow is
shown in Figure 4a.
Figures 4a and 4b show the execution status of example

workflows using the jobs view. Additional workflows can
be run concurrently by returning to the design view. The
jobs view also provides access to previously completed
workflows. Comprehensive details of each workflow are
kept in an audit trail database including all tools, para-
meters and input files used. A files view provides direct
access to the underlying file system for each user. Other
workflow examples include: sequence assembly, large
scale similarity searches and sequence manipulation.
In the second use case [26], the workflow analyses a

large number of DNA molecular sequences (14,000

Figure 5 Proteomics Analysis Workflow. Screenshot of Proteomics workflow combining tools from TPP and Mascot.

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 8 of 10

http://www.repeatmasker.org
http://www.sanger.ac.uk/resources/software/gff/spec.html
http://www.sanger.ac.uk/resources/software/gff/spec.html


sequences) and conducts a predictive analysis for candi-
date G-Protein coupling receptor proteins, shown in
Figure 4b.
In step 1 (select file) a file is selected containing the

14,000 sequences. The file can be selected from any file
system resource made available by the administrator to
this user. In this example the file system selected is
attached to the local HPC. Step 2 (getorf [28]) predicts
the translations of each of the 14,000 sequences to the
equivalent amino acid sequences and finally in step 3
(gpcrhmm [29]) candidate G-Protein coupling receptor
proteins are predicted.
In the third use case, core Trans-Proteomic Pipeline

TPP tools [30] have been made accessible to enable user
level workflow creation within Yabi rather than using
the inbuilt web interface Petunia which can only be cus-
tomized by systems administrators. The majority of
tools contained within TPP can run on a command line
which means that incorporation into the YABI environ-
ment is possible. Having tools within Yabi enables
researchers to use different search engines or quantita-
tive tools that might not be available in TPP or accessed
through the Petunia web interface. To demonstrate this
feature, Figure 5 shows a screenshot of a typical proteo-
mics workflow within Yabi linking tools from TPP
(MzXML2Search, Peptide Prophet [31]), as well as the
Mascot [32] search engine.
Within each of these use cases, most of the tools

selected as part of the workflows are computationally
intensive and require running on HPC infrastructure.
However, there are other tools/scripts that can be con-
figured to run on a standalone Linux machine (for
example genscan2gff). These examples demonstrate that
the Yabi environment is able to “mix and match” tools
configured on HPC resources and regular servers and
made available transparently to users. Yabi has also
been recently used in the analysis of metagenome data
[33] (figure not shown).

Conclusions
The main aim of the Yabi project is to provide transpar-
ent access to existing HPC resources. This has been
achieved by the development of a three tier architecture
that separates the roles of end user, system administra-
tor and software developer. Yabi has a plug-in architec-
ture that allows the system to interface to a variety of
different storage and compute systems. This architecture
prevents data lock-in as Yabi facilitates seamless access
to existing storage resources. Yabi is currently in pro-
duction use for a number of research communities in
the life sciences in genomics, transcriptomics and pro-
teomics. Yabi is complementary to existing workflow
environments as it targets the non-technical audience
with a rich and intuitive web-based user interface that

allows the uptake of HPC by a broader audience. Yabi
enables other workflow systems, that possess limited
functionality to access multiple existing HPC systems, to
leverage Yabi’s data and access models via its command
line client. The system is designed to be domain-agnos-
tic which means Yabi can service many life science
domains as well as enable cross-disciplinary research
such as systems biology and marine science. The Yabi
project is open source and can be downloaded or
accessed at the project website http://ccg.murdoch.edu.
au/yabi.

Availability and requirements
Project name: Yabi
Project home page: http://ccg.murdoch.edu.au/yabi/
Operating system(s): Linux
Programming language: Python
Other requirements: memcached, sqlite
License: GNU GPL v3
Any restrictions to use by non-academics: No

Acknowledgements
The authors wish to acknowledge the contributions of: Adam Harvey, Nick
Takayama, Paula Moolhuijzen, David Schibeci, Mark O’Shea and Brett
Chapman. This project is supported by the Australian Research Collaboration
Service, the Australian National Data Service and Bioplatforms Australia
through the National Collaborative Research Infrastructure Strategy Program
and the Education Investment Fund Super Science Initiative, as well as by
iVEC.

Authors’ contributions
Original concept and design: MB and AH; Architecture: AH; Lead design: AH,
CW, AM; Implementation: AH, CW, AM, TS; Wrote manuscript: MB, AH, AM,
CW. All authors read and approved the final manuscript.

Authors’ information
Adam Hunter: Adam Hunter completed a BSc Honours in Computer
Science at Murdoch University. Adam has over 10 years experience in ICT
including software development in C and Java. He leads the CCG software
development and infrastructure team. Current areas of focus include
continuous integration, agile programming and high performance and cloud
computing.
Andrew Macgregor: Andrew Macgregor has a BA in English from the
University of Otago and has also studied Computer Science at Massey
University. He is a software developer focusing on Internet Application
development using Python. Previously, Andrew contributed the UniGene
module to the Bioperl project.
Tamas Szabo: Tamas Szabo has a Bachelor of Science in Computer
Engineering, Gabor Dennis College, Budapest. He is a software developer
who has worked in Australia and overseas in many sectors including
banking, health, entertainment, government, travel, mining and research.
Tamas has an interest in programming languages, development
methodologies, open source development, operating systems and networks.
Crispin Wellington: Crispin Wellington completed a BSc in Physics at Curtin
University. He is a software engineer who utilises Python and he also has an
interest in functional languages such as Lisp. Crispin is interested in the
human factors that affect the development of architecturally consistent
systems.
Matthew Bellgard: Professor Matthew Bellgard completed a BSc Honours
and PhD in Computer Science from The University of Western Australia. He
is Murdoch University’s Bioinformatics Chair and the Director of the Western
Australian State Government Centre of Excellence, the Centre for
Comparative Genomics. His scientific work has resulted in developments in
the areas of pairwise sequence alignment and artificial intelligence, early

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 9 of 10

http://ccg.murdoch.edu.au/yabi
http://ccg.murdoch.edu.au/yabi
http://ccg.murdoch.edu.au/yabi/


detection of base composition differences in closely related bacterial species,
whole genome sequence analysis and advances in the development of
web-based integrated systems utilising high performance computing.

Competing interests
The authors declare that they have no competing interests.

Received: 12 December 2011 Accepted: 15 February 2012
Published: 15 February 2012

References
1. Goble C, Stevens R: State of the nation in the data integration for

bioinformatics. Journal of Biomedical Informatics 2008, 41(5):687-693.
2. Louys M, Bonnarel F, Schaaff A, Claudon J-J, Pestel C: Implementing

astronomical image analysis pipelines using VO standards. In Highlights
of Astronomy, XXVIth IAU General Assembly Edited by: van der Hucht KA
2006, 14.

3. Walton NA, Brenton JD, Caldas C, Irwin MJ, Akram A, Gonzalez-Solares E,
Lewis JR, Maccallum PH, Morris LJ, Rixon GT: PathGrid: a service-orientated
architecture for microscopy image analysis. Philos Transact A Math Phys
Eng Sci 2010, 368:3937-3952.

4. Stajich JE, Block D, Boulez K, Brenner SE, Chervitz SA, Dagdigian C,
Fuellen G, Gilbert JG, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ,
Osborne BI, Pocock MR, Schattner P, Senger M, Stein LD, Stupka E,
Wilkinson MD, Birney E: The Bioperl toolkit: Perl modules for the life
sciences. Genome Res 2002, 12(10):1611-8.

5. Pocock M, Down T, Hubbard T: BioJava: open source components for
bioinformatics. ACM SIGBIO Newsletter 2000, 20(2):10-12.

6. Taylor IJ: From P2P to Web Services and Grids - Peers in a Client/Server
World. Springer 2005.

7. Wilkinson MD, Links M: BioMOBY: an open source biological web services
proposal. Brief Bioinform 2002, 3(4):331-41.

8. Hunter A, Schibeci D, Hiew HL, Bellgard M: Grendel: A bioinformatics Web
Service-based architecture for accessing HPC resources. Proceedings of
the 2005 Australasian workshop on Grid computing and e-research 2005, 44.

9. Bellgard M, Hiew HL, Hunter A, Wiebrands M: ORBIT: and integrated
environment for user-customised bioinformatics tools. Bioinformatics
2005, 1.

10. Bellgard M: Bioinformatics from comparative genomic analysis through
to integrated systems. Mammalian Genomics 2005, 393-409.

11. Foster I, Kesselman C: Globus: A Metacomputing Infrastructure Toolkit. Intl
J Supercomputer Applications 1997, 11(2):115-128.

12. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T: Taverna:
a tool for building and running workflows of services. Nucleic Acids
Research 2006, , 34 Web Server: 729-732.

13. Oinn T, Greenwood M, Addis M, Alpdemir N, Ferris J, Glover K, Goble C,
Goderis A, Hull D, Marvin D, Li P, Lord P, Pocock M, Senger M, Stevens R,
Wipat A, Wroe C: Taverna: lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience
2006, 18(10):1067-1100.

14. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y,
Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a
platform for interactive large-scale genome analysis. Genome Research
2005, 15(10):1451-5.

15. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S: Kepler: an
extensible system for design and execution of scientific workflows.
Proceedings. 16th International Conference on Scientific and Statistical
Database Management 2004, 423-424.

16. Deelman E, Singh G, Su M, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K,
Berriman GB, Good J, Laity A, Jacob JC, Katz DS: Pegasus: a Framework for
Mapping Complex Scientific Workflows onto Distributed Systems.
Scientific Programming Journal 2005, 13(3):219-237.

17. [http://wiki.g2.bx.psu.edu/Admin/Tools/Add%20Tool%20Tutorial].
18. [http://hg.notalon.org/iracooke/galaxy-proteomics].
19. Eckerson WW: Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications. Open
Information Systems 1995, 3(20):10.

20. Bellgard M, Kenworthy W, Hunter A: Microarray Analysis Using
Bioinformatics Analysis Audit Trails (BAATs). C R Biol 2003, 326:1083-1087.

21. [http://www.adaptivecomputing.com/products/torque.php].
22. [http://www.pbsworks.com/Product.aspx?id = 1].

23. Fielding RT, Taylor RN: Principled Design of the Modern Web
Architecture. ACM Transactions on Internet Technology 2002, 2(2):115-150.

24.
Левенштейн ВИ: Двоичные коды с исправлением выпадений, вставок
и замещений символов. Доклады Академий Наук CCCP 1965,
163(4):845-8, Appeared in English as: Levenshtein VI (1966). Binary codes
capable of correcting deletions, insertions, and reversals. Soviet Physics
Doklady 1966, 10: 707-10.

25. Conway ME: Design of a Separable Transition-Diagram Compiler.
Communications of the ACM 1963, 6(7):396-408.

26. Bellgard MI, Moolhuijzen P, Guerrero F, Schibeci D, Rodriguez-Valle M,
Peterson D, Dowd S, Barrero R, Hunter A, Miller R, Lew-Tabor A:
CattleTickBase: An integrated Internet-based bioinformatics resource for
Rhipicephalus (Boophilus) microplus. International Journal for Parasitology
42(2):161-169.

27. Burge C, Karlin S: Prediction of complete gene structures in human
genomic DNA. J Mol Biol 1997, 268(1):78-94.

28. Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology
Open Software Suite. Trends Genet 2000, 16(6):276-277.

29. Wistrand M, Kall L, Sonnhammer EL: A general model of G protein-
coupled receptor sequences and its application to detect remote
homologs. Protein Sci 2006, 15(3):509-521.

30. Keller A, Eng J, Zhang N, Li X, Aebersold R: A uniform proteomics MS/MS
analysis platform utilizing open XML file formats. Molecular Systems
Biology 2005, 1:2005.0017.

31. Nesvizhskii AI, Keller A, Kolker E, Aebersold R: A statistical model for
identifying proteins by tandem mass spectrometry. Analytical Chemistry
2003, 75(17):4646-4658.

32. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS: Probability-based protein
identification by searching sequence databases using mass
spectrometry data. Electrophoresis 1999, 20:3551-3567.

33. Murray DC, Bunce M, Cannell BL, Oliver R, Houston J, White NE, Barrero RA,
Bellgard MI, Haile J: DNA-Based Faecal Dietary Analysis: A Comparison of
qPCR and High Throughput Sequencing Approaches. PLoS One 2011,
6(10):e25776, Epub 2011 Oct 6. PubMed PMID: 21998697; PubMed Central
PMCID: PMC3188572.

doi:10.1186/1751-0473-7-1
Cite this article as: Hunter et al.: Yabi: An online research environment
for grid, high performance and cloud computing. Source Code for Biology
and Medicine 2012 7:1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Hunter et al. Source Code for Biology and Medicine 2012, 7:1
http://www.scfbm.org/content/7/1/1

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/18358788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18358788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20643686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20643686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12368254?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16169926?dopt=Abstract
http://wiki.g2.bx.psu.edu/Admin/Tools/Add%20Tool%20Tutorial
http://hg.notalon.org/iracooke/galaxy-proteomics
http://www.ncbi.nlm.nih.gov/pubmed/14744117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14744117?dopt=Abstract
http://www.adaptivecomputing.com/products/torque.php
http://www.pbsworks.com/Product.aspx?id = 1
http://www.ncbi.nlm.nih.gov/pubmed/9149143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9149143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10827456?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16452613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16452613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16452613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14632076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14632076?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10612281?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21998697?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21998697?dopt=Abstract

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	1 Overview
	2 Yabi frontend application
	2.1 Web-based client
	2.2 Command line client

	3 Yabi middleware
	3.1 Yabi administration
	3.2 Yabi engine

	4 Yabi resource manager
	4.1 Design
	4.2 Data services
	4.3 Credentials
	4.4 Compute services
	4.5 Shutdown and startup
	4.6 Fault tolerance & error handling

	5 Summary features of yabi architecture

	Results and discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	References

