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Abstract

Background: The segment overlap score (SOV) has been used to evaluate the predicted protein secondary
structures, a sequence composed of helix (H), strand (E), and coil (C), by comparing it with the native or reference
secondary structures, another sequence of H, E, and C. SOV's advantage is that it can consider the size of
continuous overlapping segments and assign extra allowance to longer continuous overlapping segments instead
of only judging from the percentage of overlapping individual positions as Q3 score does. However, we have found
a drawback from its previous definition, that is, it cannot ensure increasing allowance assignment when more
residues in a segment are further predicted accurately.

Results: A new way of assigning allowance has been designed, which keeps all the advantages of the previous
SOV score definitions and ensures that the amount of allowance assigned is incremental when more elements in a
segment are predicted accurately. Furthermore, our improved SOV has achieved a higher correlation with the
quality of protein models measured by GDT-TS score and TM-score, indicating its better abilities to evaluate tertiary
structure quality at the secondary structure level. We analyzed the statistical significance of SOV scores and found
the threshold values for distinguishing two protein structures (SOV_refine > 0.19) and indicating whether two
proteins are under the same CATH fold (SOV_refine > 0.94 and > 0.90 for three- and eight-state secondary
structures respectively). We provided another two example applications, which are when used as a machine
learning feature for protein model quality assessment and comparing different definitions of topologically
associating domains. We proved that our newly defined SOV score resulted in better performance.

Conclusions: The SOV score can be widely used in bioinformatics research and other fields that need to compare
two sequences of letters in which continuous segments have important meanings. We also generalized the
previous SOV definitions so that it can work for sequences composed of more than three states (e.g,, it can work
for the eight-state definition of protein secondary structures). A standalone software package has been
implemented in Perl with source code released. The software can be downloaded from http://dna.cs.miami.edu/
SOV/.
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Background

Protein secondary structure (SS) in three (H for helix, E
for strand, and C for coil) or eight states as defined in
[1] is a typical example of segmented sequences in bio-
informatics. Besides protein secondary structure, new
bioinformatics problems arose recently that were also
dealing with segmented sequences. For example, topo-
logically associating domains (TADs) were recently iden-
tified as megabase-sized self-interaction regions in
mammalian genomes [2]. Given a genomic region con-
taining several TADs, we can label the bodies of TADs
as “D” and the boundary regions as “B”, resulting in a
segmented sequence in two states (i.e.,, D and B). These
cases about segmented sequences raise an issue about
how to benchmark the predicted sequence against the
reference one (e.g., the observed secondary structures),
because evaluation methods based on individual posi-
tions, such as the Q3 score (that is equal to the ratio be-
tween the count of identical positions and the length of
sequence), cannot take the length of continuous seg-
ments into consideration. Therefore, a measurement
that can address this issue is in demand.

Segment overlap measure (SOV) was originally defined
in [3] by Rost et al. to evaluate the quality of predicted
protein secondary structures on a segment base. It takes
several factors into consideration including the number of
segments in a secondary structure, the averaged segment
length, and the distribution of the length values. As a re-
sult, it allows some variations at the boundary regions of
the segments by assigning some allowance (bonus), and
can handle extreme cases (e.g., penalizing wrong predic-
tions) reasonably by providing a sliding scale of segment
overlap. However, that measure did not normalize the
SOV scores into a fixed range, which makes it difficult to
compare with other scores in percentage terms or in the
range of O to 1. This problem was addressed by Zemla et
al. in [4]. The modified definition of SOV (SOV’99) uses
the length of all segments in the reference sequence to
normalize the SOV scores for each state, which can make
the final SOV score in percentage scale. Both measures
define allowance (bonus) mechanisms for allowing some
variations at the boundaries of segments, which are very
important and can directly affect the scale of SOV scores
for each state. For both of these two SOV definitions, the
allowance assigned to each overlapping segment pair is
determined by several factors including segment length
and overlapping level and is an integer that cannot lead to
a more than perfect value of SOV score (i.e., larger or
equal to 1 for range 0—1). This 1999 version of SOV score
(SOV’99) has been widely used as a standard measure for
evaluating protein secondary structure predictions [5-14].
Currently, it also has been widely used in quality assess-
ment (QA) of protein models as a machine learning fea-
ture [15-17].
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However, our analysis will later show that the defin-
ition of allowance in SOV’99 has a significant drawback,
that is, it cannot ensure the allowance being incremental
when the prediction becomes better. For example, sup-
pose there have been five continuous overlapping
correctly-predicted positions (identical between pre-
dicted and reference sequence, for example, “HHHHH”),
if one more position is accurately predicted, i.e., making
it a six-element overlapping segment, more allowance
should be given than the previous five-position case.
The intuition is that accurately predicting one more pos-
ition on top of a five-element segment (e.g., from
“HHHHH” to “HHHHHH”) is more difficult and de-
serves more bonus points. However, the definition of
SOV’99 cannot ensure this intuition. In this research, we
further modified SOV’99 by designing a new definition
of allowance and named it SOV _refine.

Results

In this section, we first explain the advantage of SOV_
refine modified from the definition of SOV’99. Specific-
ally, we use an example to illustrate incremental allow-
ance when one more residue is predicted accurately
while keeping other advantages of SOV’99. After that,
we show that SOV _refine can better indicate the three-
dimensional quality of protein models at the secondary
structure level. We then provide in-depth analysis of
statistical significance of Q3 and SOV scores. Finally, we
demonstrate two application examples of SOV scores:
(1) SOV scores as machine learning features for develop-
ing quality assessment tools; (2) Evaluating the similarity
of the inferred locations of TADs in mammalian
genomes.

Incremental allowance for better predictions

In order to make a direct comparison with SOV’99, here
we use the same examples provided in the publication of
SOV’99 [4]. As shown in Table 1, “predicted 1” seems to
be a bad prediction because it does not have an H-state
segment with a length larger than two. Therefore, al-
though it has a relatively high Q3 value, the two SOV
scores (SOV’99 and our SOV _refine) are relatively small
(both punish this case to different degrees compared to
Q3 score). It can be found that the SOV_refine score is
slightly larger than the SOV’99 score in this case. This is
because the amount of allowance assigned by SOV’99 in
this case is zero [4], whereas our SOV _refine is designed
to assign a larger-than-zero allowance, in this case to the
H-state segment. Obviously, SOV’99 gives this case a lar-
ger punishment than our method SOV_refine (SOV'99
gives a zero allowance and a lower overall score than
SOV _refine does). However, it should be noticed that al-
though “predicted_1” is a bad prediction, it is not com-
pletely wrong because it does accurately predict some
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Table 1 Examples of assessment of secondary structure
predictions using Q3, SOV'99, and SOV_refine \=1)

Index Sequence Q3 SOV'99 SOV_refine
A=1)
Reference CHHHHHHHHHHC - - -
Predicted 1 CHCHCHCHCHCC 0.583 0.125 0.149
Predicted 2 CHHHCHHHCHHC 0.833 0406 0371
Predicted 3 CHHCCHHHHHCC 0.75 0523 0464
Predicted 4 CCCHHHHCCCCC 0.50 0.544 0459
Predicted 5 CCCHHHHHCCCC 0.583 0.632 0.567
Predicted 6 CCCHHHHHHCCC 0667 0.806 0678
Predicted 7 CCCHHHHHHHCC 0.75 0.903 0.797
Predicted 8 CCCHHHHHHHHC 0833 0.944 0937

Notice that predicted 3 and 4 indicate another different feature between
SOV'99 and SOV_refine. Predicted 3 correctly predicts seven helices (in two
segments) while Predicted 4 correctly predicts four helices (in one segment).
In this situation, SOV_refine assigns a higher score to predicted 3 as seven
correct helices are more consistent to the reference’s 10 helices compared to
predicted 4's four helices. However, SOV'99 in this case assigns a higher score
to predicted 4 showing it prefers one segment prediction even though the
number of accurately predicted residues is largely different

isolated states in a couple of positions (it’s just that the
accurately predicted positions are not adjacent to each
other). However, SOV’99 assigns a harsh punishment by
assigning allowance zero, but our SOV_refine still as-
signs a small allowance, small enough to show that it is
a bad prediction that deserves a SOV _refine score to be
much lower than Q3 score (i.e. some punishments com-
pared to Q3 score), but meanwhile not as low as a zero
allowance, to indicate “predicted 1” is not completely
wrong. This makes our SOV_refine more reasonable be-
cause it not only can punish bad predictions compared
to Q3 score (our SOV_refine gives a much lower score
than Q3 score for this example) but also does not give
an extremely low allowance (zero) for the bad predic-
tions such as “predicted 1” as it does accurately predict
some isolated states.

The next two predictions (i.e., “predicted 2” and “pre-
dicted 3”) have longer H-state segments, resulting in lar-
ger SOV scores. Predictions 4 through 8 are deliberately
selected to demonstrate the essential difference between
SOV’99 and our SOV _refine when one more element (i.
e, H-state residue in predicted assignments) is further
predicted accurately. As expected, the accuracy for Q3 is
increased by a fixed value of 0.083. For SOV’99, the
scores are irregularly increased by 0.008, 0.174, 0.097,
and 0.041, while the scores from SOV_refine are in-
creased by 0.108, 0.111, 0.119, and 0.14, which keep in-
creasing when the predictions are getting better.

The two different observations can be properly explained
from the distinct definitions of assigning allowance from
SOV’99 and SOV _refine. To be specific, SOV’99 cannot en-
sure the amount of allowance stably increased, whereas
SOV_refine is designed to be capable of handling this case.
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We provide another example with a reference
sequence composed of four states shown in Table 2 to
demonstrate that SOV _refine can assign distinguishable
scores by adjusting A parameter in the definition. There
are four predictions, which are getting better from pre-
dicted 1 up to predicted 4. SOV’99 and SOV_refine (A =
1) cannot distinguish which one is better between pre-
dicted 3 and predicted 4, whereas SOV_refine with \
equal to 0.5 or equal to 0.1 can conclude that predicted
4 is better than predicted 3. This example indicates that
the definition of SOV _refine is more flexible than that of
SOV’99. It can be found that a smaller A will make the
SOV _refine algorithm more stringent. Table 2 lists all
the SOV _refine scores with different A values, from
which users can pick up the appropriate A value based
on their stringency demands of their specific problems.
In our implementation, the default value of A is 1.

Evaluation of protein tertiary models at the secondary
structure level

We downloaded the protein native structures and pre-
dicted models of 33 Template-Based Modeling (TBM)
single-domain targets in the Critical Assessment of pro-
tein Structure Prediction 11 (CASP11) at http://www.
predictioncenter.org/caspll/. The native structures for
the 33 single-domain targets are available at CASP offi-
cial website. For each target, 20 protein models in stage
1 for quality assessment (QA) are chosen as the pre-
dicted structures [18], because these models cover the
whole range of model accuracy.

We then superimposed the 20 models of each target
with their native structure using three different protein
structure alignment tools: LGA [19], TM-align [20], and
DeepAlign [21], resulting in a set of scores (i.e., GDT-TS
from LGA, TM-score from TM-align, GDT-TS from
DeepAlign, and TM-score from DeepAlign) for measur-
ing the quality of predicted protein 3D models from
three-dimensional superimposing. After that, secondary
structures of 33 native structures and their correspond-
ing models were assigned by STRIDE [22] and DSSP [1]
in three states (i.e., H, E, and C), respectively. Overall,
we obtained four sets of 660 GDT-TS or TM-score and
660 pairs of observed and predicted secondary struc-
tures, for each pair of which we carried out the compari-
sons of secondary structures using three measures: Q3
score for three-state secondary structure, SOV’99, and
SOV _refine (X = 1), respectively.

We then explored whether our SOV_refine can better
indicate the three-dimensional quality of protein models
by comparisons at the secondary structure level. The
Pearson’s correlation coefficients were calculated be-
tween each of the four sets of the three-dimensional
superimposing scores (GDT-TS from LGA and DeepA-
lign, and TM-score from TM-align and DeepAlign) and
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Table 2 A reference sequence with four states (ie., A, B, C, and D) compared with four predicted sequences using Q4 (Accuracy),

SOV'99, and SOV_refine with different A values

Index Sequence Q4 SOV'99 SOV_refine

A=1 A=05 A=0.1
Reference AABBBBBBCCCCCCDD - - - - -
Predicted 1 AAAAABBBCCCDDDDD 0.625 0.65 0.807 0.641 0.508
Predicted 2 AAAABBBBCCCCDDDD 0.75 0.938 0.925 0.85 0.67
Predicted 3 AAABBBBBCCCCCDDD 0.875 1.0 1.0 0.961 0.851
Predicted 4 AABBBBBBCCCCCDDD 0.938 1.0 1.0 0.981 0.925

the scores of comparing secondary structures using Q3
score, SOV’99, and SOV _refine (see Fig. 1(a) for STRIDE
and 1(b) for DSSP): for using STRIDE, SOV_refine (A =
1) constantly achieves the best performance with r=0.
70, 0.71, 0.70, and 0.73 (p-value <10™°), followed by
SOV’99 (r=10.67, 0.70, 0.67, and 0.72), and Q3 (r=0.60,
0.68, 0.60, and 0.70); for using DSSP, we can draw the
same conclusion. Since the A parameter in the definition
of SOV_refine in Eq. 4 is adjustable, we have tried to
check whether different A values affect the Pearson’s
correlation performance. We have tested the \ values in
the range of [0.1, 2.4]. The results shown in Fig. 2
indicate that smaller \ values achieve larger Pearson’s
correlation coefficients.

Statistical significance of Q3 and SOV _refine scores
Here we aim to address two questions as described in
[23]: (1) What is the statistical significance of Q3,
SOV’99, and SOV _refine? (2) For a given score what is
the probability of two proteins having the same fold?

For the statistical significance of Q3, SOV’99, and
SOV _refine, we used Top8000 database [24] including
8000 high-resolution quality-filtered protein chains.

After filtering out chains with length larger than 200
or less than 80, we obtained 3420 protein chains,
resulting in 5,846,490 protein pairs. For each protein
pair, we calculated its Q3, SOV’99, and SOV_re-
fine scores. If two protein chains do not have the same
length, the scores were calculated between the smaller
chain and a sliding window with length equal to the
length of the smaller chain on the larger chain (20-
residue sliding interval). We finally obtained
14,252,776 scores for Q3, SOV’99, and SOV _refine;
and their distribution can be found in Fig. 3(a). The P-
values (i.e., the probability of having a Q3, SOV’99, or
SOV_refine score equal to or larger than a certain
value) for a given score were calculated by the same
way as in [23] and shown in Fig. 3(b). In general, when
Q3<0.26, SOV'99<0.24, and SOV_refine < 0.19, the
probability of finding these scores from our sample is
close to 1 (these values were found when the P-
values start to decrease from 0.95), and then the P-
values decrease rapidly when the scores are getting
larger than these thresholds. These findings mean that
in order for Q3, SOV’99, and SOV_refine to distin-
guish two structures from the secondary structure
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Fig. 1 Assessment of predicted protein tertiary structures at the secondary structure level. The Pearson’s correlation coefficients between 3D-
based scores (GDT-TS and TM-score) for measuring the quality of predicted tertiary structures and 2D-based scores (Q3, SOV'99, and SOV_refine)
for assessing the quality of predicted secondary structures: a using STRIDE to assign secondary structures; b using DSSP to assign

secondary structures
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Fig. 2 The Pearson'’s correlation coefficients between GDT_TS (a 3D-based score) and SOV_refine (a 2D-based score), and between TM-score (a 3D-
based score) and SOV_refine with different A values for measuring the quality of predicted tertiary structures: a using STRIDE to assign secondary
structures; b using DSSP to assign secondary structures

level, their scores need to be higher than these
thresholds.

For the probability of protein pairs having the same
fold for a given score, we downloaded the latest CATH
database (v4.2) [25]. After filtering out the proteins with
length less than 80 or larger than 200, we obtained
18,653 proteins, which were classified into 343 folds. For
folds with size larger than 100 we only kept the first 100
proteins. We then used DSSP [1] to assign secondary
structures for each protein in three and eight states.
For protein pairs with different lengths, we calculated
their Q3, SOV’99, and SOV_refine scores as follows:
(1) The secondary structure sequence in three and
eight states of the smaller protein slides gaplessly (i.e.,
one-residue sliding interval) along the bigger protein;

(2) The final Q3 and SOV scores of the protein pair
are the corresponding maximum values on all the
possible sliding positions generated from the first
step. For three and eight states, we generated two
samples individually (two samples for three states and
two samples for eight states), one including scores
from the protein pairs in the same folds, and the
other including scores from the protein pairs in dif-
ferent folds. The distributions of these scores in three
and eight states are shown in Figs. 4 and 5, respectively.
The top three plots in both Figs. 4 and 5 indicate
the conditional probability, for example, the red lines
indicate P(SOV_refine| F), which is the conditional
probability of SOV_refine score when the two pro-
teins are in different CATH fold families whereas the
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Fig. 3 a The distributions of Q3, SOV'99, and SOV_refine from a sample of 14,252,776 scores calculated from Top8000 database. b The
probabilities (P-values) of having a given score of Q3, SOV'99, and SOV_refine greater than or equal to a certain value. We can find that

score values

the probabilities of finding Q3 < 0.26, SOV'99 < 0.24, and SOV_refine < 0.19 for two random proteins are close to 1. These findings indicate that
we can distinguish two protein structures or models at the secondary structure level if their Q3 or SOV scores are greater than or equal to these
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Fig. 4 Top three plots: the relative frequency (i.e, conditional probabilities) of Q3, SOV'99, and SOV_refine for three-state secondary structure for
protein pairs from Top8000 having the same and different CATH folds. For example, red lines indicate conditional probability P(SOV _refine| F) of
SOV_refine score when the two proteins are in different CATH fold families whereas the blue lines indicate P(SOV_refineF), which is the conditional
probability of SOV_refine when the two proteins are in the same CATH fold family. Bottom three plots: posterior probability of proteins with a given
score of Q3, SOV'99, and SOV_refine for three-state secondary structure when two proteins are in the same and different CATH folds. For example, the
posterior probability of two proteins to have the same fold given a specific SOV_refine score is represented by P(F|SOV_refine), whereas P(F|SOV _refine
) for not having the same fold. Red lines indicate not having the same fold; and blue lines indicate having the same fold. The point when the two
lines with different colors intersect is the score threshold, above which we think two proteins are having the same fold
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Fig. 5 Top three plots: the relative frequency (i.e, conditional probabilities) of Q8, SOV'99, and SOV_refine for eight-state secondary structure for
protein pairs from Top8000 having the same and different folds as defined by CATH. Bottom three plots: posterior probability for a given score of
Q8, SOV'99, and SOV_refine for eight-state secondary structure when two proteins are in the same and different folds as defined by CATH. More
explanations about the meaning of the plots can be found in the caption of Fig. 4
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blue lines indicate P(SOV _refine|F), which is the con-
ditional probability of SOV_refine when the two pro-
teins are in the same CATH fold family.

For a given score of Q3, SOV’99, and SOV _refine,
we also calculated its posterior probabilities (bottom
three plots in Figs. 4 and 5) that the two proteins
have the same or different fold as the way described
in [23]. For example, the posterior probability of two
proteins to have the same fold given a specific SOV_
refine score is represented by P(F|SOV._refine),
whereas P(F|SOV _refine) for not having the same
fold. The results are shown in Fig. 4 for three-state
and Fig. 5 for eight-state secondary structures with
red lines indicating not having the same fold and blue
lines indicating having the same fold. The point when
the two lines with different colors intersect is the
score threshold, above which we think two proteins
are having the same fold.

From Figs. 4 and 5, we can observe that scores in the
same folds are slightly larger than those in different
folds, but not as noticeable as the observation obtained
by using TM-score as in [23]. We can also conclude that
for three states when a given score from two random
proteins meets Q3 <0.97 and SOV_refine < 0.94, the
two proteins have high probability sharing different
folds; for eight states when a given score from two ran-
dom proteins meets Q8 <0.95 and SOV_refine < 0.90,
the two proteins have high probability sharing different
folds. This type of conclusion cannot be drawn for
SOV’99 based on the data indicating another advantage
of our SOV _refine compared to SOV’99.

Application of SOV_refine for protein quality assessment
We proved that SOV scores, especially SOV_refine,
are effective machine learning features for protein quality
assessment. We used 85 targets from CASP9 and 67 tar-
gets from CASP10 as training data and their real GDT_
TS scores as objective values. For each target, we ran-
domly selected 150 protein models. For each model, we
extracted 32 features, mostly from [17], as the basic fea-
ture set and generated three more feature sets: (1) Basic
set plus SOV’99 for predicted and assigned secondary
structures; (2) Basic set plus SOV_refine (A\=0.1) for
predicted and assigned secondary structures; (3) Basic
set plus SOV_refine (A =1) for predicted and assigned
secondary structures. We used SCRATCH [26] to obtain
the predicted secondary structures. We used Random
Forest [27] to train the prediction models.

We blindly tested the performance of the QA models
trained from the four feature sets on 75 targets in
CASP11 in two stages [18]. The evaluation measures are
the same as those in official CASP evaluations [18] in-
cluding (1) the weighted mean of Pearson’s product
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moment correlation coefficient (wmPMCC), (2) the
average loss (Ave loss), (3) the average GDT_TS devia-
tions (Ave AGDT), and (4) the Matthews correlation co-
efficient (MCC). The blind test results are shown in
Table 3. All of the three SOV scores play a positive role
in improving the performance; and SOV _refine (A =1)
performs better than SOV _refine (A =0.1) and SOV’99
in terms of most of the evaluation criteria.

SOV_refine scores for measuring similarity of

different definitions of topologically associating domains
(TADs)

The SOV scores have other important applications in
comparing segmented sequences besides protein second-
ary structure sequences. Here we demonstrate an ex-
ample of using SOV score to measure the similarity of
different definitions (in terms of genomic locations)
of topologically associating domains (TADs) in mamma-
lian genomes. For the same genomic region, different
TAD-detection algorithms may infer different TAD loca-
tions [28]. Therefore, SOV score can be used here to
measure the similarity of different TAD definitions (i.e.,
the similarity about which part of the genomic region is
within a TAD body and which part is within the
boundary).

The normalized Hi-C data for male mouse embryonic
stem cells (mESC) was downloaded from Ren Lab's web-
site at http://chromosome.sdsc.edu/mouse/hi-c/down-
load.html. As shown in Fig. 6, we selected a genomic
region (137.8 Mb — 140.28 Mb) on chromosome 2.
There are two TADs in this region based on the defin-
ition from Ren Lab http://chromosome.sdsc.edu/mouse/
hi-c/download.html. However, the boundary regions be-
tween the two TADs are vague as the Hi-C signals are
not sharply distinguishable. Therefore, different TAD-
detection algorithms may give different definitions about
the locations of the two TADs (or the boundary regions).
To illustrate this, we artificially made up the reference
definition (based on Ren Lab’s definition) and two other
definitions as inference definitions. We labeled “D” for
the positions within a TAD body and “B” for positions
within a boundary region. In this way, we have three se-
quences (i.e., one reference and two inferences), each
containing two states. The SOV’99 and SOV _refine (A =
1) between reference and inference 1 (we use “predicted
1” in the figure to match previous examples) are 0.99
and 0.91 respectively. The SOV’99 and SOV_refine (A =
1) between reference and predicted 2 are 1.0 and 0.89
respectively. It can be found that SOV’99 scores indicate
that the two predictions are almost the same as the ref-
erence, which is actually not. However, SOV_refine
scores can quantitatively detect the differences by giving
a lower score, demonstrating another advantage of
SOV_refine compared to SOV’99.


http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
http://chromosome.sdsc.edu/mouse/hi-c/download.html
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Table 3 The evaluation results of quality assessment of protein models using different SOV scores as machine learning features

Stage 1 Stage 2 MCC
wmPMCC Ave loss Ave AGDT wmPMCC Ave loss Ave AGDT
Basic 0.70 0.102 0.00381 0.39 0.068 0.00083 0.736
Basic + SOV'99 071 0.093 0.00368 042 0.074 0.00083 0.733
Basic + SOV_refine \=0.1) 071 0.096 0.00368 041 0.073 0.00083 0.740
Basic + SOV_refine A =1) 071 0.084 0.00361 040 0.066 0.00084 0.750

Discussion

One may argue that the SOV score which was originally
introduced in 1990s and protein secondary structure
prediction have already been an old topic and achieved
stable performance. Therefore, SOV score may not be
needed. However, we found that the SOV score was still
being used as a machine learning feature, for example,
for protein model quality assessment. Moreover, we
tested SOV’99, our SOV _refine, and Q3 on 660 TBM
single-domain protein models and found that SOV _re-
fine can indicate the three-dimensional quality (indicated
by GDT-TS and TM-score) of protein models by com-
parisons at the secondary structure level. Furthermore,
we demonstrated SOV score’s usefulness in a newly-
emerged bioinformatics problem of inferring TAD loca-
tions in mammalian genomes, showing SOV score still
could be widely used in bioinformatics research.

Conclusions

In this article, we presented a further modified definition
of segment overlap measures (SOV_refine) based on the
definition released in 1999 (SOV’99). Specifically, we
redefined the assignment of allowance for the overlap-
ping segment pairs. The original definition of allowance
has obvious drawbacks and is only based on the overlap
level and length of segments. Here we provided a new

definition according to the prediction difficulty of refer-
ence sequence and the local performance of predicted
segments. It can ensure that the amount of allowance is
increased when more elements in the segment of a pre-
dicted sequence are further predicted accurately.

We performed analysis on the statistical significance of
Q3, SOV’99, and SOV _refine and concluded that the
probability of finding Q3<0.26, SOV'99<0.24, and
SOV_refine < 0.19 for two random proteins was close to
1. These findings indicate that we can distinguish two
protein structures or models at the secondary structure
level if their Q3 or SOV scores are greater than or equal
to these corresponding thresholds. We can also conclude
that for three-state secondary structure when a given
score from two random proteins meets Q3 <0.97 and
SOV _refine < 0.94, the two proteins have high probabil-
ity sharing different CATH folds; for eight-state second-
ary structure when a given score from two random
proteins meets Q8 <0.95 and SOV_refine < 0.90, the
two proteins have high probability sharing different
CATH folds. These results also indicate that compared
to TM_score we need to get a higher Q3 or SOV_refine
scores of any two protein structures or models to deter-
mine whether they share the same fold. Meanwhile, we
also observed that the two-dimensional alignment scores
(i.e., Q3, SOV’99, and SOV _refine) are not as effective as

R 3 R 4 N ® B4
s MG ee s B0 se Pase W besdp  Pre : 23

Reference ppppbbbbbbDDDDDDDDDDDDDDDDDDDDBBBBBBBBBBDDDDDDDDDDDDDDDDDDDDDD
Predicted 1 bDDDDDDDDDDDDDDDDDDDDDDDDDDBBBBBBBBBBBBBBBBDDDDDDDDDDDDDDDDDDD

Predicted 2 bpbbpbbbbDDDDDDDDDDDDDDDDDDDDDBBBBBBBBBBBBBBBDDDDDDDDDDDDDDDDD

Fig. 6 The two-dimensional heat map of normalized Hi-C interaction counts in a genomic region (Chr. 2: 137.8 Mb - 140.28 Mb) with the
reference TAD definition followed by two different inferred TAD definitions (i.e.,, predicted 1 and predicted 2)
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the three-dimensional alignment scores (i.e., TM-score)
when they are used to determine whether two random
proteins have the same fold.

We provided another two applications to demonstrate
the advantages of SOV_refine compared to SOV’99. One
of them is to use SOV scores as features in machine-
learning tools for quality assessment of protein models.
Our evaluation results show that adding SOV _refine into
the basic machine learning feature set results in a larger
improvement on performance compared to adding
SOV’99. The other application is to use SOV scores as
similarity measure for different TAD definitions. The re-
sults show that SOV_refine can better distinguish the
obvious difference in TAD definitions, whereas SOV’99
often assigns false perfect scores.

We implemented SOV_refine and re-implemented
SOV’99 as a standalone computer program. Technically,
it can handle unlimited number of states in a reference
sequence. However, we highly recommend not to use
them when the number of states is quite large (e.g., > 10
states) because more states will reduce the usefulness
and significance of SOV scores, in which case the accur-
acy on a per-element base (e.g., Q3) would be more
suitable.

Methods

In this section, we describe the definition of SOV _refine
in detail. For the purpose of consistency, we use the
same denotations as used in [4]. Here, the reference s,
and predicted s, sequences are respectively the native
and predicted assignments of protein secondary struc-
tures in three states (i.e., H, E, and C); however, our pro-
gram can handle unlimited number of states and
optional labels for states, even though it may not make
much sense if the number of states is too large.

The SOV score for each state i, SOV(i), is calculated
individually, and then the global SOV score is a weighted
combination of individual state scores. Let s; be a seg-
ment in state i in s, and s, in state i in s,. A pair of over-
lapping segments is denoted as (s;, s»); and the set of
these pairs for state i is S(i) ={(s;, $2)|s1ns2=@}. If
given s;, there are no overlapping segments s,, then we
define another set S'(i)={(s;, Vs)|sins,=@}. The
SOV(i) is defined as follows:

. 1 minov(sy,sy) + d(s1, $2
sov (i) = NG " %{ "n(lmvzshsz() ) len(s)| (1)

where len(s;) is the number of elements in segment s;;
minov(sy, s») is the number of identical (actually overlap-
ping in i-state) elements in both s; and s,, while max-
ov(s;, S») is the total number of elements for which
either of the two segments is assigned state i; 8(sy, sp) is
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the amount of allowance assigned to the pair. N(i) is the
normalization value defined as:

N(i) = len(sy) + Y len(s;) (2)
(i) S'(i)

The new definition of allowance is:

len(s;)  minov(sy,s;)

len(s,)

8(s1,52) = 8(all) x (3)

maxov(sy, s3)
where len(s,) is the number of elements in s,; and 8(all)
is the total allowance assigned to the whole reference se-
quence: it can be a fixed value for all reference se-
quences or depends on each individual sequence. For
example, if d(all) =1, then all allowance values for seg-
ment pairs should be less than or equal to one. Consid-
ering that it is difficult to determine a proper fixed value
of &(all), we further define it using the number of states
Nc and the length of all segments in s,:

N¢
2
N len(s;
Z/’:Sl <len((s:))>

where N is the number of segments in s,; s; is the j-th
segment; A is an adjustable scale parameter and used to
limit the range of (all). In the test example for assessing
the quality of predicted protein secondary structures, A
equaling to 1 is acceptable. Eq. 4 is designed based on
two intuitive facts: (1) More allowance should be
assigned when the number of states in s, is larger be-
cause it makes the prediction difficult; (2) More allow-
ance should be assigned when the weighted average
length (the denominator part in Eq. 4) of all segments in
s, is smaller because a small average length results in
more boundary regions, which increases the difficulty of
predictions. In order to avoid more than perfect for
SOV(i), when the amount of allowance calculated in Eq.
3 is larger than (maxov(s;,s,)-minov(s;s,)) the allowance
is set to (maxov(s;,82)-minov(s;ss)).

Suppose that the number of states in s, is N¢, then the
final SOV score, SOV_refine, can be defined as:

S(all) = 1 x (4)

SRS (SOV (i) x N(i))
S NAN (i)

The new definition of SOV _refine remedies three defi-
ciencies found in SOV’99. First, the amount of allowance
does not have to be an integer. Instead, the amount of
allowance defined in Eq. 3 is based on the local perform-
ance of s, and a fractional part of §(all). Second, SOV’99
cannot ensure that the amount of allowance keeps in-
creasing when more residues in a segment in s, are fur-
ther predicted accurately, whereas SOV_refine can.
Third, we take the allowance for the whole reference

SOV _refine =

(5)
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sequence s, into consideration, because sometimes it
may be much easier to predict (e.g., when s, only has
one state), while for other cases it may be very difficult
(e.g., if s, has eight states and multiple segments with
different lengths). In our design, the value of §(all) de-
pends on s, that is, reference sequences with different
lengths and prediction difficulty have different d(all).
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