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Abstract

Background: Direct comparison of 2D images is computationally inefficient due to the need for translation,
rotation, and scaling of the images to evaluate their similarity. In many biological applications, such as digital
pathology and cryo-EM, often identifying specific local regions of images is of particular interest. Therefore, finding
invariant descriptors that can efficiently retrieve local image patches or subimages becomes necessary.

Results: We present a software package called Two-Dimensional Krawtchouk Descriptors that allows to perform local
subimage search in 2D images. The new toolkit uses only a small number of invariant descriptors per image for efficient
local image retrieval. This enables querying an image and comparing similar patterns locally across a potentially large
database. We show that these descriptors appear to be useful for searching local patterns or small particles in images

minimal memory usage.

Cryo-electron microscopy, Digital pathology

and demonstrate some test cases that can be helpful for both assembly software developers and their users.

Conclusions: Local image comparison and subimage search can prove cumbersome in both computational
complexity and runtime, due to factors such as the rotation, scaling, and translation of the object in question. By using
the 2DKD toolkit, relatively few descriptors are developed to describe a given image, and this can be achieved with
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Background
Moment-based approaches are very useful for repre-
senting biological and medical images as they are pix-
elized [1] or voxelized data [2—4]. In medical imaging,
such as computerized tomography (CT) scan and mag-
netic resonance imaging (MRI), objects are observed
at different viewpoints and local images need to be
extracted and examined. In digital pathology, for instance,
pathologists are interested in information about spe-
cific structures rather than the whole image [5]. Thus,
it is necessary to construct moment invariants that
do not change by translation, rotation, and scaling
and can efficiently retrieve local image patches or
subimages.

Here we present the software package 2DKD, two-
dimensional Krawtchouk descriptors, for local compari-
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son of 2D images. The mathematical formulation of
2DKD was already established in [1], which brings in
the following advantages: 1) Krawtchouk polynomials are
defined on a discrete space, so the moments derived
from them do not carry any error due to discretiza-
tion. 2) These polynomials are orthogonal; each moment
extracts a new feature of the image, where minimum
redundancy is critical in their discriminative performance.
3) They are complete with a finite number of func-
tions (equal to the image size), while many other poly-
nomial spaces have infinitely many members. 4) They
have the ability to retrieve local image patches by only
changing the resolution of reconstruction and using low
order moments. 5) The location of the patch can also be
controlled by changing two parameters and hence shift-
ing the region-of-interest along each dimension [6]. 6)
These moments can be transformed into local descrip-
tors, which are invariant under translation, rotation, and
scaling [1].

2DKD also has the potential to be used in cryo-
electron microscopy imaging (cryo-EM), in particular,
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single-particle cryo-EM. This method generates a 3D
reconstruction of the structure by combining data from
many 2D projection images, in which identical copies
of a protein complex are found in different orientations
[7]. From the images of fields containing a large num-
ber of molecular complexes, individual particles need to
be selected manually or by automated algorithms for fur-
ther image processing. In addition to the acquisition of
high-quality projection images of the particles, fast and
accurate particle selection is also critical to ensure a high-
resolution 3D reconstruction of structures [8]. We test the
software 2DKD by applying it to particle selection in a
2D projection image of GroEL complexes obtained using
cryo-EM.

The recognition accuracy of 2DKD was tested in [1] and
compared to the traditional Hu invariants on two differ-
ent datasets, a dataset of binary images and another one
with gray-scale clip art images. The comparisons were
made based on the top-ranked hits, where the Euclidean
distance was used as the similarity measure between two
descriptor vectors. Overall, 2DKD showed better predic-
tion accuracies than Hu invariants. The descriptors in [1]
were only tested up to 4% noise. Here, we introduce a
more stable version of 2DKD, which shows tolerance up
to 30% noise in the image data.

Implementation

Workflow

The workflow of 2DKD software is shown in Fig. 1. For
a given query image and the pixel location (xy,y,) of a
point-of-interest on the image data, 2DKD performs the
following six functions.

1. readImage: This script reads a standard N x M
gray-scale image file and extracts the image as an
N x M density function f (x, ).

2. prepStep: For the number S (the size of the query
image region) determined by readImage or provided
by the user, this script computes the 2D central
weight function W,(x,y) corresponding to the
parameters p, = py = 0.5 (i.e,, the center ofan § x §
image). It also computes the norms p(n; p, S — 1) and
the coefficients a; 5,51 corresponding to the
Krawtchouk polynomials K, (x; p, S — 1) where
n=0,...,3andi=0,...,n These initial constants
computed in prepStep are for later use, so the rest of
the computations is performed on-the-fly. A more
detailed description of the weight function can be
found in [1].

3. squareCrop: This script crops an N x M image
density function f(x, y) to a perfect S x S square
image data f;(x, ). The user-supplied point-of-
interest location (xy, y) in the input image is updated
to its relative location (xs, y5) in the square image.
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Fig. 1 Flow chart of 2DKD. The script names are shown in black boxes

4. compDesc: This script translates the central weight
function W¢(x, y) to the region of interest within the
S x S square grid as needed. If the local point of
interest is located at (x5, 5), then the new weight is
defined by Wi (x,y) = W (x*, y*) with
xF=x—(S—-1/2+xandy* =y —(S—1)/2 +ys.
Whenever (x*, y*) is situated outside the grid, we set
W;s(x, y) = 0. The function is defined on the discrete
domain {0,1,...,5S— 1} x {0,1,...,S — 1}. Then
using the square S x S image data f;(x, y) containing
the point (x5, ¥s), this script first computes the
auxiliary (weighted) image

Fy) = fix,y) - Wa,9), 1)

its geometric moments Moo, M19, and Mo;, the
center of mass (¥, ¥), and the central moments fi20,
o2, and ft11 of f (%, ). It then finds the unique angle
6 between the principal axis of the auxiliary image

f (x,y) and the x-axis of the 2D plane. This angle is
critical for building the rotation invariant descriptors.
The exact computation of § is provided in [9]. Using
Moo, %, , and 6, this script calculates the geometric
invariants 5\,7 for i,j = 0,1,2,3 using the formula
provided in [1]. We finally compute the 2DKD using




DeVille et al. Source Code for Biology and Medicine (2020) 15:1

Qum = [p(1;0.5,8S — 1) - p(m;0.5,8 — 1)]71/2
n m 5 (2)
: Zﬂi,n,O.S,Sfl C@m055-1 * Aij
i=0 j=0

for n,m = 0,1,2,3 and p, = py = 0.5. The
descriptors Qoo, Q01, (~210, and Qn are removed
because they take a constant value irrespective of the
region-of-interest we are working with. In this work,
we use the 2DKD of order up to 3, that is,

V= [on, Qo2 Q12, Q21, Qs0, éos]' (3)

Usage example:

% Change directory to the scripts folder

>> cd scripts;

% Full path to the sample image file

>> impath = “../Expl/DB/imagel.jpg’;

% Point-of-interest location

>> xp = 180; yp =480;

% Read the image to an N x M density data
>> [f, S] = readImage(impath);

% Compute the constants for later use

>> const = prepStep(S);

% Crop the image data to a square S x S data
>> [fs, xs, ys] = squareCrop(f, xp, yp, S);

% Compute 2DKD corresponding to (xp, y,)
>> V = compDesc(fs, xs, ys, const)

% Output (on the command window)

Fig. 2 Nine small gray-scale clip art images used as subimages to
generate the first image dataset. Image credit: Microsoft Office Online
—clip art gallery
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Fig. 3 An example 600 x 600 image from the dataset containing

gray-scale clip art subimages

V =-0.67263229 -0.67450386 0.00022609 0.00020224
0.00043392 0.00037958

5. dbindex: This high-level script is responsible for
producing descriptors for all subimages in the
database so that a query can be compared with them.
It scans each image in the database by computing the
2DKD for each point-of-interest location and saves
the descriptors with the image number and the
location of the subimage in that image. The result is
stored in a potentially large matrix with rows of the
form < Image number, x,, yp, V > for easy access
later when a subimage is queried. Note that unless
there is a change in the database, this only needs to
be run once offline to save computational time.

6. dbSearch: dbSearch is another high-level script and is
used to search the output of dbIndex for descriptors
similar to the ones corresponding the query. A query
image is supplied as input, then compDesc is run on
the query, producing descriptors for it, and then the
matrix from dbIndex is sorted by Euclidean distance
of descriptors to the new ones obtained, giving a

Table 1 Total hits and misses for 9 queries

Results Total hits Total Misses Accuracy
Top 1 9/9 0/9 100%
Top 5 42/45 3/45 93.3%
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Table 2 Total number of successful retrievals from the
salt-and-pepper noise degraded dataset

Results 10% noise 20% noise 30% noise
Top 1 9/9 (100%) 9/9 (100%) 8/9 (88.9%)
Top 5 41/45 (91.1%) 35/45 (77.8%) 32/45 (71.1%)

ranked list of the most similar regions to the query
from all subimages in the database.

Results

In this section, we present some experimental results
and evaluate the discriminative power of 2DKD. For each
point of interest (x,, y,) corresponding to a subimage, we
compute and use the feature vector V given in (3). To com-
pare the descriptors for a query with those for subimages
in a database, we use the squared Euclidean distance as a
similarity measure, namely

Query
guitar boot ladybug
Ist
2nd
ladybug
3rd
af
cardinal
4th
S
cardinal
e
5th g
boot apple

Fig. 4 Example queries and corresponding retrievals from the dataset
with 30% noise. For each query subimage, top 5 matches from the
dataset are shown
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Experiment |

To construct the first database, we use nine clip art icons
that are downloaded from Microsoft Office Online. These
images are shown in Fig. 2. They are transformed to 60 x
60 gray-scale images and placed in the center of a 150 x
150 frame to be used as queries. The same set of gray-scale
images are also used to generate a database. These images
are rotated by the angles

¢ = 0°,30°60° 90°,120°,150°,

5
180°,210°,240°,270°,300°, 330°, ©
and scaled by the factors
s=10.8,09,10, (6)

to obtain a set of 9x 12 x 3 = 324 subimages. These subim-
ages are randomly placed in 81 positions to form an image
of size 600 x 600. In this experiment, four such images are
generated, one of which is shown in Fig. 3.

B C D

Fig. 5 a A section of a projection image of GroEL protein complexes
in vitreous ice captured using Cryo-EM. b Averaged top view of
GroEL. ¢ Averaged side view of GroEL. d An end-on view of the 3D
atomic structure of GroEL complex. Image credits — a Vossman,
https://commons.wikimedia.org/wiki/File:Cryoem_groel.jpg, b, ¢
Electron Microscopy Data Bank (EMD-8750), d: Protein Data Bank
(PDB ID: 5W09)
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We run dblndex to produce descriptors for all subim-
ages in the database so a query can be compared with
them. After computing the norms, coefficients, and the
central weight for S = 150, dbindex scans each image in
the database by trimming a 150 x 150 region from the
image containing each point-of-interest, computes 2DKD
for each corresponding subimage, and saves them with the
image number and the location of the subimage in that
image.

From Table 1, it is clear that 2DKD correctly matches the
query subimage with the subimages in the dataset success-
fully with 100% accuracy if we consider the top-ranked hit
and 93.3% accuracy when we look at the top 5 hits in the
dataset.

We also tested 2DKD for searching for subimages
in the salt-and-pepper noise degraded version of the
dataset, with noise densities 10%, 20%, and 30%. The
results are summarized in Table 2. Considering only
top-ranked hits, our descriptors show tolerance up to
30% noise with only one miss. Among top 5 results,
it shows 91.1% accuracy with 10% noise, whereas it
decreases to 77.8% with 20% noise, and to 71.1% with
30% noise. Three example queries and corresponding top
5 retrievals from the dataset with 30% noise are shown
in Fig. 4.

Experiment Il

Next, we test the local search performance of 2DKD on
a more realistic problem, particle selection in 2D projec-
tion images of cryo-EM. In single-particle cryo-EM, these
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projection images contain identical copies of a protein
complex in different orientations. One such example is
GroEL, a molecular chaperonin found in a large number
of bacteria [10]. An example projection image of GroEL
protein complexes is shown in Fig. 5a. From these images,
individual particles need to be selected by hand or by auto-
mated algorithms. Once selected, they are sorted based on
variations on their structural features. Similar images are
then averaged to obtain representative projection views
of the complex at much higher signal-to-noise ratios than
in the original images (see Figs. 5b and c.) Finally, the
3D Fourier transform is built up from a collection of
2D images spanning a complete range of orientations
and used to recover the 3D structure of the complex via
inverse Fourier transform (see Fig. 5d) [7]. Thus, selec-
tion accuracy and speed in particle selection are highly
important to increase the resolution of reconstructed
3D structures.

We run the script, dblndex, as in Experiment I to pro-
duce descriptors for all subimages in a 1024 x 1024 pro-
jection image (a section of which is shown in Fig. 5a)
so a query can be compared with them. The image is
very noisy, and there are many flat regions or regions in-
between-particles that should not be considered. We
compute the local variance of pixel densities of each
40 x 40 subregion and compare it against the global pixel
density variance. The subregion centers corresponding
to lower value of local variances are not indexed. This
way, we ensure that we keep the regions with high vis-
ibility and discard those with undesired particles. Then

Query 15t 4t
o L b i,
Font | Fat it
w R | R 3
L5 e duhf‘ %h & u'j'.l';!a- ?—n— - u.J:é

(565,780) (565,780) (810,305) (265,760)

6th 7111 9(h
s bR w}n
i) e &
g“}_,_,_:;ﬁe_! L AL o E"-}W s J"E

(295,965) (250,950) (945,890) (710,280)
11t 2t 13t 140
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Fig. 6 An example query of the top view of GroEL and top 15 retrieval results using 2DKD. The pixel size for the local subimages is 40 x 40. The (x, y)
centers of the query and retrieval results in the 1024 x 1024 global image are provided under each subimage

(150,805) (595,135)
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Table 3 CPU times (seconds) for 2DKD
Experiment | (324

Experiment Il (11778

subimages) subimages)
dbIndex 1.0648 42.7934
Average 3.2865e-3 3.6333e-3
dbSearch 2.6146e-2 9.8097e-2

we compute 2DKD for each of the remaining subimages
using S = 40 and save them with the (x,y)—coordinates
of the subimage center in the global image. The results
are stored in a matrix as in Experiment I. Finally, we
query one manually detected top-view of GroEL and
search similar ones in the entire indexed image using
the script dbSearch. The subregions are ranked by the
Euclidean distance as in Experiment I, and top 15 hits
are demonstrated in Fig. 6. As justified by the figure,
most of the retrievals from global image visually match
the query except only three of them: the eleventh, thir-
teenth, and fourteenth. In this experiment, we only
search within one image, but the code can be easily
adapted to handle a database with multiple projection
images.

Table 3 shows the average times taken for computing
2DKD and using them for database indexing and search-
ing. The programs were run 100 times for each task, and
the average times were recorded. For each experiment, the
programs were tested on a Windows computer with Intel
Core i7-8650U processor of 1.90 GHz and 16 GB memory
using GNU Octave, version 5.1.0. The table shows that the
average time for computing 2DKD of a typical subimage is
in the order of 1073, which allows the database indexing
to finish in a reasonable amount of time (within a second
to under a minute). Assuming that the descriptors were
precomputed and stored, the search can be performed in
real-time, which makes the software promising for larger
datasets.

Conclusions

Searching biological images for local patterns or specific
structures can be computationally challenging due to very
low signal-to-noise ratio of these images and the limited
number of efficient local invariant descriptors available to
perform such searches. We developed 2DKD to address
these issues and be used for potentially large biologi-
cal image databases. 2DKD is developed in Octave (open
source) and is publicly available at GitHub website. The
source codes can be readily applied to image databases in
other fields as well.

Availability and requirements
Project name: 2DKD
Project home page: github.com/kiharalab/2DKD
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Operating system: Windows 7/10, Linux

Programming language: GNU Octave (version 5.1.0) or
MATLAB R2019a (version 9.6.0)

Other requirements: Java (version 8 update 221)
License: GNU General Public License (version 3)

Abbreviations
2DKD: Two-dimensional Krawtchouk descriptors; Cryo-EM: Cryo-electron
microscopy; DB: Database
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