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Abstract

to visualize and modify networks.

microscopy images of Drosophila tracheoles.

Background: The analysis of complex networks both in general and in particular as pertaining to real biological
systems has been the focus of intense scientific attention in the past and present. In this paper we introduce two tools
that provide fast and efficient means for the processing and quantification of biological networks like Drosophila
tracheoles or leaf venation patterns: the Network Extraction Tool (NET) to extract data and the Graph-edit-GUI (GeGUI)

Results: NET is especially designed for high-throughput semi-automated analysis of biological datasets containing
digital images of networks. The framework starts with the segmentation of the image and then proceeds to
vectorization using methodologies from optical character recognition. After a series of steps to clean and improve the
quality of the extracted data the framework produces a graph in which the network is represented only by its nodes
and neighborhood-relations. The final output contains information about the adjacency matrix of the graph, the
width of the edges and the positions of the nodes in space. NET also provides tools for statistical analysis of the
network properties, such as the number of nodes or total network length. Other, more complex metrics can be
calculated by importing the vectorized network to specialized network analysis packages.

GeGUI is designed to facilitate manual correction of non-planar networks as these may contain artifacts or spurious
junctions due to branches crossing each other. It is tailored for but not limited to the processing of networks from

Conclusion: The networks extracted by NET closely approximate the network depicted in the original image. NET is
fast, yields reproducible results and is able to capture the full geometry of the network, including curved branches.
Additionally GeGUI allows easy handling and visualization of the networks.

Keywords: Network extraction, Data acquisition, Software, Leaf venation, Drosophila

Background

The analysis of complex networks both in general and
in particular as pertaining to real biological systems has
been the focus of intense scientific attention in the past
and present [1-3]. However, before a network can be
analyzed it has to be imaged and its structure has to be dis-
tilled in such a way that it is readable by a computer. This
is especially important in times were datasets get increas-
ingly large and manual processing and measurement of
quantities like network length or number of branches it
not feasible anymore. In the past, several protocols were
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published which include software and instructions for the
segmentation of images and extraction of network data,
with special focus on physarum [1, 4], leaves [2, 5] or the
animal vasculature [6, 7]. Some of these approaches have
been criticized for methodological errors [5, 8] or work
as toolboxes of proprietary software [7], therefore limiting
their applicability. NET and GeGUI provide an alterna-
tive software solution with an approach that focuses on
speed, open access, degree of automation and versatility.
One tool that warrants special mentioning is NEFI - Net-
work Extraction From Images [9]. It has been developed
recently and has strong similarities to NET with regards
to its open source character and focus on high through-
put. The main difference of the two is NEFI’s inability to
capture the detailed geometry of the network: edges with
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curves or kinks will be contracted to straight lines. More-
over NEFI depends on thinning for its network extraction
whereas NET follows a vectorization approach which, in
our opinion, increases stability and reduces occurrence of
artifacts. On the other hand NEFI offers strong and versa-
tile tools for image preprocessing and segmentation which
are definitely worth considering when extracting networks
from noisy images. Like NEFI, NET is freely available
from GitHub [10] and we encourage the reader to down-
load the software and follow the examples shown in this
publication.

In general, the problem of extracting a network from an
image can be divided into two non-trivial steps:

1) Segmentation into foreground and background.
2) Vectorization and extraction of network data.

The output of the protocol to generate a well-segmented
binary image is highly dependent on the quality and
characteristics of the original raw image. Therefore we
will only briefly touch upon this subject here and only
explain the technique we used to segment the images
used in this publication to demonstrate the functionality
of NET. We have to emphasize that NET’s main purpose
and also its main strengths lie after the image segmenta-
tion. The script for performing the segmentation in the
repository involves standard image processing methods
like adaptive thresholding and is not very sophisticated
nor does it fit every dataset. For datasets with heavy
noise, intensity gradients or incomplete networks, this
script is going to fail. If the images cannot successfully
be processed with the script we provide, we recommend
looking into more sophisticated tools like ilastik [11] or
fiji [12] or implement and tweak one of the more recent
image segmentation methods like the GrabCut [13] or
CoopCut [14].

The extraction of network data involves the creation
of a skeleton of the shapes present in the binary image
and extraction of a graph from the skeleton. This step
can easily be generalized as the starting point - the
binary images - all have the same basic characteristics.
Previous approaches predominately used a pixel based
technique called thinning [15, 16] to create a skeleton.
In this work we choose a different path and create the
skeleton following a vectorization approach. The method-
ology NET implements is very stable to noisy features,
fast, completely automated and open source and creates
graphs that can be easily handled and analyzed. It has
already been used for the extraction of network data from
Drosophila tracheoles as shown in Fig. 1a, b [17, 18], leaf
venation patterns as shown in Fig. 1c, d [19]. It can be
used to track droplets in microfluidics experiments, like
in Fig. 1le and to identify and quantify crack patterns
Fig. 1f [20].
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As we want to present a method potentially valuable
for other research, the main part of this publication is a
description of the computational framework. We describe
the workflow enriched with usage examples and give
some technical details where they are important for the
output of the software. The overview over the frame-
work is followed by a validation of the results generated
by NET.

Implementation

The following provides an overview of the functionality
of NET and GeGUI demonstrated on the examples of a
Drosophila tracheole, a cracked clay surface and a cleared
leaf, shown in Fig. 2a to c. A more thorough description of
the technical details is given in the Additional file 1.

The processing steps are carried out by four specialized
scripts written in python. Both the scripts and the images
used in this publication can be found in the Git repos-
itory [10]. We strongly encourage the reader to browse
NET’s online repository as it is meant to be an integral
part of this publication. The publication is written in a way
that all results are reproducible by the reader and we give
usage examples for every processing step. Before running
NET, the user will have to install python 2.7 as well as a
number of third party libraries on their system. Compat-
ibility with previous versions of python, such as 2.5 and
2.6 is likely but not guaranteed. Some of the code needs
to be compiled for the specific platform. NET has been
designed to work for Linux, Windows and Mac operating
systems. Detailed instructions on how to set up the frame-
work on each platform can be found in the readme-file of
the repository.

The workflow can be broken down into four main parts:

(1) Creating a binary image using either the
segmentation script
binarize adaptive.py ora custom tool or
method.

(2) Extracting the graph from the network using
net.py.

(3) Optional: manipulating and manually correcting the
graph using gegui . py.

(4) Extracting network statistics from the graph using
analyze.py.

All scripts are run via the command line. The user needs
to provide the path to the file to be processed as required
argument. Parameters to modify the script’s behavior are
optional:

python scriptName.py
/dir/subdir/image.png -optionl valuel
-option2...
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Fig. 1 Unprocessed images and vectorized network. The figure names used here refer to the file names of the images in the online repository. a and
b Networks extracted from images tracheole3 and tracheole4. Unprocessed images courtesy of Sara Sigurbjérnsdottir, Leptin Lab, EMBL Heidelberg.
cand d Leaf venation patterns extracted from image leaf2 and leaf3. Unprocessed image courtesy of Douglas Daly, New York Botanical Garden

e Droplets on a fiber extracted from image bubbles]. Unprocessed image courtesy of Marcin Makowski, MPIDS, Gottingen. f Crack pattern in clay
extracted from image cracks2. Unprocessed image courtesy of Pawan Nandakishore, MPIDS, Géttingen. For leaf3 only a detail is shown because the
leaf as a whole is too large for plotting. The images show how NET is able to extract the network’'s geometry including vertex coordinates and edge
trajectories in great detail. Vertices and endpoints of the networks, as indicated by yellow dots, as well as edge radii are extracted by the tool

The repository is organized into one folder for each pro-
cessing step, containing the necessary scripts. Addition-
ally there is a folder called data/originals containing
all the example images used in this publication. All pro-
cessing steps described in the following paragraphs can
be easily reproduced by applying the aforementioned
scripts to the images uploaded in the repository at the
data/originals folder of [10].

Step 1: image segmentation

In this step we create a binary representation from the
original digital grayscale or color image that contains
the network to be analyzed. The goal is to be left with

the network as the largest connected structure in the
image. Artifacts, stains or noise do not matter as long
as they are not connected to the network. How to pro-
cess the image before a suitable binary image can be
created is largely dependent on the characteristics (con-
trast, definition, resolution) of the image. For some high
quality images it might be sufficient to just use thresh-
olding [21] with a constant threshold to separate the
network from the background. For most images though
it is necessary to employ more sophisticated image pro-
cessing methods before the thresholding can yield accept-
able results. We will not cover these methods here as
they are described in depth elsewhere [22]. We provide
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Fig. 2 Raw images of natural networks. The corresponding files can be found in the data/originals folder of the repository [10]. a Grayscale
microscopy image of the branching structure a Drosophila Tracheole. Image courtesy of Sara Sigurbjornsdottir. b Digital photograph of cracks in
dried clay. Image courtesy of Pawan Nandakishore. € High resolution scan (6400 dpi) and zoomed in detail of the vascular network of a Protium

the basic script we used to create binary images of the
examples shown in this publication. These examples all
originate in datasets that have been used in real-world
scientific projects, the results of which are published
for example at [19] and [20]. The script used to seg-
ment the images is the same for all the images - only
the parameters have been tweaked. The only exception
to this is the bubbles-image as it involves edge detec-
tion rather than segmentation which is not shown here.
The parameters to create each binary image can be
found in a text file at the location of the segmentation
script. A detailed description of the processing param-
eters and their impact on the outcome of the binariza-
tion process can be found in the Additional file 1. For
example to binarize the images of the leaves the user
can run:

python binarize adaptive.py
../data/originals/leafl.png -t 201 -g 5
-s 2 -m 50000 -c 30 -1

The resulting binary images are shown in Fig. 3a to c.
For our example images some manual removal of artifacts
or cropping needed to be done: In the binary of the tra-
cheole we cropped away the small part of another cell not

belonging to the focal tracheole visible in the left of the
image. For the leaf we filled in small holes in the main
vein. The binary of the crack pattern was not altered.
If manual processing steps are involved, the dataset is
not suited for automated high throughput processing.
Nevertheless if the number of artifacts is negligible, the
manual processing steps are not necessary to get suffi-
ciently accurate networks.

Within our segmentation script we provide basic image
processing methods to improve the quality of the segmen-
tation. Concerning images that are known to contain long
and thin shapes like networks, methods exist to artificially
fill in gaps in the network [6, 7]. NET does not imple-
ment these methods because they might create spurious
links and the fidelity of the vectorized network might be
hard to validate after application of such a method. This is
because a heuristic method such as gap-filling might yield
drastically different results on different types of networks
or even in different parts of the same network. Such gap-
filling algorithms can be incorporated in future versions
of NET.

Step 2: extracting the network
In this step we extract the network information from
a binary image containing the network structure and
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Fig. 3 Segmented images of natural networks. Figure names refer to file names in the repository. a Binary version of the tracheole image. The left
subtree has been digitally cropped. b Binary version of the cracks! image. No manual editing has been performed. ¢ Binary version of the leaf
vascular network from image leaf1. Small spurious holes in the main vein have been filled

distill this information into a weighted planar graph. For
this purpose we use the main engine of NET, a fast
vectorization-based script which creates a very accurate
and easy to handle representation of the network. The
resulting graph contains information about the spatial
position of the nodes and the length and radius of the
edges.

NET provides a set of options to modify its behavior
depending on the type of graph the user is processing.
Most of the times images from the same dataset do not
require individual tuning of the script’s options. After the
options have been modified to fit one image of the dataset,
the script is able to process all the other images with
the same options. The most basic use-case of the script
requires only the path to the binary image as input. The
most important options will be described in this para-
graph while a complete list of options is given in the
Additional file 1. Figure 4a to ¢ show the graphs extracted
from the binary images in Fig. 3.

To process for example the leaf vascular network leafI
from image to graph, the user can run:

python net.py
../data/binaries/leafl binary.png -p 5
-r 1 -plt -fformat png

For the tracheole network and the crack network we
used the parameters p=5, r=1, plt=True and p=5, r=1,
plt=True, fformat=png, dpi=2000 respectively. In the
following we will describe the most important parame-
ters to modify the behavior of the script and illustrate the
impact of these options on the resulting graph.

Pruning -p Even with a relatively smooth binary image
small kinks in the contour might lead to the emergence
of surplus branches in the extracted network. These sur-
plus branches tend to be very short and therefore can
be dealt with by pruning away branches shorter than
a certain length. Enabling the pruning option removes
dangling branches that are shorter than the pruning
threshold p. Here p is not a fixed length in pixels
but rather the number of triangles in the triangula-
tion representing the shape. Therefore branches that are
shorter than p triangles will be removed whereas all
other branches remain untouched. Thinning-based algo-
rithms either also prune away smaller branches [23]
or use feature characteristics to detect and remove
them [24].

The pruning option has to be handled with great
care. Depending on the type of network, small branches
could be a major source of information or they could
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Fig. 4 Graphs extracted by NET from segmented images of natural networks. The original datasets and resulting graphs are not only different with
respect to their geometric layout but also have vastly different sizes. The yellow points indicate nodes of the graph whereas gray lines represent
edges. a Graph of the tracheole network. b Graph of the crack pattern. € Graph of the leaf vascular network
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be completely irrelevant. We advise to only prune away
branches that are significantly shorter than the average
branch length, thus ensuring that most of the removed
branches are artifacts and not genuine features of the net-
work. Figure 5b to d show the effect of no pruning, too
much pruning and correct choice of p (in this case p = 3)
on the network extracted from the original image (detail
of tracheole2) shown in Fig. 5a.

Redundancy -r Setting the redundancy parameter r €
{0,1,2} does not change the behavior of the network
extraction mechanism but influences in how much detail
the final extracted network is saved to the hard drive. Ini-
tially, the extracted network contains many points that
only support the geometry of the network and have no
significance for the topology. These points do not repre-
sent any junctions or endpoints and we therefore call them
redundant points.

r =0 Removes all redundant points in the final
network representation. This reduces the size
and complexity of the resulting data structure
significantly and is handy if the geometry of the
network is not important or the network is very
large.

r =1 Removes half of the redundant points and
therefore is a good way to reduce the size of the
data structure but still have an acceptable
approximation of the network’s geometry.

All redundant points will be saved. This is the
best option if parameters like the angle at
junctions or curvature of edges need to be
measured as accurate as possible.

Keeping more redundant points is always a tradeoff
between size and speed on one hand and an accurate
description of the network’s geometry on the other hand.
Figure 5e to g show the final network with no, half and
all redundant points respectively. By default redundancy
is set to zero and only a graph with no redundant nodes
is saved.

Step 3: network manipulation
So far NET only works for two-dimensional images.
In theory our approach is not constrained to two
dimensions. However, segmentation of three-dimensional
images poses several challenges which we were not able to
overcome so far.

NET was designed for planar networks - graphs that
can be drawn without any edges crossing. The examples
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nodes are preserved - good approximation of the geometry (r = 2)

Fig. 5 Effects of the pruning and redundancy parameters on the vectorized graph. The colors yellow, red and purple indicate junction, tip and
redundant nodes respectively. In the plots, edge widths have been downscaled by a factor of 0.5 to improve plot clarity. a Detail of the image
tracheole2 from which the networks were extracted. b No pruning (p = 0), surplus branches are visible. € Too much pruning (p = 50), information is
lost. d Adequate choice of p = 3, surplus branches are gone, genuine information is preserved. e Only junctions and tips are preserved - poor
approximation of the geometry (r = 0). f Half of the redundant nodes are preserved: fair approximation of the geometry (r = 1). g All redundant

used in this publication include projections of Drosophila
tracheoles on a plane where in reality these structures
grow in three dimensions. However the tracheoles fol-
low internal surfaces of the insect [25, 26], therefore the
two-dimensional projection is very close to the struc-
ture itself and the extracted graph can be assumed to
be a faithful representation of the depicted network.
Nevertheless, projection introduces systematic error such
as a distortion of edge lengths as well as potential
edge crossings, which will result in spurious nodes. In
order to remove the spurious nodes, we have to give
up full automation of the process, as it is very chal-
lenging to create an algorithm that reliably distinguishes
between real and false junctions in the projection. How-
ever, the number of spurious junctions, although typi-
cally non-zero, is limited. Manual correction of artifacts
in such cases is possible and warranted. To make the
process of spurious junction elimination and correction
of artifacts in the graph fast and easy we have cre-
ated a graphical user interface for graph manipulation -
the GeGUI

After the network has been successfully extracted and
saved, it can be displayed and manipulated using the GUL
It will load the extracted network and superimpose it on
the original image. This is done to facilitate work for the
human operator: By having the original image directly
beside the extracted network, it is easier to recognize
where mistakes were made and what needs to be done so
the extracted network closer resembles the real structure.
To facilitate usage, when creating a new node the radius at
the position of the new node is automatically measured.

An illustration of the rewiring of spurious junctions using
GeGUI is shown in Fig. 6a to e.

The GeGUI needs three files to correctly operate: the
extracted network, the original image and the distance
map of the image created during the extraction process
(the user can simply enable -dm while running NET to
save the distance map). To run GeGUI with a given net-
work file, the user can provide the script with the path
to a folder were all these three files are located for a
given network:

python gegui.py /dir/subdir/resultfolder

In the data/results folder of the repository the user
can find the three folders tracheolel, tracheole2
and tracheole3 containing the necessary files resulting
from the processing of the example images. To load the
graph extracted from tracheolel, the user can run:

python gegui.py ../data/results/tracheolel

Using the GUI involves point-and-click commands to
mark and create nodes as well as key-press commands to
delete nodes, create edges and switch between options.
After work on the graph is completed, the new graph will
be saved as .gpickle file and can then be either reloaded
and further edited or used for measurements.

Step 4: network statistics
We provide a script, analyze.py to quantify some
select basic properties of any network created either




Lasser and Katifori Source Code for Biology and Medicine (2017) 12:4

Page 8of 11

Fig. 6 lllustration of spurious node elimination with the GeGUI. a Detail of the extracted graph superimposed onto a detail of the original
microscopy image tracheole! (image in false-colors to improve contrast). b Highlighting of all loops still present in the graph to facilitate elimination
of spurious junctions. € The nodes that form spurious junctions can be selected individually by clicking. d Deletion of selected nodes. e The final
version of the graph with all spurious junctions corrected and no cycles left

directly by NET or manipulated with GeGUI. The script
measures quantities like number of nodes or total length
of the graph and saves them to a text-file. To analyze
the properties of the network from tracheolel, the user
can run:

python analyze.py
../data/results/tracheolel/tracheolel
_graph p3 rl.gpickle

If more complex or combined measurements are
needed, the script can be expanded or adapted quite easily
as it is a modular collection of measurement functions.

Results

Validation

To assess the quality of networks extracted with NET,
we re-extracted known networks from 389 images of
Drosophila tracheoles and then compared them to the
original graphs. We created an artificially noisy back-
ground, using spatially correlated noise, and plotted the
known networks on this background with varying inten-
sity for the edges to make them more similar to real
world images. Then we segmented these artificially cre-
ated images again and extracted networks to compare
them with the original networks. The statistics we use
for the comparison aim to capture all important aspects
of a network’s topology and geometry: The total number
of nodes N in the graph hints, whether the topology has
been correctly resolved. To validate the network’s geom-
etry, we compare the total length L ie. the sum over

individual edge lengths of the networks. Moreover we
compare the average edge weight R and the ratio of the
biggest to the smallest edge weight » = min(R)/max(R).
For each observable, the error ¢ made during extraction
is quantified as

1So — Sl
So

where S, is the respective observable measured in the
original network and S, the observable measured in the
artificially created validation network. All values for o
shown in Table 1 are the mean over all 389 extracted
and re-extracted networks. The above-mentioned statis-
tics leave the comparison invariant under node transla-
tions and squeezing or stretching transformations. To rule
out that such a transformation has occurred, we need to
assess whether the two networks look the same in real
space. Therefore we plotted both networks without any
translation or fitting to increase overlap and calculated the

os =

Table 1 Comparison of node number N, network length £, mean
edge weight R, ratio of smallest to largest weight r = min(R)/
max(R) and pixel-wise difference D of the plotted networks

oyN o op o, D

90+86% 26+46% 256+£100% 241+£201% 0.1x0.1%

For each value, the respective observable was calculated in the known and the
re-extracted network and the absolute difference normalized by the value in the
known network was calculated. The errors oy, a1, 03, oy and D shown in the table
are the mean error and its standard deviation for 389 automatically extracted and
re-extracted networks by NET from images of Drosophila tracheoles. Error
distributions are heavily skewed towards small values, errors cannot be negative
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sum over the pixel-wise difference between both images
normalized by the total amount of pixels in the original
network. We did this for several dpi values for the plots to
exclude influences of plot resolution on the results. Val-
ues given in the table have been calculated for a resolution
of 80 dpi.

The comparison of known to extracted networks quan-
tifies the error that is introduced during one pass through
NET. on and oy, lie in acceptable ranges of not more than
10% deviation from the original network whereas the edge
weights in the re-extracted networks deviate by about
25%. This can be explained as a systematic error stemming
from image preprocessing techniques like blurring and
binary opening and closing that affect edge weights
far stronger than edge lengths. The average pixel-wise
difference between original and re-extracted network is
very small, giving proof that the network’s geometry is
resolved very well and NET does not introduce any artifi-
cial transformation to node positions.

We uploaded all images used for the validation as well
as all the statistics calculated for the networks to the
validation folder in the repository. The full validation
process is described in more detail in the Additional file 1
and can be reproduced by the reader by running the
validation.sh script. Users that heavily rely on the
edge weight extracted by NET need to be wary of
the error in R and r, as it is substantial. If edge weights
are of major importance, carefully adapting the parame-
ters used for segmenting the images to potentially reduce
the errors should be considered. Furthermore running
the validation. sh script plots histograms of all error
distributions. This can be used to make an informed deci-
sion on the errors and their impact and meaning for the
specific dataset.

Processing speed

Most of the algorithms of NET have been ported to C
using cython [27], therefore the script is able to han-
dle extremely large networks with millions of nodes. This
has already been taken advantage of in the extraction and
analysis of leaf venation patterns [19].

To test how long different kinds of networks take to be
processed with our framework, in Table 2 we list process-
ing times for networks with a number of nodes (including
redundant nodes) in the range of 10> — 10°. Network
extraction time scales linearly with number of nodes and
loading and writing times for images can vary depending
on file format. The processing times were measured on an
Intel Core i7-3770 CPU @ 3.40 GHz x 8, 31.4 GB Memory,
using one of the eight kernels of the CPUs. Visualization
of the graphs was disabled for these measurements and
all graphs were saved with all redundant nodes. Even for
graphs with 10° nodes, the processing time was under
5 min.

Page 9 of 11

Table 2 Processing speed for different types of networks with
node numbers in the range 10% — 100

Image N Time [s]
Tracheole7 19.103 25107
Bubbles1 4710 16100
Tracheole3 6.1-10° 6.6-107"
Cracks2 8710 13-10
Leaf2 13-10° 2.7-10'
Leaf3 1.1-100 1.8-10?

Processing speed appears to scale linearly with number of nodes as soon as I/O
overhead can be neglected in comparison to the time spent executing the
processing algorithms. All graphs were processed with parameters p = 3,r = 2,
v =True

Discussion and conclusions

Although NET offers some functionality with regards to
image preprocessing and segmentation, its main strength
lies in the extraction of a graph from an already seg-
mented image. Its ability to extract nodes with a degree
of two - nodes lying on a line and not an intersection -
enables it to capture the geometry of a network with
curved edges. With regards to speed and accuracy, NET
performs on a comparable level to other network extrac-
tion tools and yields graphs that closely approximate the
networks depicted in the images. NET also extracts edge
weights based on the diameter of the edges in the image.
Although the edge weights extracted by NET are depen-
dent on image preprocessing and segmentation of the
input image, its ability to extract edge weights at all is rare
among comparable network extraction tools. A possibil-
ity to further improve NET's speed is the parallelization of
graph creation from the triangulation. For large networks
this is the process that is most time-consuming. We did
not explicitly incorporate multi-threading into NET as the
framework is designed with batch-processing in mind and
can therefore simply be run multiple times on different
portions of the dataset to use all available CPU resources
and increase efficiency.

In this publication we mostly show example applications
from biology but the usage of the framework does not
need to be limited to this kind of networks. It can be used
in a broad array of datasets to detect and measure elon-
gated shapes. Moreover every boundary of a structure can
be represented by a network-like structure by using edge
detection like the Sobel filter on the image. The image
of the bubbles we use as an example can be created this
way by using the script binarize bubbles.py This
has a wide range of applications, such as the extraction of
crack patterns in dried clay or the tracking of bubbles in
microfluidics. Several examples of the networks extracted
by NET - biological or not - alongside the original images
are shown in Fig. lato f.

Nevertheless we created NET mostly with application
in the life sciences in mind. In our experience, manual
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processing is prevalent in these laboratories. Our close
collaboration with the Leptin Lab at EMBL Heidelberg
and Douglas Daly at the New York Botanical Garden
has enabled us to simplify workflows for the scientists
working with NET and switch to automated process-
ing. Apart from saving time, automated processing also
has the advantage of yielding reproducible results and
avoiding human error: given a binary image and set of pro-
cessing options, NET will always yield the same results,
whereas manual measurement largely depends on the
perception of the individual performing the measurement.
Automated processing also enables us to measure more
complex quantities like the area of the convex hull, cur-
vature and angles, or other topological metrics of the
network. More importantly it also works for extremely
large networks where manually measuring metrics across
the whole network is simply not feasible.

Last but not least we are actively developing and main-
taining NET. In the future one can expect to see the
incorporation of some more sophisticated segmentation
algorithms into the framework as well as a port to python
3. Nevertheless we are aware that we cannot compete
with the most advanced segmentation toolkits available
as our focus is more on the networks-part of the soft-
ware. We plan to expand GeGui as it has proven to
be a very useful tool in our daily work with graphs. In
the future we want to include more functionality like
improved drawing of graphs from scratch as well as the
ability to deal with disconnected components and mul-
tiple graphs at the same time. Furthermore we want to
improve NET’s accuracy with regards to the extracted
edge weights as we feel this is the only aspect of NET’s
performance that is still lacking. We want to emphasize
that both the source code for the network extraction as
well as for the manual graph handling can be found in
the Git repository [10]. We expect that these tools will
prove especially useful in facilitating quantitative anal-
ysis of large datasets. We are very happy if our soft-
ware is used and we are open to suggestions regarding
improvement of existing functionality, additional features
or fixing of bugs. To communicate with us, we encour-
age the reader to use the issue-tracker system provided
by GitHub.

Availability and requirements

Name: Network_extraction

Home page: https://github.com/JanalLasser/network_
extraction

Operating systems: Linux, Mac, Windows
Programming language: Python

Licence: Copyright (C) 2015 Jana Lasser Max Planck
Institute for Dynamics and Self Organization Goettingen
This program is free software: you can redistribute it
and/or modify it under the terms of the GNU General
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Public License as published by the Free Software Founda-
tion, either version 3 of the License, or (at your option)
any later version. This program is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details. You
should have received a copy of the GNU General Public
License along with this program. If not, see http://www.
gnu.org/licenses/.

Additional file

Additional file 1: Supplement. (PDF 178 kb)
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