
El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3
https://doi.org/10.1186/s13029-019-0073-5

METHODOLOGY Open Access

MZPAQ: a FASTQ data compression tool
Achraf El Allali* and Mariam Arshad

Abstract

Background: Due to the technological progress in Next Generation Sequencing (NGS), the amount of genomic
data that is produced daily has seen a tremendous increase. This increase has shifted the bottleneck of genomic
projects from sequencing to computation and specifically storing, managing and analyzing the large amount of NGS
data. Compression tools can reduce the physical storage used to save large amount of genomic data as well as the
bandwidth used to transfer this data. Recently, DNA sequence compression has gained much attention among
researchers.

Results: In this paper, we study different techniques and algorithms used to compress genomic data. Most of these
techniques take advantage of some properties that are unique to DNA sequences in order to improve the
compression rate, and usually perform better than general-purpose compressors. By exploring the performance of
available algorithms, we produce a powerful compression tool for NGS data called MZPAQ. Results show that MZPAQ
outperforms state-of-the-art tools on all benchmark datasets obtained from a recent survey in terms of compression
ratio. MZPAQ offers the best compression ratios regardless of the sequencing platform or the size of the data.

Conclusions: Currently, MZPAQ’s strength is its higher compression ratio as well as its compatibility with all major
sequencing platforms. MZPAQ is more suitable when the size of compressed data is crucial, such as long-term storage
and data transfer. More efforts will be made in the future to target other aspects such as compression speed and
memory utilization.

Keywords: DNA compression, Next generation sequences, FASTA files, FASTQ files

Background
The unit of sequencing data has shifted from “Megabase”
to “Terabase” due to a remarkable drop in sequencing cost.
Researchers generally have to maintain huge amount of
raw genomic data. Therefore, they require efficient ways
of storing, transferring and accessing this data. The flood
of NGS data from various genomic and metagenomic
projects is expected to increase as further progress is
made in high throughput sequencing technologies (HTS).
Because of the high cost of storing raw sequence data, it
is usually pre-processed; analyzed and only conclusions of
the studies are saved. In addition, large amount of raw data
remain local and never shared due to the high bandwith
cost, which affects the knowledge that can be gained from
sequencing projects. This has become a major bottle-
neck in computational biology, as the cost of maintaining
the genomic data is exceeding the cost of sequencing it.

*Correspondence: eachraf@gmail.com
Department of Computer Science, College of computer and Information
Sciences, King Saud University, Riyadh, Saudi Arabia

Currently, biologists are using multi-purpose compres-
sion tools that are not designed for biological data and do
not take advantage of the nature of the data to achieve
greater compression. Though specific compression algo-
rithms are being designed for genomic data, they are
either unavailable as a tool or do not perform uniformly
on all platforms or different data sizes.
Typically, NGS data is stored either in FASTA or FASTQ

format. FASTA is a commonly used text-based format that
represents nucleotide sequences. The format includes a
line for sequence identification followed by the sequence
in a separate line. FASTA allows for multiple biologi-
cal sequences to be stored in the same file. FASTQ files
allow for the inclusion of more information by adding
two more lines: one for optional identification informa-
tion and the other for quality scores for each base in the
sequence. Similarly, FASTQ allows multiple sequences to
be stored in the same file, which makes it ideal for raw
NGS sequencing data.
Several improvements have been made since the first

ever DNA compression algorithmwas introduced in 1993.
© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-019-0073-5&domain=pdf
http://orcid.org/0000-0002-4561-2161
mailto: eachraf@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 2 of 13

Evidence suggests that while the major milestones in com-
pression have been reached, more progress is still needed.
Recent survey suggests that there is no single algorithm
that works best on all types and sizes of data [1]. In this
paper, we investigate the performance of selected state-of-
the-art compression algorithms on biological sequences,
identification information and quality scores. The idea
is to select the best performing algorithm for each sub-
stream (line) of FASTQ files, whether it is a generic algo-
rithm, purpose specific or even part of a more complex
compression algorithm. By combining the best perform-
ing algorithms for most or all of the benchmark datasets,
we produce a compression tool that provides the best
compression ratios for FASTQ files when compared to
state-of-the-art compression tools. We have selected the
most prominent state-of-the-art approaches for FASTA
and FASTQ compression along with the main general-
purpose compression algorithms. Only tools that support
non-ACTG characters were considered to ensure they
can be used for raw data. Algorithms that do not have
publicly available source code or binaries were excluded
as well.
Two of the selected tools compress FASTA files only.

The first one is called Deliminate [2]. It implements an
efficient lossless compression algorithm that combines
Delta encoding and progressive elimination of nucleotide
characters method. Delta encoding is used to encode the
position of the two most frequent nucleotide bases and
binary encoding is used for the other two bases. Finally,
7-Zip is used to create an archive of all generated files.
The second algorithms is called MFCompress [3] and is
one of the most efficient lossless non-referential compres-
sion algorithms available for compression of FASTA files
according to recent survey [4]. It employs finite-context
models for compression of both fields in FASTA files.
The identification lines are compressed using single-finite
context models, while sequences are encoded using com-
peting multiple finite-context models as well as arithmetic
coding.
For FASTQ files, we selected the top four algorithms

that meet our criteria. The first one is called SCALCE
[5]. It is mainly a boosting scheme that uses Locally
Consistent Parsing technique for compression of FASTQ
sequences. It rearranges the reads in a way that offers
high compression rate and speed, without using a
reference genome and irrespective of the compres-
sion algorithm used [5]. SCALCE compresses quality
scores using Order-3 Arithmetic coding, while com-
pression of identification information is done by gzip,
taking into consideration the reordering of reads pro-
vided by SCALCE. Results show significant improve-
ment in the compression rate and running time as
compared to running the underlining algorithms on
unordered reads.

Leon [6] is another FASTQ compression tools. It con-
structs a de Bruijn graph G from the FASTQ reads and
encodes each read as a part within G. To avoid the mem-
ory overhead of the de Bruijn graph, Leon exploits Bloom
filter [7] to store the nodes of the graph. Leon encodes
a starting k-mer for each read as well as read’s branch-
ing information in the graph. The encoded information
is compressed using order-0 arithmetic coding. For qual-
ity scores, Leon employs zlib and supports both lossy and
lossless compression.
The last two algorithms we used in this study

are LFQC [8] and Slimfastq [9]. LFQC is a lossless
compression scheme developed for compression of
FASTQ files. The key contribution is its advanced
read-identifier tokenization scheme. It uses PAQ fam-
ily members for compression of read sequences and
quality scores. IPAQ is used for compression of reads
while ZPAQ is used for compression of quality scores.
Slimfastq is a robust re-implementation of another
FASTQ algorithm Fqzcomp [10]. It is one of the fastest
FASTQ compression algorithms that provides reasonable
compression rates.
We also considered three of the most commonly used

general-purpose compression tools that work for genomic
data. We used these tools to compress different streams
in FASTQ files and compared them in combination with
FASTA compression algorithms. These algorithms serve
as baseline comparison of the domain specific com-
pression tools. The first algorithm is gzip, which is a
general-purpose compression algorithm that combines
Huffman coding and LZ77 to construct a dictionary that
is optimized according to repetitions of words in the
data. It offers the fastest compression and decompression
speeds with minimal memory requirements among all
general-purpose compressors used in this study. Bzip2 is
another compression scheme that uses Burrows-Wheeler
transform along with Huffman coding compression. The
symbols within the input data are relocated to increase
repetitions of a particular sub-sequence, which can be
encoded more efficiently based on their probability of
occurrence. Generally, bzip2 offers better compression
than gzip [11]. The third algorithm used in this study is
LZMA. It employs an optimized version of the Lempel-
Ziv-Markov algorithm (LZ77) [12]. LZMA makes use
of large dictionary sizes and provides special support
for repeatedly used match distances. It provides bet-
ter compression than LZ77 by utilizing a history buffer,
smaller codes for recent repeats, a sophisticated dictio-
nary data structure and an optimal arithmetic coding
scheme selected by dynamic programming. LZMA has
better compression-ratio than gzip and bzip2 but such an
improvement comes at the cost of memory and time [8].
Table 1 summarizes the characteristics of the tools used in
this study.

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 3 of 13

Table 1 Characteristics of selected compression

Input C-ratio Speed Memory Techniques

gzip General ASCII Moderate High Low LZ77 and Huffman coding

bzip2 General ASCII Moderate High Low BWT and Huffman coding

LZMA General ASCII Moderate Low High Lempel-Ziv Markov chain and LZ77

Deliminate FASTA High High Low Delta encoding with Lempel-Ziv

MFCompress FASTA High Moderate High Finite Contexts Models

Leon FASTQ High High Moderate De Bruijn graph and Order-0 Arithmetic coding

Slimfast FASTQ High High Moderate Delta encoding, Arithmetic coding, and Context Models

SCALCE FASTQ High High High Reordering, gzip, bzip2 and Order-3 Arithmetic coding

LFQC FASTQ High Low High PAQ compressors

Methods
Datasets
Weuse a set of compression benchmark datasets that were
recently compiled by the MPEG (Moving Picture Expert
Group) HTS compression working group [1]. The dataset
was developed to allow accurate and fair evaluation of
compression tools. The benchmark also allows for repro-
duction of the evaluation process [1]. The actual size of
the MPEG benchmark dataset is 2.4 TB, of which a subset
(85 GB) is publicly available and is used in this study. The
dataset has a wide range of characteristics: it covers lead-
ing sequencing platforms (Illumina, Pacific Biosciences);
it includes deep and shallow coverage, both fixed-length
and variable-length reads and different organisms (Homo
sapiens, bacteria, plant); it also includes datasets of vary-
ing sizes (0.5 GB - 53 GB). More details of these datasets
are shown in Table 2.

Methodology
Our goal is to produce a FASTQ compression tool that
produces the best compression ratio regardless of the

type and size of the dataset. Therefore, we investigate
the compression ratio of the best algorithms reported by
recent surveys. We first split the content of FASTQ data
into different streams (field decoupling) and compress
each stream using all compression algorithms that sup-
port that stream (stream compression). We then compare
the performance of each tool for an individual stream and
select the algorithms that perform best or second to best
on all datasets in the benchmark (algorithm selection).
Finally, we combine the selected algorithms and sub-
algorithms in order to create a tool that provides better
compression ratios for FASTQ files of different character-
istics (compression and decompression). The framework
used in this study is illustrated in Fig. 1.
Based on the obtained results, we selected the most

promissing techniques as candidates (i.e. the algorithms
or sub-algorithm that produced the highest compression
ratio for most of the datasets in the benchmark). For
compression of read identifiers and sequences, we found
MFCompress to be the most appropriate since it works
for all types of FASTQ input datasets and offers the best

Table 2 Description of benchmark datasets

Identifier Size (MB) Type Technique Organism Description

SRR 554369 456 FASTQ paired
short reads

Illumina GAIIx;
50x total depth

P.aeruginosa Small genome
(6-7 MB),
medium depth

SRR 327342 3,881 FASTQ paired
short reads

Illumina GAII;
175x total depth;

S.cerevisiae Small genome
(12 MB), high
depth.

MH0001. 081026 1,880 FASTQ paired
short reads

Illumina GA;
unknown depth

Human gut metagenome Mixed species
and unknown
references

SRR 1284073 1,309 FASTQ single
variable-length
long reads

PacBio; 140x
depth

Bacteria E.Coli Small genome
(4.7 MB), higher
error rate.

SRR 870667 22,987 FASTQ paired
short reads

Illumina GAIIx;
35x total depth

Plant T.cacao. Medium sized
genome (345 MB)

ERR 174310 53,869 FASTQ paired
short reads

Illumina HiSeq
2000; 13x total
depth

H.sapiens (NA12877) individual Common
instrument depth

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 4 of 13

Fig. 1MZPAQ: Illustration of the overall framework used to obtain MZPAQ

or second to best compression ratios. For quality scores,
LFQC offers the best compression ratio for all datasets.
Thus, we selected the sub-algorithm used by LFQC to
compress quality scores, which is ZPAQ [8]. Complete
results and evidence supporting the selection of MFCom-
press and ZPAQ are presented in the “Results” section.
Our tool is a hybrid of MFCompress (v 1.01) and ZPAQ

(v 7.15), hence the name MZPAQ. In order to compress
a FASTQ file, MZPAQ scans the input file and divides
it into the four streams of FASTQ format. The first two
streams (i.e. read identifier and read sequence) are com-
pressed using MFCompress after the identifier stream is
pre-processed to comply with the format restrictions of
MFCompress. The third stream is discarded during com-
pression as it contains a ’+’ symbol followed by an optional

comment similar to identifier field which can be regen-
erated later at the time of decompression [13]. This is
similar to all available tools including those used for com-
parison in this study. The fourth stream is compressed
using the strong context-mixing algorithm ZPAQ. The
output from each stream are then combined in a single
binary file.
The decompression module of MZPAQ performs the

inverse of the compression. The identifiers and reads
are decompressed using MFCompress and ZPAQ is used
to decode compressed quality scores. This results into
two uncompressed data sources. After decompression,
the third stream of FASTQ data is regenerated and all
uncompressed data sources are combined and arranged to
generate the FASTQ output file.

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 5 of 13

Table 3 Compression of identifiers and sequences: Blue color represents original file size

Dataset Method Read identifiers (MB) Sequences (MB) Identifiers & Sequences (MB) C-ratio

SRR554369 Original 60.8 167.4 228.2

gzip 7.5 48.8 56.3 4.05

bzip2 3.8 46.7 50.5 4.52

LZMA 0.8 17.6 18.4 12.40

Leon 0.1 18.6 18.7 12.20

SCALCE 6.8 17.0 23.8 9.59

Slimfastq 0.1 29.9 30.0 7.61

LFQC 0.0 17.4 17.4 13.15

Deliminate N/A N/A 27.9 8.18

MFCompress N/A N/A 14.0 16.30

SRR327342 Original 978.1 962.3 1940.4

gzip 83.6 284.0 367.6 5.28

bzip2 70.9 269.4 340.3 5.70

LZMA 46.7 120.2 166.9 11.63

Leon 26.3 89.3 115.6 16.79

SCALCE 69.7 68.4 138.1 14.05

Slimfastq 23.0 149.0 172.0 11.28

LFQC 20.9 128.7 149.6 12.97

Deliminate N/A N/A 164.1 11.83

MFCompress N/A N/A 124.9 15.54

MH0001 Original 416.4 523.8 940.2

gzip 36.7 157.5 194.2 4.84

bzip2 32.1 151.4 183.5 5.12

LZMA 22.0 101.7 123.7 7.60

Leon 20.6 87.0 107.6 8.74

SCALCE 76.7 70.7 147.4 6.38

Slimfastq 17.5 103.7 121.2 7.76

LFQC 16.1 103.2 119.3 7.88

Deliminate N/A N/A 115.9 8.11

MFCompress N/A N/A 111.1 8.46

SRR1284073 Original 4.9 649.6 654.5

gzip 0.8 182.7 183.5 3.57

bzip2 0.7 176.5 177.2 3.69

LZMA 0.5 160.1 160.6 4.08

Leon 0.3 170.1 170.4 3.84

SCALCE N/A N/A N/A N/A

Slimfastq N/A N/A N/A N/A

LFQC 0.3 155.8 156.1 4.19

Deliminate N/A N/A 155.2 4.22

MFCompress N/A N/A 155.9 4.20

SRR870667 Original 3,947.2 7.546.1 11,493.3

gzip 514.3 2081.6 2595.9 4.43

bzip2 422.0 1,974.4 2396.4 4.80

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 6 of 13

Table 3 Compression of identifiers and sequences: Blue color represents original file size (Continued)

Dataset Method Read identifiers (MB) Sequences (MB) Identifiers & Sequences (MB) C-ratio

LZMA 280.4 1515.7 1796.1 6.40

Leon 139.7 1363.1 1502.8 7.65

SCALCE 341.6 999.4 1341.0 8.57

Slimfastq 128.2 1419.1 1547.3 7.43

LFQC 122.2 N/A N/A N/A

Deliminate N/A N/A 1768.5 6.50

MFCompress N/A N/A 1407.7 8.16

ERR174310 Original 11,107.5 21,173.1 32,280.6

gzip 1483.8 6018.7 7501.7 4.30

bzip2 1223.6 5745.2 6968.8 4.63

LZMA 691.0 4982.0 5673.0 5.69

Leon 355.2 4734.4 5089.6 6.34

SCALCE 1073.0 3016.0 4089.0 7.89

Slimfastq 323.4 4426.4 4749.8 6.80

LFQC N/A N/A N/A.0 N/A

Deliminate N/A N/A 5604.0 5.76

MFCompress N/A N/A 4666.3 6.92

Best results are bold faced and second to best are colored green. N/A refers to unsupported or unsuccessful cases

Results
In this section, we present the compression results for
different streams using state-of-the-art and general pur-
pose tools. We then show the performance compari-
son between our approach and the other tools. The
performance is presented in terms of compression-ratio,
compression speed and memory usage. We also eval-
uate the ability of each tool to correctly compress the
benchmark datasets.

Compression of FASTQ streams
Compression of identifiers and sequences
Read identifiers are typically platform specific. In many
cases, read identifiers contain instrumental information
in addition to their unique information, which makes
identifiers more compressible than sequences and qual-
ity scores. FASTQ sequences are strings of the alphabet
A, C, T and G and occasionally N for unknown bases. In
order to select the best technique for these two streams,
we used general purpose and FASTQ compression tools to
compress the identifiers and sequence streams. Moreover,
we used FASTA tools, namely Deliminate and MFCom-
press, on these streams. Since FASTA compression tools
do not output individual compressed streams, we looked
at the compression ratios for identifier and sequence fields
collectively. Table 3 shows a comparison of identifier and
sequence compression using the benchmark datasets.
From the results, we observe that compression ratios for

identifier and sequence streams are highly variable (from

4:1 to 16:1). Gzip, bzip2, LZMA and Slimfastq did not
give best or second to best result for all datasets. Leon
and SCALCE each performed best on two of the datasets.
Deliminate gave best compression ratios for one dataset
and LFQC gave the second to best ratio for one dataset.
Most importantly, we notice that MFCompress has the
best ratio for the first dataset and second to best for all
other benchmark datasets.
Gzip, bzip2, LZMA, Leon, Deliminate and MFCom-

press are able to compress all the datasets while SCALCE
and Slimfastq did not work for the PacBio dataset and
LFQC did not give results in two cases. Since the main
goal of our study is to develop a compression scheme that
works and performs best for all data types, and based on
the above findings, we select MFCompress as it works
for all datasets while producing best or second to best
compression ratios.

Compression of quality scores
Quality scores are ASCII characters with larger alpha-
bet size than read sequences, which makes them more
difficult to compress. Each quality score has a strong cor-
relation with a number of preceding quality scores. This
correlation decreases as the distance between two quality
scores increases. Furthermore, the rate of change of corre-
lation randomly changes from one FASTQ file to another
[9]. These characteristics make it challenging to code
quality scores efficiently for all datasets. Therefore, the
compression ratios for quality score streams are less than

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 7 of 13

those of the read identifiers and sequences. Table 4 shows
the performance comparison of different algorithms on
quality scores. The compression ratios for quality scores
is between 2:1 and 4:1. Slimfastq gives the second to best
ratio for all datasets except for the PacBio dataset, for
which it does not work. The results clearly indicate that
LFQC is the best suitable candidate for compressing qual-
ity scores as it gives the best compression ratios for all
datasets.

MZPAQ compression performance
In this section, we compare the performance of MZPAQ
against several state-of-the-art FASTQ compression tools
as well as general-purpose compression tools. The
methods are compared based on compression ratio,
compression speed and memory usage during compres-
sion. The comparison also includes the ability of the
tool to produce exact replica of the original file after
decompression.

Compression ratio
The ratio between the size of the original and the com-
pressed files is calculated for each dataset using all
the compression tools. Table 5 shows the performance
of MZPAQ relative to other evaluated tools in terms
of compression ratio. The results clearly indicate that
MZPAQ achieves the highest compression ratios com-
pared to all the other tools for all datasets. LFQC achieves
the second to best compression ratios for smaller file
sizes; however, it does not work for larger datasets. All
domain-specific tools performed better than general-
purpose tools, except for LZMA, which did not work on
PacBio data.

Compression speed
Compression speed is the number of compressed MB
per second. The decompression speed is computed sim-
ilarly. In order to conduct the comparison, we run all
the tools in single thread mode to allow for direct com-
parison between all the tools, as some of them do not
support multi-threading. Table 6 shows the compres-
sion speed performance of the compared algorithms in
MB/s. Slimfastq is the fastest tool and provides maxi-
mum compression speed for all cases except in the case
of PacBio data, which it does not support. LFQC is the
slowest for all the datasets it supports. In case of decom-
pression speed. We can see from the results shown in
Table 7 that gzip outperformes all the evaluated tools,
decompressing at over 45 MB per second for all datasets.
We further notice that general-purpose tools have
faster decompression than compression speeds, particu-
larly LZMA. While faster compression/decompression is
favorable, the speed may be achieved at the cost of the
compression ratio.

Table 4 Compression of Quality Scores: Blue color represents
original file size

Dataset Method Compression size (MB) Compression ratio

SRR554369 Original 167.4

gzip 64.7 2.59

bzip2 57.6 2.91

LZMA 57.0 2.94

Leon 64.6 2.59

SCALCE 52.0 3.22

Slimfastq 47.8 3.50

LFQC 47.6 3.52

SRR327342 Original 962.3

gzip 428.6 2.25

bzip2 405.8 2.37

LZMA 383.5 2.51

Leon 429.1 2.24

SCALCE 349.3 2.75

Slimfastq 334.9 2.87

LFQC 332.0 2.89

MH0001 Original 523.8

gzip 184.4 2.84

bzip2 173.5 3.02

LZMA 165.9 3.16

Leon 183.9 2.85

SCALCE 297.5 1.76

Slimfastq 144.8 3.62

LFQC 142.3 3.68

SRR1284073 Original 649.6

gzip 308.7 2.10

bzip2 283.6 2.29

LZMA 280.5 2.32

Leon 308.6 2.10

SCALCE N/A N/A

Slimfastq N/A N/A

LFQC 250.7 2.59

SRR870667 Original 7,546.1

gzip 3021.5 2.50

bzip2 2780.7 2.71

LZMA 2668.8 2.83

Leon 3022.4 2.50

SCALCE 2365.0 3.19

Slimfastq 2281.7 3.31

LFQC 2259.9 3.34

ERR174310 Original 21,173.1

gzip 8525.8 2.48

bzip2 7439.9 2.85

LZMA 7397.0 2.86

Leon 8533.3 2.48

SCALCE 6738.0 3.14

Slimfastq 6295.0 3.36

LFQC 6103.0 3.47

Best results are bold faced and second to best are colored green. N/A refers to
unsuccessful cases

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 8 of 13

Table 5 Compression ratios of evaluated tools

Dataset SRR554369 SRR327342 MH0001 SRR1284073 SRR870667 ERR174310

Gzip 3.16 3.87 3.89 2.40 3.43 2.96

Bzip2 3.74 4.67 4.82 2.83 4.06 3.62

LZMA 4.99 5.47 5.15 2.84 4.40 3.67

Leon 5.48 7.13 6.45 2.73 5.08 3.95

SCALCE 5.97 7.96 6.32 N/A 6.20 4.98

Slimfastq 5.87 7.66 7.07 N/A 6.00 4.88

LFQC 7.02 8.06 7.18 3.22 N/A N/A

MZPAQ 7.04 8.49 7.98 3.22 6.27 5.00

N/A refers to unsuccessful compression
The values in bold typeface represent the best performance

Memory usage
Memory usage refers to themaximum number of memory
bytes required by an algorithm during compression or
decompression, it represents the minimum memory that
should be available for successful execution of a program.
In general, memory usage varies with the type of datasets.
Tables 8 and 9 show the maximum memory require-
ments for compression and decompression, respectively.
The results show that LZMA requires 10 times more
memory for compression as compared to decompression.
Leon uses almost two times more memory for compres-
sion than decompression. In all cases, gzip requires the
least amount of memory.

Discussion
Evaluating the effectiveness of high-throughput sequenc-
ing data compression tools has gained a lot of interest
in the last few years [1, 13–15]. Comparative reviews of
prominent general-purpose as well as DNA-specific com-
pression algorithms show that DNA compression algo-
rithms tend to compress DNA sequences much better
than general-purpose compression algorithms [1, 4].
While FASTA compression tools show promising results,
the majority of raw data is saved in FASTQ format for
which compression tools are yet to mature and support all
types and sizes. For example, Table 10 shows the results

of compression for all the benchmark datasets. We can
see that all the evaluated compression tools are not able
to compress variable-length reads obtained by Pac Bio
except forMZPAQ.While LFQC produces results that are
comparable and only slightly less than MZPAQ, it does
not work for identifier and sequence compression of large
datasets.
In our study, we evaluate various existing efficient algo-

rithms to investigate their ability to compress FASTQ
streams. In addition, we evaluate FASTA tools on the
identifier and sequence streams of FASTQ files. The rea-
son behind this is the fact that FASTA compression tools
have been developed for longer than FASTQ compres-
sion tools. Moreover, they have been shown to outper-
form general purpose tools in compressing identifiers and
reads. We selected two FASTA and four FASTQ com-
pression tools that have been reported to offer the best
compression ratios by recent surveys. Both FASTA tools
successfully compressed identifiers and sequences of all
benchmark datasets while some FASTQ tools are not
successful on large datasets.
Among the evaluated tools, we select MFCompress for

compression of identifier and sequence streams. We also
found ZPAQ to be a suitable candidate for compression of
quality scores after evaluating all the tools on this stream.
A point worth noticing here is that bothMFCompress and

Table 6 Compression Speed of evaluated tools

Dataset SRR554369 SRR327342 MH0001 SRR1284073 SRR870667 ERR174310

Gzip 5.77 11.22 4.69 5.13 6.18 6.24

Bzip2 14.71 12.48 12.96 11.48 12.91 12.41

LZMA 0.91 1.24 1.05 0.79 1.04 0.96

Leon 3.86 5.94 4.8 3.54 3.12 3.35

SCALCE 18.24 21.8 19.58 N/A 12.95 9.24

Slimfastq 38 49.76 45.85 N/A 40.76 33.92

LFQC 0.82 0.98 1.21 0.7 N/A N/A

MZPAQ 0.98 1.34 1.33 0.78 0.99 0.83

N/A refers to unsuccessful compression
The values in bold typeface represent the best performance

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 9 of 13

Table 7 Decompression speed of evaluated tools

Dataset SRR554369 SRR327342 MH0001 SRR1284073 SRR870667 ERR174310

Gzip 152 110.89 144.62 145.44 48.09 46.84

Bzip2 35.08 32.07 33.57 22.96 24.48 22.03

LZMA 76 55.44 62.67 46.75 35.47 33.77

Leon 16.29 18.39 27.65 8.5 13.12 9.26

SCALCE 25.33 31.55 27.24 N/A 22.3 19.12

Slimfastq 24 24.72 20.89 N/A 20.58 17.25

LFQC 0.8 1.04 1.11 0.68 N/A N/A

MZPAQ 0.91 1.07 1.29 0.82 0.97 0.99

N/A refers to unsuccessful compression
The values in bold typeface represent the best performance

ZPAQ make use of context modeling, which makes this
compression technique very promising for compression
of genomic data [16]. Our evaluation illustrates the sig-
nificant impact on compression efficiency when we divide
FASTQ into multiple data streams and use different com-
pression schemes based on the stream type. As a result,
we created MZPAQ, which uses MFCompress and ZPAQ
as the underlining algorithms in order to deliver bet-
ter compression ratios for all three main components of
FASTQ data.
MZPAQ outperforms existing tools in terms of com-

pression ratios for all types of FASTQ benchmark
datasets. In some cases, the compression ratio gain is
minor; however, our goal is to create a tool that works
best for all types of data. Our evaluation shows that exist-
ing tools support only Illumina files containing short and
fixed-length reads. These tools are not optimized to sup-
port variable-length reads data from the PacBio platform.
Other than Leon, MZPAQ is the only domain-specific
algorithm that works for all FASTQ datasets. In addition,
MZPAQ outperforms the compression ratios of Leon.
Figure 2 shows a comparison of different tools that work
for all benchmark datasets. The figure shows thatMZPAQ
outperforms comparable tools for both the combined

identifier-sequence stream as well as the quality scores
stream. A key observation here is that the compression
ratios for quality scores vary from 2:1 to 4:1 while identi-
fier and sequence data compression ratios are in the range
of 4:1 to 17:1. It is evident that the nature of quality scores
makes it challenging to compress them as compared to
other streams of FASTQ data. With general-purpose and
domain-specific compression algorithms efficiently com-
pressing identifier and sequences while delivering only
moderate compression ratios for quality scores, there is a
growing need to develop compression schemes to better
compress quality scores [17, 18].
From the experimental results, we can see that the

best compression ratio, maximum speed, and minimum
memory requirements are competing goals. In general,
higher compression ratios are achieved by programs that
are slower and have higher memory requirement. In our
analysis, general-purpose tools have compression ratios
from 2:1 to 5:1, with compression speed of up to 15
MB/s (bzip2) and decompression speed up to 150 MB/s
(gzip). In the case of domain-specific tools, compres-
sion ratios are in the range of 4:1 to 8:1, reaching
up to 46 MB/s compression speed (Slimfastq) and 32
MB/s decompression speed (Scalce). Figures 3 and 4

Table 8 Compression memory usage of evaluated tools

Dataset SRR554369 SRR327342 MH0001 SRR1284073 SRR870667 ERR174310

Gzip 1.8 1.9 1.8 1.9 1.8 1.9

Bzip2 7.8 8.7 8.8 8.3 7.7 8.7

LZMA 691.4 691.5 691.3 691.4 691.4 691.3

Leon 382.2 385.7 95.1 4213.5 1858 3324.6

SCALCE 1429.9 3111.2 2584.2 N/A 5424.5 5450.4

Slimfastq 82.5 82.5 82.5 N/A 82.5 82.6

LFQC 1445.2 1189.5 1540.9 1522 N/A N/A

MZPAQ 2398.8 2901.8 2691 2385.6 4544.5 5326.4

N/A refers to unsuccessful compression
The values in bold typeface represent the best performance

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 10 of 13

Table 9 Decompression memory usage of evaluated tools

Dataset SRR554369 SRR327342 MH0001 SRR1284073 SRR870667 ERR174310

Gzip 1.7 1.6 1.6 1.6 1.6 1.8

Bzip2 5 5 5 4.8 4.9 4.9

LZMA 67.8 67.8 67.7 67.7 67.8 67.8

Leon 247.8 221.07 35.3 2923.9 762.2 2971

SCALCE 1031.4 1030.6 1031.1 N/A 1031.1 1032.6

Slimfastq 82.5 82.5 82.4 N/A 82.2 82.3

LFQC 1457.7 1559.6 1451.6 1527.7 N/A N/A

MZPAQ 2383.9 2382 2384.1 2383 2396.3 2383

N/A refers to unsuccessful compression
The values in bold typeface represent the best performance

illustrate the trade-off between compression ratio and
the speed and memory usage. For example, gzip offers
the lowest compression ratio but has the best per-
formance in case of speed and memory usage. Better
compression-ratio tools cost both time and memory
but they provide valuable long term space and band-
width savings. When data size is crucial, these tools are
crucial.
Figures 3 and 4 clearly demonstrate that almost all com-

pression algorithms, general or domain-specific, have a
trade-off between compression ratio, speed, and mem-
ory usage. MZPAQ provides better compression ratios
for all platforms, at the cost of higher running time and
memory usage. MZPAQ is suitable for areas where the
preference is to maximize compression ratio for a long-
term storage or faster data transfer. In addition, speed
performance can be remarkably enhanced by employing
high performance computing. There is evidence support-
ing a considerable increase in speed of MFCompress and
ZPAQ, by exploiting parallelism [13, 19, 20].
Based on our analysis of existing compression algo-

rithms, it is obvious that none of these techniques qualify
for the one-size-fits-all approach. There is no compres-
sion scheme that provides best results in terms of all
evaluation metrics we analyzed. For example, datasets
that are not well compressed by one algorithm are

efficiently compressed by another. One of the main draw-
backs of most algorithms is their compatibility with
only specific type of input, greatly restricting their usage
by biologists who need to compress different types of
data. For example, some tools accept only ACTG, sup-
port only fixed read length, or support a subset of
platforms.

Conclusions
The backbone of modern genetics is DNA sequencing.
Thanks to recent advances in sequencing technologies,
there has been an exponential increase in the speed and
amount of DNA sequenced on a daily basis. Thus, the
need of storage space is also increasing by an equal rate.
This implies that if the same trend persists, the cost of
DNA sequencing pipeline will be highly influenced by
the storage cost, rather than the sequencing itself. In an
attempt to solve this problem, developing efficient com-
pression algorithms is crucial.
In this paper, we present a compression tool for themost

commonly used format for raw data, which is FASTQ. We
first review recent progress related to DNA compression
and explore various compression algorithms. To achieve
better compression performance, the input is fragmented
to expose different kind of information namely identi-
fier strings, quality scores, sequences and other optional

Table 10 Compression of benchmark datasets using FASTQ tools

Dataset Size (MB) Leon SCALCE Slimfastq LFQC MZPAQ

SRR554369 456 � � � � �
SRR327342 3,881 � � � � �
MH0001 1,880 � � � � �
SRR1284073 1,309 × × × × �
SRR870067 22,987 � � � × �
ER174310 53,869 � � � × �
× : Tool does not support data.× : Tool produces invalid output.×: Tool produces wrong output

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 11 of 13

Fig. 2 Comparison: Compression sizes of different fastq steams in two large datasets using different compression tools

fields. The final objective is achieved by recognizing the
statistical properties of every specific kind of information
to use an appropriate compression method. We combine
existing algorithms and sub-algorithms and achieve the
best compression ratios on FASTQ files for all datasets
from a recent and well known review. Comparative analy-
sis of existing tools as well as our tool show thatMZPAQ is
able to better compress data from all types of platforms as
well as compress data of different sizes. We can conclude

thatMZPAQ ismore suitable when the size of compressed
data is crucial such as long-term storage and data transfer
to the cloud.
At this point, we present a method that focuses on

improving compression ratio for all types of FASTQ
datasets. Later, effort will be made to target other aspects
such as compression speed and memory requirements.
Parallel implementation and code optimization can be
used to overcome the high compression cost of MZPAQ.

Fig. 3 Compression ratio vs. compression speed: The compression ratio versus the speed of compression for all benchmark datasets using different
compression tools

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 12 of 13

Fig. 4Memory usage vs. compression ratio: The maximummemory used during compression versus the compression ratio for all benchmark
datasets using different compression tools

Acknowledgements
This work was supported by the Research Center of College of Computer and
Information Sciences, King Saud University. The authors are grateful for this
support.

Authors’ contributions
AE and MA conceived of the project. AE designed the methodology and MA
implemented the work. Both authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
The datasets used in this study are available from the Moving Picture Experts
Group (MPEG), from the URL https://github.com/sfu-compbio/compression-
benchmark/blob/master/samples.md.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 December 2017 Accepted: 23 May 2019

References
1. Numanagić I, Bonfield JK, Hach F, Voges J, Ostermann J, Alberti C,

Mattavelli M, Sahinalp SC. Comparison of high-throughput sequencing
data compression tools. Nat Methods. 12:1005–8. https://doi.org/10.
1038/nmeth.4037.

2. Mohammed MH, Dutta A, Bose T, Chadaram S, Mande SS.
DELIMINATE–a fast and efficient method for loss-less compression of

genomic sequences: sequence analysis. Bioinformatics (Oxford, England).
2012;28(19):2527–9. https://doi.org/10.1093/bioinformatics/bts467.

3. Pinho AJ, Pratas D. Mfcompress: A compression tool for fasta and
multi-fasta data. Bioinformatics. 2014;30(1):117–8. https://doi.org/10.
1093/bioinformatics/btt594.

4. Hosseini M, Pratas D, Pinho A. A Survey on Data Compression Methods
for Biological Sequences. Information. 2016;7(4):56. https://doi.org/10.
3390/info7040056.

5. Hach F, Numanagić I, Alkan C, Sahinalp SC. SCALCE: Boosting sequence
compression algorithms using locally consistent encoding. Bioinformatics.
2012;28(23):3051–7. https://doi.org/10.1093/bioinformatics/bts593.

6. Benoit G, Lemaitre C, Lavenier D, Drezen E, Dayris T, Uricaru R, Rizk G.
Reference-free compression of high throughput sequencing data with a
probabilistic de Bruijn graph. BMC Bioinformatics. 2015;16(1):288. https://
doi.org/10.1186/s12859-015-0709-7. 1412.5932.

7. Jones DC, Ruzzo WL, Peng X, Katze MG. Compression of next-generation
sequencing reads aided by highly efficient de novo assembly. Nucleic
Acids Res. 2012;40(22). https://doi.org/10.1093/nar/gks754. 1207.2424.

8. Nicolae M, Pathak S, Rajasekaran S. LFQC: A lossless compression
algorithm for FASTQ files. Bioinformatics. 2015;31(20):3276–81. https://
doi.org/10.1093/bioinformatics/btv384.

9. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM Format
Sequencing Data. PLoS ONE. 2013;8(3). https://doi.org/10.1371/journal.
pone.0059190.

10. Zhang Y, Li L, Xiao J, Yang Y, Zhu Z. FQZip: Lossless Reference-Based
Compression of Next Generation Sequencing Data in FASTQ Format.
Cham: Springer; 2015, pp. 127–35.

11. Collin L. A quick benchmark: Gzip vs. Bzip2 vs. LZMA. 2005. https://
tukaani.org/lzma/benchmarks.html.

12. Ziv J, Lempel A. A Universal Algorithm for Sequential Data Compression.
IEEE Trans Inf Theory. 1977;23(3):337–43. https://doi.org/10.1109/TIT.1977.
1055714.

13. Guerra A, Lotero J, Isaza S. Performance comparison of sequential and
parallel compression applications for DNA raw data. J Supercomput.
2016;72(12):4696–717. https://doi.org/10.1007/s11227-016-1753-4.

14. Giancarlo R, Rombo SE, Utro F. Compressive biological sequence analysis
and archival in the era of high-throughput sequencing technologies. Brief
Bioinforma. 2014;15(3):390–406. https://doi.org/10.1093/bib/bbt088.

https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
https://github.com/sfu-compbio/compression-benchmark/blob/master/samples.md
https://doi.org/10.1038/nmeth.4037
https://doi.org/10.1038/nmeth.4037
https://doi.org/10.1093/bioinformatics/bts467
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.1093/bioinformatics/btt594
https://doi.org/10.3390/info7040056
https://doi.org/10.3390/info7040056
https://doi.org/10.1093/bioinformatics/bts593
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1186/s12859-015-0709-7
https://doi.org/10.1093/nar/gks754
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1371/journal.pone.0059190
https://doi.org/10.1371/journal.pone.0059190
https://tukaani.org/lzma/benchmarks.html
https://tukaani.org/lzma/benchmarks.html
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1007/s11227-016-1753-4
https://doi.org/10.1093/bib/bbt088

El Allali and Arshad Source Code for Biology andMedicine (2019) 14:3 Page 13 of 13

15. Sardaraz M, Tahir M, Ikram AA. Advances in high throughput DNA
sequence data compression. J Bioinforma Comput Biol. 2016;14(03):
1630002. https://doi.org/10.1142/S0219720016300021.

16. Mahoney MV. Adaptive weighing of context models for lossless data
compression. Florida Inst Technol Melb, USA. 2005;CS-2005-16:1–6.

17. Alberti C, Daniels N, Hernaez M, Voges J, Goldfeder RL,
Hernandez-Lopez AA, Mattavelli M, Berger B. An Evaluation Framework
for Lossy Compression of Genome Sequencing Quality Values. In: Data
Compression Conference Proceedings; 2016. p. 221–30. https://doi.org/
10.1109/DCC.2016.39.

18. Greenfield DL, Stegle O, Rrustemi A. GeneCodeq: Quality score
compression and improved genotyping using a Bayesian framework.
Bioinformatics. 2016;32(20):3124–32. https://doi.org/10.1093/
bioinformatics/btw385.

19. Nicolae M, Pathak S, Rajasekaran S. LFQC: a lossless compression
algorithm for FASTQ files. Bioinformatics. 2015;31(20):3276–81. https://
doi.org/10.1093/bioinformatics/btv384.

20. Numanagi I. Boosting high throughput sequencing data compression
algorithms using reordering. 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1142/S0219720016300021
https://doi.org/10.1109/DCC.2016.39
https://doi.org/10.1109/DCC.2016.39
https://doi.org/10.1093/bioinformatics/btw385
https://doi.org/10.1093/bioinformatics/btw385
https://doi.org/10.1093/bioinformatics/btv384
https://doi.org/10.1093/bioinformatics/btv384

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Datasets
	Methodology

	Results
	Compression of FASTQ streams
	Compression of identifiers and sequences
	Compression of quality scores

	MZPAQ compression performance
	Compression ratio
	Compression speed
	Memory usage

	Discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

