Marwah et al. Source Code for Biology and Medicine (2019) 14:1

https://doi.org/10.1186/513029-019-0071-7

Source Code for Biology
and Medicine

SOFTWARE Open Access

eUTOPIA: solUTion for Omics data

@ CrossMark

Preprocessing and Analysis

Veer Singh Marwah'~, Giovanni Scala' Pia Anneli Sofia Kinaret'**, Angela Serra'? Harri Alenius™?,

Vittorio Fortino® and Dario Greco'**"

Abstract

Background: Application of microarrays in omics technologies enables quantification of many biomolecules
simultaneously. It is widely applied to observe the positive or negative effect on biomolecule activity in perturbed
versus the steady state by quantitative comparison. Community resources, such as Bioconductor and CRAN, host
tools based on R language that have become standard for high-throughput analytics. However, application of these
tools is technically challenging for generic users and require specific computational skills. There is a need for
intuitive and easy-to-use platform to process omics data, visualize, and interpret results.

Results: We propose an integrated software solution, eUTOPIA, that implements a set of essential processing steps
as a guided workflow presented to the user as an R Shiny application.

Conclusions: eUTOPIA allows researchers to perform preprocessing and analysis of microarray data via a simple
and intuitive graphical interface while using state of the art methods.
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Background

Omics data have become an integral part of biological
studies as researchers leverage these techniques to obtain
a broader perspective of complex biological phenomena.
Scientific community resources such as CRAN and
Bioconductor [1] contain an extensive collection of com-
putational tools developed in R programming language [2]
to process omics data. Application of these tools, however,
requires a deep understanding of the computation and
statistical aspects of the methods employed, while further
integration of these tools in a workflow requires a certain
degree of proficiency in computer programming
languages. We tasked ourselves with creating a solution
by implementing “state of the art” practices to preprocess,
statistically analyze, and visualize microarray data from
multiple platforms. eUTOPIAs workflow caters to the
researchers with varied levels of computation and statis-
tical skills. This solution fills a void in a research
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environment, thus allowing experimental biologists to
process microarray data while avoiding critical errors due
to lack of proficiency in programming languages and pipe-
line development. The guided interface simplifies the
complex tasks to set up the study and allows for more
focus on the biological interpretation of the results rather
than the technical challenges of executing statistical
methods and generating visual representations.

Implementation

eUTOPIA is developed in R programming language with
a graphical interface layer designed by using R Shiny [3]
web development framework. The dynamic user interface
allows the user to adjust the parameters and observe the
effect via meaningful graphical representations at each
step, thus enabling to make informed decisions. Currently,
eUTOPIA is capable of processing data from four micro-
array platforms: Agilent gene expression two-color
microarray data (Samples specific to different colors chan-
nels), Agilent gene expression one-color microarray data,
Affymetrix gene expression microarray data, and Illumina
methylation microarray data. A guided stepwise workflow
is implemented to preprocess and perform a preliminary
analysis. eUTOPIA’s workflow is provided in Fig. 1.
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Fig. 1 eUTOPIA workflow. Schematic representation of eUTOPIA’s guided workflow. The steps are represented by the rectangular box with sharp
edges, and the step output is represented by the rectangular box with rounded edges. Analytical steps are numerically coded by circular labels
from 1 through 8; an additional step labeled as ‘#' is a reporting step with no specific order in the workflow. The labeled steps correspond to the
steps of the analysis workflow in the eUTOPIA graphical user interface. The flexibility of defining alternate approaches for batch correction is
captured in the workflow with the labeled steps 6a, and 6b that represent the subsections of BATCH CORRECTION step in the eUTOPIA analysis
pipeline (Additional file 1). This workflow is adjusted according to the chosen data platform
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There are seven main steps in the workflow: ‘DATA IN-
PUT’ (Additional file 1, p. 8-13),QUALITY CONTROL &
‘FILTERING’ (Additional file 1, p. 14), NORMALIZATION’
(Additional file 1, p. 15), ' BATCH CORRECTION & AN-
NOTATION’ (Additional file 1, p. 20-29), and ‘DIFFEREN-
TIAL ANALYSIS’ (Additional file 1, p. 30-31).

eUTOPIA requires that user provides a detailed pheno-
type information file (Additional file 2) with all biological
and technical variables of the samples in the experiment.

A quality control report can be generated from micro-
array raw data by affyQCReport R package [4], yaqcaffy
R package [5], arrayQualityMetrics R package [6], or shi-
nyMethyl R package [7], depending on the microarray

platform. It is essential that poor quality probes from the
experimental data are omitted prior data normalization.
In the gene expression specific platforms, this is accom-
plished by estimating the robustness of probe signals
against the background (negative control probes). For
Ilumina methylation platforms, a detection p-value is
computed by using the total DNA signal (methylated +
unmethylated) against the background signal by minfi R
package [8]. The expression value OR p-value threshold
determined from the background signal is used to evalu-
ate the probes across a percentage of sample specified by
the user. Finally, the probes failing this evaluation are
considered unreliable and thus filtered out.
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Normalization of the expression and methylation signals
distribution across the samples is performed respectively
with methods from the limma [9] and minfi R packages.
Methods scale, quantile, and loess perform normalization
on log2-scaled intensities and ratios, and the vsn method
uses a variance stabilizing transformation, which performs
better for weakly expressed features. Normalization of
[umina methylation arrays is performed by using the
methods from minfi R package with options of back-
ground subtraction, control feature measure, dye bias, and
quantile normalization.

In microarray data analysis, a fundamental step is to at-
tenuate the effects associated with technical variables
(batch effects) while retaining the variation associated with
biological variables. Batch effects can arise for multiple
reasons, most commonly when the experiments are con-
ducted in multiple batches, and the data is pooled to-
gether for processing. These batches can contribute to the
variability of the features and could introduce a systematic
error in their assessment, ultimately leading to incorrect
results in the worst scenario [10]. Batch effects can be
caused by known variables (e.g, dye, RNA quality, experi-
ment date, etc.) or by hidden sources of variation not ex-
plained by the known variables. Known biological (e.g.,
treatment, disease status, age, tissue, etc.) and technical
(e.g, dye, array, etc.) variables are provided by the user in
the phenotype information, while unknown sources of
variations can be identified by using the sva function from
sva R package [11]. First, the impact of the technical vari-
ables is computed with prince function from swamp R
package [12], and the correlation between both biological
and technical variables is evaluated from the confounding
plot which is generated by using the confounding function
from the swamp R package. This information is used to
identify batch variables as known technical or surrogate
variables which are associated with strong sources of
variation and are not correlated with biological variables
of interest. These identified batch variables can be justifi-
ably corrected to remove technical noise from the data. Fi-
nally, the correction is performed with ComBat [13]
function from sva R package that employs an empirical
Bayes approach to estimate systemic batch biases affecting
many genes. The batch correction is carried out by speci-
fying the variable of interest, any biological covariates, and
a set of known batches or surrogate variables (obtained
from the sva function described above). The batch correc-
tion process implemented in eUTOPIA applies the Com-
Bat function iteratively to remove one batch covariate at a
time while the rest are modeled as covariates of interest.
The ComBat function can process only one batch covari-
ate at a time, and this process of blocking other batches
ensures clear separation of variation adjustment effects for
each batch without any interference from the adjustment
of other batches.
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Linear models allow to model the covariate dependen-
cies between samples. The differential analysis is
performed with linear model implementation in the R
package limma. The /mFit function from the limma R
package fits gene-wise linear models to the microarray
data. The user defines the design for the model by pro-
viding the biological variable of interest and covariates
(biological and technical batch variables). The contrasts
of interest are then specified to obtain contrast specific
coefficients from the original coefficients of the linear
model. The eBayes function is applied to assess differen-
tial expression by using the fitted model with the
contrast coefficients. Final reporting of the differentially
expressed genes is performed by using the toptable
function where adjusted p-value for the multiple com-
parisons can be obtained by specifying methods “Holm”,
“Hochberg”, “Hommel”, “Bonferroni”’, “Benjamini &
Hochberg”, “Benjamini and Yekutieli” or “False Detec-
tion Rate”. Differential analysis results for comparisons
defined by the user are reported in tabular format and
with other meaningful visualizations. The dynamic plots
help to perform a preliminary interpretation of the
analysis results. The distribution of the differential
features by fold-change magnitude and significance can
be observed for a chosen contrast by means of the
volcano plots. The expression profile of user-specified
top significant features from one or more contrasts can
be inspected from the heatmap. Comparison of differen-
tial features from different contrasts by set intersections
is represented as Venn diagrams or UpSet plots. And the
distribution of signal for one or more gene(s) of interest
in sample annotations (e.g., experimental condition) can
be inspected by means of box plots. A user manual with
sample data analysis and plot descriptions is provided in
Additional file 1.

Results and discussion

The functional capabilities of eUTOPIA are showcased
here by processing a publicly available dataset GSE92900
[14] obtained from the GEO [15] repository. The pheno-
type table provided in Additional file 2 is used for sam-
ple annotations.

The quality control of the raw data is performed with
the arrayQualityMetrics R package. The quality report
represents the distribution of intensities in arrays, the
comparison between arrays (Fig. 2), individual array
quality, and it also reports outliers.

In Fig. 2a, array 10 has high distance measures with
the rest of the arrays as represented by the bright and
dull yellow colored cells. This distance information can
also be interpreted from the hierarchical cluster in the
right margin of Fig. 2a, where array 10 clusters separ-
ately from the others. Outliers are detected based on this
distance information as arrays with exceptionally large
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Fig. 2 Sample QC. Subsection of arrayQualityMetrics quality control report. a Distance based on the mean absolute difference between array data
represented as a Heatmap. The distance measure is represented by the color gradient from blue to yellow. b The pairwise distances for each
array are summarized as a single representative value plotted on a horizontal bar chart. A threshold is determined based on the distribution of
values across all arrays, represented by a vertical line. Arrays with the summarized distance larger than the threshold are considered outliers
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distance to all other arrays. A summarized distance meas-
ure is determined for each array by summing up the dis-
tances to all other arrays, which is checked against an
outlier threshold obtained on the basis of well-established
interquartile range (IQR) rules defined by Tukey Fences.
The outliers can be observed in Fig. 2b, where array 10
has a large summarized distance from the rest of the
arrays and can be markedly recognized as an outlier.

Normalization is performed by using the quantile
method for between-array normalization. The normal-
ized data can be observed by the representation of
expression values as box plot, density plot, and mean
difference plot (MDplot) (Fig. 3).

The difference in the distribution of expression values in
different arrays can be observed in the box plot before
normalization (Fig. 3a), suggesting the need for adjustment
of the distributions for fair comparison across the set of
arrays. The distribution of expression values is harmonious

across the arrays in the box plot after normalization with
the quantile method (Fig. 3b).

The difference in the distribution of expression values
from individual channels of different arrays can be
observed from the smoothed curves in the density plot
(Fig. 3c) before correction. Only a single smoothed curve
is visible in the density plot after normalization (Fig. 3d)
since the channels from all arrays have the same distri-
bution of expression values as a result of quantile
normalization.

The larger scale of log-2 ratios (M-values on the y-axis)
observed in the MDplot before normalization (Fig. 3e)
shows that the data points are farther away from zero log2
expression ratio, suggesting bias. The average log2 expres-
sion values also have a large scale (x-axis) before
normalization. The smaller scale of M-value (y-axis)
observed in the MDplot after normalization (Fig. 3f)
shows that data points are much closer to zero log2
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Before Normalization

M-values are plotted on the y-axis

Fig. 3 Normalization summary. Box plots (a; b), Density plots (¢, d), and Mean-Difference plots (E, F) report expression values before and after
normalization. The Box plots (a, b) report the distribution of expression values in each array. The Density plots (¢, d) report the density distribution of
the expression in individual color channels of each array. The expression intensity is plotted on the x-axis and the density values on the y-axis. The
Mean-Difference plots (MD plot) (e, f) report agreement of the expression values between the individual channels of the array. The M-values (log-2
expression ratios) are plotted against the A-values (average log-2 expression values) as scatterplots. The A-values are plotted on the x-axis, and the

After Normalization

expression ratios as the bias has been adjusted. From this
plot, it is also possible to appreciate how the average log2
expression values have much smaller scale (x-axis) after
normalization.

The known batches in the data are identified by infer-
ring the variation associated with the sample annotations
from the prince plot and by observing the significance of
interrelatedness between the sample annotations from the
confounding plot. The ‘group’ annotation variable is con-
sidered as the variable of interest. The prince plot (Fig. 4a)

displays that variables ‘slide; ‘area; ‘array, ‘n.mice, ‘operator’
and ‘date’ are associated with principal components repre-
senting high variation in the data. The confounding plot
(Fig. 4b) suggests that the variable ‘RIN’ is confounded
with the variable of interest ‘group’ and thus cannot be
taken forward for any data correction. Also, variables
‘slide; ‘area; ‘operator, and ‘date’ are found to be con-
founded with ‘array’. The ‘array’ variable represents the
highest variability in the data and is favored over ‘slide;
‘areq; ‘operator, and ‘date’ as a batch variable. Thus, it can
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Fig. 4 Identification of known batches. The prince plot (@) reports the association between the first ten principal components of the data and the
annotation variables, principal components are represented in columns, and the sample annotations are represented in rows. The association p-value is
represented in the cells by text labels, and background color in a chromatic scale. The row label underlined with solid blue line represents the variable of
interest. The row labels underlined with dotted purple line represent other sources of high variation. The confounding plot (b) reports the association
between all pairs of annotation variables; annotation variables are represented in both rows and columns. The cell text labels, cell background color, and
row label notation with solid blue underline are same as the prince plot (a). The row labels underlined with squiggly green line represent the variables
confounded with the variable of interest or other batch variables. The row labels circled by red outline are batch variables suitable for correction

be inferred from these plots that the final set of variables
for batch correction is ‘array, ‘dye’ (standard known batch),
and ‘n.mice’ (Fig. 4).

The effect of batch correction performed with eUTO-
PIA can be studied by comparing the variation informa-
tion before and after correction. The first three principal
components in the prince plot generated from data be-
fore batch correction (Fig. 5a) represent 28, 16, and 11%
variation in the data. The variable of interest ‘group’ was
significantly associated (p-value: 0.004) with only the
second principal component, while the identified batch
variable ‘array’ was significantly associated with all three
principal components (p-values: 3e-06, 0.02, and 0.06,
respectively) and ‘n.mice’ was significantly associated
with the first principal component (p-value: 0.03). In the
prince plot generated from the data after batch correc-
tion (Fig. 5b), the first three principal components repre-
sent 49, 23, and 11% variation in the data, which is a
significant shift. The variable of interest ‘group’ is now
observed to have a high association with all three princi-
pal components (p-values: le-13, 3e-14, and 7e-10, re-
spectively). The batch variable ‘array’ has a comparably
lesser significant association with the first principal com-
ponent (p-value: 0.06) and batch variable ‘n.mice’ also
has a comparably lesser association with the third

principal component (p-value: 0.06). While batch vari-
ables ‘slide; ‘area; ‘operator;, ‘date; and ‘dye’ are no longer
associated with principal components representing high
variation. Thus, allowing the user to check that the vari-
ation associated with the variable of interest is preserved
while the noise associated with the batch variables has
been corrected. The principal component analysis (PCA)
plot generated from the data before batch correction
(Fig. 5¢) displays samples scattered across the projected
components with no obvious grouping of samples by the
variable of interest. The PCA plot (Fig. 5d) after the
known batch correction displays a more discrete group-
ing of samples (smaller intragroup distances) and better
separation of groups (intergroup distances) in the
projected components.

The hidden sources of variation can be identified as
surrogate variables by using sva method. The attributes
of these surrogate variables must be inspected before
taking any decisive action. These sources of hidden
variation can represent technical batch information or
biological information such as sub-types. Thus, care
must be taken to choose the right candidate variables for
batch correction. The sva analysis resulted in three sur-
rogate variables that were significantly associated with
the first three principal components representing high
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Fig. 5 Known batch correction effect. Prince plots (a, b), and PCA (Principal Component Analysis) plots (C, D) before and after known batch
correction. The prince plots (a, b) report the association between the first ten principal components of the data and the annotation variables,
principal components are represented in columns, and the sample annotations are reported in rows. The cell text labels, cell background color,
and row label notations with solid blue underline and dotted purple underline are the same as Fig. 4a. PCA plots (¢, d) report the relationship
between the samples as a scatter plot. The circular outlines in the PCA plot after correction (d) are provided for better visibility of
sample grouping

variation as observed in the prince plot (Fig. 6a). These
identified surrogate variables show significant associ-
ation with known batch variables ‘slide; ‘area, ‘array,
‘n.mice; ‘operator, and ‘date’ (Fig. 6b). It is noticeable
that none of these surrogate variables have a significant
association with the ‘dye’ variable which can be ex-
plained by the fact that ‘dye’ variable is not associated
with any principal component representing high

variation in the prince plot generated from uncorrected
data (Fig. 6a).

The discretized surrogate variables were associated
with the first three principal components in the prince
plot generated from data before batch correction
(Fig. 7a). The variable of interest ‘group’ was significantly
associated (p-value: 0.004) with the second principal
component. While the surrogate variables ‘svaD.1’ was
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Fig. 6 Hidden batch attributes. The surrogate variables identified from sva (surrogate variable analysis) are represented in discretized and the
original continuous form. These variables are combined with the known variables to generate a prince plot (a) and confounding plot (b). The
prince plot (a) reports the association between the first ten principal components of the data and the annotation variables, principal components
are represented in the columns, and the sample annotations are represented in the rows. The cell text labels, cell background color, and row
label notations with solid blue underline and dotted purple underline are the same as Fig. 4a. The confounding plot (b) reports the association
between all pairs of annotation variables; annotation variables are represented in both rows and columns. The cell text labels, cell background
color, and row label notations with solid blue underline are the same as Fig. 4a. The row labels underlined with squiggly green line represent
known variables associated with surrogate variables. The row labels circled by dotted red outline in (a) and (b) represent the discretized surrogate
variables. The row labels circled by solid red outline in (a) and (b) represent the continuous surrogate variables

significantly associated with the first principal compo-
nent (p-value: 6e-04), ‘svaD.2” was significantly associated
with the second and third principal components
(p-value: 0.05, and 5e-05, respectively), and ‘svaD.3’ was
significantly associated with the third principal compo-
nent (p-value: 0.06). In the prince plot generated from
the data after batch correction (Fig. 7b), the variable of
interest ‘group’ is now observed to have a high associ-
ation with the first principal component (p-value: 3e-07).
The discretized surrogate variables ‘svaD.1; ‘svaD.2; and
‘svaD.3’ are no longer associated with the first three
principal components representing high variation. The
removal of hidden batch effects with surrogate variables
removes artefactual technical variation from the data,
thus revealing the true variation signal of the variable of
interest. The PCA plot generated from the data before
batch correction (Fig. 7c) displays samples scattered
across the projected components with no obvious
grouping of samples by the variable of interest ‘group’.
The grouping of samples in the PCA from the corrected
data (Fig. 7d) is more discrete than the uncorrected data,
but the separation between the groups (intergroup dis-
tances) is not very clear, only rCNT’ and ‘Ctrl’ show

visibly distinct separation (Fig. 7d), while the samples
from other groups are much closer. The tighter packed
grouping of samples can be observed by the circular
outlines drawn around the groups in Fig. 7d.

The differential expression analysis is performed by
specifying the limma linear model parameters in the
eUTOPIA interface. Here, the ‘group’ annotation variable
is specified as the ‘variable of interest’. The known batches
and the surrogate variables are instead specified as covari-
ates for the corrected data. The contrasts are defined to
compare each nanomaterial ‘Baytubes; ‘Fullerene;, ‘GNF’
(Graphite Nano Fibers), TCNT, ‘SES] and tCNT’ to the
control ‘Ctrl’ samples. The differential expression analysis
results are filtered by logFC cutoff threshold 1 and P.
Value cutoff threshold 0.05. Differential expression results
are explored by the medium of plots (Fig. 8) to classify
contrasts and conditions by expression patterns. The
intersection of differentially expressed gene sets repre-
sented as an UpSet plot (Fig. 8a) can be used to infer that
rCNT samples have overall larger variation contrast
against the control (Ctrl) samples, while the rest of the
nanomaterials have much smaller and comparable
variation contrasts. There is higher overlap between rCNT
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Fig. 7 Hidden batch removal effect. Prince plots (a, b), and PCA (principle component analysis) plots (C, D) before and after hidden batch
correction. The prince plots (a, b) report the association between the first ten principal components of the data and the annotation variables,
principal components are represented in columns, and the sample annotations are represented in rows. The cell text labels and background
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and tCNT sets with larger intersection sizes and multiple
intersections. Nanomaterial specific genes are substantial in
rCNT, GNE Baytubes, and tCNT while specific genes are
not reported for SES and Fullerene because of their smaller
values. The distribution of differential genes from each con-
trast is represented as a volcano plot (Fig. 8b) which can be
used to infer that the genes in this particular contrast/

comparison are more inclined towards overexpression with
higher significance values while the underexpressed genes
are fewer and have lower significance values. The expres-
sion pattern of top differentially expressed genes is repre-
sented as a Heatmap (Fig. 8c), which can be used to infer
that there are two major parent clusters of samples. The
first parent cluster contains a child cluster of Fullerene
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represents the intersection between the sets of differentially expressed genes from various comparisons/contrasts in the limma setup. The vertical
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(hollow carbon sphere) and GNF (long rigid carbon fiber),
which is further clustered with rCNT (long rigid
multi-walled CNT). The second parent cluster contains
two child clusters, control samples (Ctrl) cluster together
with Baytube (short tangled multi-walled CNT) to form the
first child cluster, SES (short rigid multi-walled CNT) and
tCNT (long tangled multi-walled CNT) cluster together to
form the second child cluster. The nanomaterials in the
first parent cluster have a larger diameter and smaller sur-
face area compared to the nanomaterials in the second par-
ent cluster. The expression pattern of the selected top
differentially expressed genes align very well with the

nanomaterial intrinsic properties. The intrinsic properties
of the nanomaterials are provided in Additional file 3.

Conclusion

eUTOPIA allows users to reliably process microarray data
and generate visual interpretations of the results seamlessly
via a simple yet intuitive interface. It is focused on the pre-
processing of microarray data, thus providing an agile and
robust alternative to more comprehensive tools. Both com-
mercially available and free software for microarray data
preprocessing either provide limited methodological op-
tions or force the user to design an appropriate pipeline
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from the tools provided. This can be a daunting task for
researchers with limited experience in omics data analysis.
eUTOPIA is designed to balance both reliability and
flexibility.

The case study showcases eUTOPIAs features that
enable the user to perform array data preprocessing and
analysis. eUTOPIAs guided workflow helps to easily
preprocess the data, identify sources of unwanted variation,
remove them and evaluate the sanity of corrected data. The
graphical user interface allowed the ease of defining a linear
model to test the data and the wide choice of provided
dynamic plots help to classify and characterize conditions
by sets of differential features and expression patterns.

We compared eUTOPIA against a set of microarray
analysis tools that are free for academic use and have a
graphical interface, namely AGA [16], shinyMethyl, MeV
[17], O-miner [18], Chipster [19], and Babelomics [20].
The comparison table (Additional file 4) evaluates the
tools over a list of implemented analytical steps and sup-
ported data platforms. One major feature that is not
supported by most of the compared tools is the batch
correction of known variables and more noticeably of
surrogate variables. eUTOPIA’s analysis workflow inte-
grates the visual representation of sample annotation
and principal components of variation to identify batch
variables, along with the ability to perform correction of
batch effects seamlessly. Furthermore, it is the only tool
that incorporates the surrogate variable (hidden batch)
identification, visualization, and correction. This process
of batch identification and correction is of extreme
importance for microarray analysis because it can help
to isolate technical noise from the biological signal. In
this comparison, Chipster has the most comprehensive
toolbox; it provides the most features that even extends
beyond microarray analysis. However, these features are
presented as separate tools with no specific workflows
and guidelines for choosing the most optimal set of
tools. This can pose a challenge to the users in need of
designing analysis workflows by combining these tools
appropriately. In contrast, eUTOPIA incorporates a spe-
cific set of tools in a streamlined workflow to ensure
intuitiveness and ease of use. eUTOPIA does not impose
on the user the technical challenges of workflow design
thus allowing to focus more on the biological aspects of
the data and results.

Availability and requirements
Project name: eUTOPIA
Project home page: https://github.com/Greco-Lab/
eUTOPIA
Operating system(s): Platform independent
Programming language: R Shiny
License: GNU GPL 3.
Any restrictions to use by non-academics: none
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Additional files

Additional file 1: eUTOPIA user manual with sample analysis.
(DOCX 15056 kb)

Additional file 2: Phenotype table. This phenotype table contains
information about the microarray (dye, slide, area, array, file), sample
identification and grouping (SamplelD, group), quality estimation of
extracted RNA (RIN, Qubit_conc, dye_conc, dye_activity), technical
information (n.mice), and information associated with microarray
experiments (operator, date). (XLSX 14 kb)

Additional file 3: Carbon nanomaterial intrinsic properties. This table
contains the description and intrinsic properties of the carbon
nanomaterials used in the case study. General description of the
nanomaterial and nanomaterial shape are provided along with the average
values of the intrinsic properties’ length, diameter, and surface area. Aspect
ratio is the average length divided by the average diameter. (XLSX 10 kb)

Additional file 4: Comparison table. Comparison between eUTOPIA and
other open source tools with the same scope. (XLSX 11 kb)
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