
SOFTWARE Open Access

IPCAPS: an R package for iterative pruning
to capture population structure
Kridsadakorn Chaichoompu1* , Fentaw Abegaz1, Sissades Tongsima2, Philip James Shaw3,
Anavaj Sakuntabhai4,5, Luísa Pereira6,7 and Kristel Van Steen1,8*

Abstract

Background: Resolving population genetic structure is challenging, especially when dealing with closely related or
geographically confined populations. Although Principal Component Analysis (PCA)-based methods and genomic
variation with single nucleotide polymorphisms (SNPs) are widely used to describe shared genetic ancestry,
improvements can be made especially when fine-scale population structure is the target.

Results: This work presents an R package called IPCAPS, which uses SNP information for resolving possibly fine-
scale population structure. The IPCAPS routines are built on the iterative pruning Principal Component Analysis
(ipPCA) framework that systematically assigns individuals to genetically similar subgroups. In each iteration, our tool
is able to detect and eliminate outliers, hereby avoiding severe misclassification errors.

Conclusions: IPCAPS supports different measurement scales for variables used to identify substructure. Hence, panels
of gene expression and methylation data can be accommodated as well. The tool can also be applied in patient
sub-phenotyping contexts. IPCAPS is developed in R and is freely available from http://bio3.giga.ulg.ac.be/ipcaps
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Background
Single Nucleotide Polymorphisms (SNPs) can be used to
identify population substructure, but resolving complex
substructures remains challenging [1]. Owing to the
relatively low information load carried by single SNPs,
usually thousands of them are needed to generate suffi-
cient power for effective resolution of population strata
due to shared genetic ancestry [2]. Moreover, in practice
with high-density genome-wide SNP datasets, linkage
disequilibrium (LD) and haplotype patterns are likely to
exist, which can be exploited for the inference of popula-
tion structure [3]. On the one hand, exploiting haplotype
patterns is potentially informative, but comes with a
high computational burden. On the other hand, al-
though removing LD by pruning strategies can eliminate
some spurious substructure patterns, it may limit our
ability to identify subtle subgroupings.

The identification of substructure in a genome-wide
association study sample of healthy controls or patients
is a clustering problem. Conventional population struc-
ture analyses use Bayesian statistics to show relation-
ships amongst individuals in terms of their so-called
admixture profiles, where individuals can be clustered by
using ratios of ancestral components, see also [4]. The
iterative pruning Principal Component Analysis (ipPCA)
approach differs from this paradigm as it assigns individ-
uals to subpopulations without making assumptions of
population ancestry [5]. At the heart of ipPCA lies
performing PCA with genotype data, similar to EIGEN-
STRAT [2]. If substructure exists in a principal compo-
nent (PC) space (ascertained using, for instance,
Tracy-Widom statistics [5], or the EigenDev heuristic
[6]), individuals are assigned into one of two clusters
using a 2-means algorithm for which cluster centers are
initialized with a fuzzy c-means algorithm. The test for
substructure and clustering is performed iteratively on
nested datasets until no further substructure is detected,
i.e. until a stopping criterion based on fixation index
(FST) is satisfied. FST is commonly used to measure
genetic distance between populations. The software

* Correspondence: kridsadakorn@biostatgen.org; kristel.vansteen@uliege.be
1GIGA-R Medical Genomics - BIO3, University of Liege, Avenue de l’Hôpital
11, 4000 Liege, Belgium
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Chaichoompu et al. Source Code for Biology and Medicine            (2019) 14:2 
https://doi.org/10.1186/s13029-019-0072-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-019-0072-6&domain=pdf
http://orcid.org/0000-0002-8123-3409
http://bio3.giga.ulg.ac.be/ipcaps
mailto:kridsadakorn@biostatgen.org
mailto:kristel.vansteen@uliege.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


developed to perform ipPCA has some shortcomings
though. Notably, it is limited to a MATLAB environ-
ment, which is not freely available. Also, outliers can
severely disturb the clustering analysis. These limitations
are addressed in IPCAPS [7], which improves the power
of fine-scale population structure, while appropriately
identifying and handling outliers.

Implementation
The R package IPCAPS provides one synthetic dataset
and seven functions:

1) simSNP: a synthetic dataset containing SNPs and
population labels.

2) ipcaps: a function for unsupervised clustering to
capture population structure based on iterative
pruning.

3) rubikClust: a function for unsupervised clustering
to detect rough structures and outliers.

4) cal. PC.linear: a function for linear PCA.
5) fst.hudson: a function for average FST calculation

between two groups.
6) fst.each.snp.hudson: a function for FST calculation

for all SNPs between two groups.
7) plot.3views: a function to create scatter plots in

three views.
8) top.discriminator: a function to detect top

discriminators between two groups.

See the IPCAPS reference manual for details of the
functions, arguments, default settings, and optional
user-defined parameters.
The IPCAPS package implements unsupervised

strategies that facilitate the detection of fine-scale
structure in samples, extracted from informative gen-
etic markers. For general populations, information re-
garding substructure may come directly from SNPs.
For patient samples, general population structure
should first be removed via regressing out ancestry
informative markers prior to clustering. The latter is
incorporated in IPCAPS. Currently, IPCAPS accepts

three data input formats: text, PLINK binary (bed,
bim, fam), and RData (more details in Table 1). In
the sequel, we will assume the availability of a suffi-
ciently large SNP panel that is called on a collection
of population samples.
Prior to clustering with IPCAPS, adequate data quality

control (QC) steps need to be taken. These are not sup-
ported by IPCAPS itself but can easily be performed in
PLINK (1.9) [8]. Suggested PLINK parameters include:
restrict to founders (--filter-founders), select chromo-
some 1–22 (--not-chr 0,x,y,xy,mt), perform LD pruning
(--indep-pairwise 50 5 0.2), test for Hardy–Weinberg
equilibrium (--hwe 0.001), use call rate at least 95%
(--mind 0.05), filter out missing SNP above 2% (--geno
0.02), and remove low minimum allele frequency (--maf
0.05). The remaining missing genotype values are
SNP-wise imputed by medians.
Rather than performing two-means clustering in

PCA-space, at each iteration, IPCAPS clustering poten-
tially involves the consecutive application of 2 clustering
modules. The first, which we call rubikClust, is applied
in the 3-dimensional space determined by the first three
principal components (axes) at an iteration step. It in-
volves applying rotations in 3D by consecutively
performing rotations around PC1, PC2, PC3, and may
provide more than 2 clusters. Notably, this approach also
allows for rapid identification of outliers. When samples
cannot be divided into 2 groups in this way, the existing
R function mixmod (package Rmixmod) is used for la-
tent subgroup detection. In particular, earlier computed
PCs (untransformed) at a particular iteration are sub-
jected to multivariate Gaussian mixture modeling and
Clustering EM (CEM) estimation [9], allowing for up
to three clusters at each iteration. The iterative loop
of IPCAPS can be terminated automatically by calling
one of three possible stopping criteria: the number of
subgroups is lower than a minimum, the fixation
index (FST) is lower than a threshold, and EigenFit is
lower than a pre-specified cutoff. The EigenFit
criterion is defined by the differences between the
logarithms of consecutive eigenvalues, sorted from
high to low.

Table 1 Input formats supported by the function ipcaps

Input formats Descriptions

PLINK binary format PLINK binary format consist of 3 files; bed, bim, and fam. To generate these files from PLINK,
use option --make-bed

Text format The functions ipcaps supports SNPs in additive coding (0 = AA, 1 = AB, 2 = BB). Each row
represents SNP, and each column represents individual. SNPs need to be separated by a
space or a Tab. A big text file should be divided into smaller files to load faster.
To input several files, set the option as, for example, files = c(‘input1.txt’,‘input2.txt’,‘input3.txt’)

RData format In the case of re-analysis, it is convenient to rerun the function ipcaps using the file rawdata.
RData is generated by the function ipcaps itself. This file contains a vector of labels and a matrix
of SNPs containing N rows of individuals and M columns of SNPs.
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All IPCAPS results are saved in a single directory
including textual information about cluster alloca-
tions, and visual information such as PC plots and
hierarchical trees of group membership. Due to mem-
ory restrictions in R, large datasets (i.e., a large num-
ber of subjects) may need to be split into multiple
files and loaded into computer memory via the
IPCAPS option files, which they are internally merged
again for iterative PCA. Extra attention is paid on ef-
ficient PC calculation [10], also relying on the R
package rARPACK.
The analysis procedure using IPCAPS proceeds as

follows: Firstly, genotype data are loaded and are
analyzed automatically by the function ipcaps. Secondly,
cluster membership is returned once clustering process
is done. Clusters containing few members are counted
as outlying individuals. Lastly, top discriminators
between clusters are identified.

Usage example:

# 1) perform clustering (see Availability of data and
materials). Note that input files must to be in the
working directory.

bed.file <− “simSNP.bed” #the bim file and the fam
file are required
sample.info <− “simSNP_individuals.txt”
column.number = 2
output.path <− “result”
clusters <− ipcaps (bed = bed.file,
label.file=sample.info, lab.col. = column.number,
out = output.path)

# 2) Check clustering result.
print (clusters$cluster$group)
table (clusters$cluster$label, clusters$cluster$group)

# 3) Identify top discriminators between groups, for
example, group 4 and group 5.

A B

C D

Fig. 1 The output from IPCAPs. a PC plot of iteration 1 for synthetic data (b) a typical tree output and a summary table for synthetic data (c) PC
plot of iteration 1 for the HapMap data (d) a typical tree output and a summary table for the HapMap data. For (b) and (d), the intermediate
results are in blue, and the final clusters are in red
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bim.file <− “simSNP.bim”
top.snp < −top.discriminator (clusters,4,5,bim.file)
head (top.snp)

Results
We simulated genotype data for 10,000 independent
SNPs and 760 individuals belonging to one of three pop-
ulations (250 individuals each) and 10 outliers (see
Availability of data and materials). The pairwise genetic
distance between populations was set to FST = 0.005 [11].
Ten outlying individuals were generated by replacing the
1st and the 2nd eigenvectors by extreme values, and
then the SNP matrix was reconstructed using the singu-
lar value decomposition formula [12]. Two-dimensional
PC plots of the first 3 PCs only reveals a separation
between populations (with overlap) for PC2 versus PC3
(Fig. 1-a). However, the application of IPCAPS on the
simulated data and thus flexible use of PC information
and clustering stopping rules as described before could
clearly identify sample substructure (Fig. 1-b). Non-out-
lying individuals were correctly assigned to their
respective subgroups. In a real-life data application, we
considered four populations of HapMap (CEU, YRI,
CHB, and JPT) [13]. These populations have been con-
sidered before in the evaluation of non-linear PCA to
detect fine substructure [14]. After data QC as described
before, 132,873 SNPs and 395 individuals remained (see
Availability of data and materials). Using classic PCA,
visualizing data into two-dimensional space based on the
first two PCs is not enough to fully describe substruc-
tures. Whereas non-linear PCA is able to provide a
hierarchical visualization with only the first 2 PCs, as
claimed by the authors [14], including PC3 clearly im-
proves the detection of substructure of four strata, but
the authors do not give recommendations on how to se-
lect the optimal number of non-linear PCs (Fig. 1-c).
The iterative approach adopted in IPCAPS can distin-
guish populations for which the internal substructure
becomes increasingly finer: CEU, YRI, CHB, and JPT
populations are well separated by IPCAPS, which also
separates the genetically rather similar population CHB
and JPT, with only one misclassified subject. In addition,
we obtained 560 unique SNPs after combining the top
discriminators among four main groups, while outliers
were ignored (Fig. 1-d).

Conclusions
Fine-scale resolution of population substructure can be
captured using independent SNPs once all redundancies
are filtered out. In this work, we have introduced a
flexible and efficient R package to accomplish an un-
supervised clustering without prior knowledge, in the
search for strata of individuals with similar genetic
profiles. The tool performs well in fine-scale and

broad-scale resolution settings. The IPCAPS routines
allow a relatively easy extension to input data derived
from transcriptome or epigenome experiments.

Availability and requirements
Project name: IPCAPS
Project home page: http://bio3.giga.ulg.ac.be/ipcaps
Operating system: Platform independent
Programming language: R version > = 3.0.0
Other requirements: Dependency R packages; RMatrix,
expm, fpc, Rmixmod, LPCM, apcluster, rARPACK,
igraph
License: GPLv3

Abbreviations
FST: Fixation index; LD: Linkage disequilibrium; PC: Principal component;
PCA: Principal component analysis; QC: Quality control; SNP: Single
nucleotide polymorphisms
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