
Takeuchi et al. Source Code for Biology andMedicine (2016) 11:12
DOI 10.1186/s13029-016-0058-6

SOFTWARE Open Access

cljam: a library for handling DNA
sequence alignment/map (SAM) with parallel
processing
Toshiki Takeuchi* , Atsuo Yamada, Takashi Aoki and Kunihiro Nishimura

Abstract

Background: Next-generation sequencing can determine DNA bases and the results of sequence alignments are
generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it.
SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including
detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of
file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be
used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation
sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required.

Results: We have developed cljam using the Clojure programming language, which simplifies parallel programming,
to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure.

Conclusions: Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with
cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar
tools.

Keywords: Next-generation sequencing, DNA, Parallel processing, Clojure, SAM, BAM

Abbreviations: BAI, BAM index; BGZF, Blocked GNU zip format; LOC, Lines of code; NGS, Next generation
sequencing; SAM, Sequence alignment/map

Background
Next-generation sequencing (NGS) technologies have
allowed DNA sequences to be generated very fast and in
parallel. Complete DNA sequences can be obtained by
statistical analysis of the raw data from the sequencers.
As a result, tools for data analysis and interpretation of
the sequencing results are in high demand. For maximum
efficiency, data should be processed in parallel and with
high speed considering the accumulation speed and size of
NGS data. A lightweight program that can deal with NGS
data in parallel is required.
Most NGS sequencers generate hundreds of millions

of short sequence reads for each DNA or RNA sample.
These short read data are small pieces of DNA sequence
bases. The DNA and RNA sequence data are saved

*Correspondence: take@xcoo.jp
1Xcoo, Inc., 4-2-5, Hongo, Bunkyo-ku, Tokyo, Japan

mainly in FASTQ format, which is a text-based format
for sequences and their quality scores. Typically, FASTQ
files contain about 300 million reads that are about 200-
300 nucleotides long. The short reads in FASTQ files are
generally mapped and aligned to a reference genome with
alignment mapping tools such as BWA [1] and Bowtie [2].
The alignment data are stored mainly in Sequence Align-
ment/Map (SAM) format files, which are tab-delimited
text files. BAM is the compressed binary version of the
SAM format. BAM uses BGZF (Blocked GNU Zip For-
mat) compression and can support indexes to achieve fast
random access by generating BAM index (BAI) files.
SAMtools [3, 4] is written in the C programming lan-

guage and uses SAM/BAM files. It has various functions
for manipulating SAM/BAM files, such as viewing, sort-
ing, indexing, and pileup. The ‘index’ command creates a
BAI file for fast random access to the original BAM file.
Counting the overlapping short read bases at a specified

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-016-0058-6-x&domain=pdf
http://orcid.org/0000-0002-3887-7452
mailto: take@xcoo.jp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Takeuchi et al. Source Code for Biology andMedicine (2016) 11:12 Page 2 of 4

location is called pileup. The ‘mpileup’ command executes
pileup and outputs the results in text format, which is use-
ful for visualizing genome histograms and for detecting
variants/insertions/deletions in a genome sequence.
SAM/BAM utilities are also available in other program-

ming languages. Picard [5] is a Java-based command-line
utility for manipulating high-throughput sequencing data
and formats such as SAM and BAM. Because of their per-
formance, some lightweight languages have been used to
wrap SAMtools. For example, pysam [6] is a lightweight
wrapper of SAMtools C-API written in the Python pro-
gramming language, and bio-samtools [7, 8] is a Ruby
language interface to SAMtools.

Implementation
The Clojure programming language
Clojure is a lightweight programming language that is
favored for huge data analysis with parallel processing [9].
It is a functional programming language and is a dialect
of Lisp. Clojure runs on the Java Virtual Machine, which
includes Windows, Mac OS, and Linux environments. It
is based on Java, which allows Java libraries to be used.
Genome sequence analyses processes can be written sim-
ply because Clojure provides many convenient functions
for manipulating list data. Moreover, immutability is the
center of Clojure’s design policy so that parallel processing
can be used efficiently.
Clojure has been used to code some bioinformatics

tools. For example, BioClojure [10] is a convenient library
for bioinformatics under the open source Bio* projects.
It consists of parsers for various kinds of file formats
(UniProtXML, Genbank XML, FASTA, and FASTQ), and
wrappers of data analysis programs (BLAST, SignalP,
TMHMM, and InterProScan). However, BioClojure does
not have functions for SAM/BAMmanipulation and is not
fully implemented in Clojure. The CONNJUR-Sandbox
source [11] contains examples of the visualization of pro-
tein structures using PDB data in Clojure and the pre-
diction of neighboring amino acids with Support Vector
Machine algorithms named Clojure Amino Acid Predic-
tor.

cljam
Here, we describe cljam, a SAM/BAM manipulating
library written in Clojure. With cljam, we aimed to pro-
vide a much more simple source code than SAMtools
that is equal in performance and can work in a Clojure
ecosystem.
Cljam is not a SAMtools wrapper. It does not use an

external application programming interface (API) such as
SAMtools and Picard for simple and high maintainable
codebase. Programs in Clojure are not as fast on a sin-
gle thread, but because of its parallel processing functions
it can be easily sped up. Cljam supports multithreaded

processing in high-cost features such as BAM indexing
and pileup. Parts of File I/O are written in Java because of
high-speed processing. Cljam uses an open-source com-
pression library for BGZF, named bgzf4j [12], which was
developed by the authors of this paper.
Cljam has the following functions:

• Reading and writing SAM/BAM/FASTQ
• Converting SAM/BAM
• Normalization
• Sorting
• Indexing BAM
• Pileup
• Indexing FASTA

Results and discussion
Using cljam: a brief tutorial
Here are examples of interacting with SAM/BAM files
using cljam.More information on usage and specific func-
tions is provided in the readme file and https://chrovis.
github.io/cljam/.

Installation
Cljam is available as a Clojure library at Leiningen, a popu-
lar build tool for Clojure projects. The following statement
should be added to a Leiningen configuration.
:dependencies [[cljam "0.1.3"]]

Leiningen automatically downloads the Java Archive of
cljam and resolves its dependency in a project. Then,
cljam functions can be used in the code.

Reading a SAM/BAM file
Cljam provides a file reader and a namespace including
various I/O functions to read a SAM/BAM file. The fol-
lowing code opens a BAM file and retrieves the first five
alignments, where pnext, tlen, flag, qname, and rname
indicate the potision of the mate/next read, observed
template length, bitwise flag, query template name, and
reference sequence name, respectively, based on the SAM
format [13].
(require '[cljam.core :refer [reader]]

'[cljam.io :as io])

(with-open [r (reader "path/to/file.bam")]
(doall (take 5 (io/read-alignments r)))

=> ({:pnext 37, :tlen 39, :flag 163, :pos 7,
:qname "r001", :rname "ref", · · ·}

{:pnext 0, :tlen 0, :flag 0, :pos 9,
:qname "r002", :rname "ref", · · ·}

· · ·)

Sorting a SAM/BAM file
A SAM/BAM file can be sorted by chromosomal
coordinates or reference name using functions in the
‘cljam.sorter.’ For example, to create a BAM file sorted by
chromosomal coordinates,
(require '[cljam.core :refer [reader writer]]

https://chrovis.github.io/cljam/
https://chrovis.github.io/cljam/

Takeuchi et al. Source Code for Biology andMedicine (2016) 11:12 Page 3 of 4

'[cljam.sorter :as sorter])

(with-open [r (reader "path/to/file.bam")
w (writer "path/to/sorted.bam")]

(sorter/sort-by-pos r w))

In this case, the input and output files are file.bam and
sorted.bam, respectively.

Indexing a BAM file
The ‘cljam.bam-indexer’ has functions for indexing a
BAM file. The following code creates a BAI file from a
BAM file.
(require '[cljam.bam-indexer :as bai])

(bai/create-index "path/to/sorted.bam"
"path/to/sorted.bam.bai")

Getting pileup information
The ‘cljam.pileup’ provides pileup and mpileup functions
equivalent to those of SAMtools. For example, to get
simple pileup of the first 10 genomic positions of chr1
reference,
(require '[cljam.core :refer [reader]]

'[cljam.pileup :as plp])

(with-open [r (reader "path/to/sorted.bam"
:ignore-index false)]

(take 10 (plp/pileup r "chr1" nil)))
=> (0 0 1 1 3 3 3 3 2 3)

Command line interface
The command line interface of cljam provides an addi-
tional feature to quickly check its functions. For example,
the following command displays contents of a SAM file
including header information.
$ cljam view --header path/to/file.sam
@HD VN:1.4 SO:coordinate
@SQ LN:45 SN:ref
@SQ LN:40 SN:ref2
r001 163 ref 7 30 8M4· · ·
r002 0 ref 9 30 1S2· · ·
...

Performance of indexing and pileup
We conducted timingmeasurement experiments to deter-
mine the performance of BAM indexing and pileup under
a changing number of thread conditions: 1, 2, 4, 8, and
12 threads with cljam (v0.1.3), SAMtools (v1.2) (single
thread), and Picard (v1.134) (single thread). We used a
BAM file (about 13.2GB) from the 1000 Genomes Project
[14]. The machine specifications were CPU: Intel Core i7-
4930K@ 3.40 GHz, 12MB L2 cache, 12 cores (6 real cores
& HT), 64 GB RAM, and SSD storage.
The results for indexing and pileup are shown in Figs. 1

and 2, respectively. Each condition wasmeasured 10 times
and the average time of the 10 trials was plotted.
The results indicate that the execution times for cljam

were getting shorter until the 4 thread condition in index-
ing and 3 thread in pileup. However, the execution times

Fig. 1 Execution time of indexing. The green dashed line indicates
SAMtools and the red dashed line indicates Picard under single
thread conditions because they cannot be run using multithreaded
processing. The error bar shows the standard deviation of the result

under the conditions of above 6 threads in indexing and 4
threads in pileup were almost same. We believe there may
be an overhead of the file I/O when reading BAM files; the
performance does not improve in parallel conditions. The
execution time of pileup in cljam with the 3 thread condi-
tion was 1.3 times longer than with SAMtools, which can
be considered as almost the same performance.

Codemetrics
Code readability and maintainability are more important
than optimization of code under our software develop-
ment environment, which uses recent high-speed and
multi-core CPU technologies. Thus, we used CLOC [15]

Fig. 2 Execution time of pileup. The green dashed line indicates
SAMtools under a single thread condition because it cannot be run
using multithreaded processing. The error bar shows the standard
deviation of the result

Takeuchi et al. Source Code for Biology andMedicine (2016) 11:12 Page 4 of 4

Table 1 Measurement of LOC

Language Files Blank Comment Code

cljam (Clojure) 46 466 165 3264

SAMtools (C/C++) 53 1606 2403 11619

Picard (Java) 290 6409 11835 28322

to measure logical LOC (lines of code) of source codes
of cljam, SAMtools, and Picard. The results indicate that
the LOC of cljam was about 1/4 that of SAMtools and 1/9
that of Picard, as shown in Table 1. These three programs
do not have all the same functions; thus, they cannot be
compared only using LOC. Cljam has been implemented
simply in Clojure with parallel programming with multi-
core processors and with the focus on readability and
maintainability.

Conclusions
We have developed cljam as an open-source software
using Clojure, which is a functional programming lan-
guage that works on the Java Virtual Machine. Cljam can
process and analyze SAM/BAM files in parallel and at
high speed. The execution time with cljam is almost the
same as with SAMtools. The Clojure code of cljam has
fewer lines and an equivalent performance compared with
SAMtools and Picard, which are similar tools.

Availability and requirements
Project name: cljam
Project home page: https://github.com/chrovis/cljam
Operating system(s): Platform independent
Programming language: Clojure
Other requirements: none
License: The Apache License, Version 2.0
Any restrictions to use by non-academics: none

Acknowledgements
Not applicable.

Funding
This work was partly supported by JST CREST “Creation of Fundamental
Technologies for Understanding and Control of Biosystem Dynamics.”

Authors’ contributions
TT wrote the source code, conducted the experiments, and wrote the
manuscript. AY participated in writing the source code and conducted the
tests. TA designed the software and provided technical advice to the other
programmers. KN participated in the design process, coordination and helped
to draft the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Received: 18 May 2016 Accepted: 8 August 2016

References
1. Li H, Durbin R. Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
2. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and

memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol. 2009;10(3):25.

3. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R. The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 2009;25(16):2078–9.

4. Li H. SAMtools . http://www.htslib.org/. Accessed 11 Aug 2016.
5. Institute B. Picard . http://broadinstitute.github.io/picard/. Accessed 11

Aug 2016.
6. Heger A. Pysam. https://github.com/pysam-developers/pysam. Accessed

11 Aug 2016.
7. Ramirez-Gonzalez RH, Bonnal R, Caccamo M, Maclean D. Bio-samtools:

Ruby bindings for SAMtools, a library for accessing BAM files containing
high-throughput sequence alignments. Source Code Biol Med.
2012;7(1):6.

8. Etherington GJ, Ramirez-Gonzalez RH, MacLean D. bio-samtools 2: a
package for analysis and visualization of sequence and alignment data
with SAMtools in Ruby. Bioinformatics. 2015;31(15):2565–7.

9. Hickey R. The clojure programming language. In: Proceedings of the 2008
Symposium on Dynamic Languages. DLS ’08. New York: ACM; 2008.
p. 1–111.

10. Plieskatt J, Rinaldi G, Brindley PJ, Jia X, Potriquet J, Bethony J, Mulvenna
J. Bioclojure: a functional library for the manipulation of biological
sequences. Bioinformatics. 2014;30(17):2537–9.

11. Fenwick M, Sesanker C, Schiller MR, Ellis HJ, Hinman ML, Vyas J, Gryk
MR. An Open-Source Sandbox for Increasing the Accessibility of
Functional Programming to the Bioinformatics and Scientific
Communities. Proc Int Conf Inf Technol New Gener. 2012;2012:89–94.

12. Xcoo I. Bgzf4j. https://github.com/chrovis/bgzf4j. Accessed 11 Aug 2016.
13. Group TSFSW. Sequence Alignment/Map Format Specification.

http://samtools.github.io/hts-specs/SAMv1.pdf. Accessed 11 Aug 2016.
14. Project TG. HG00125.mapped.ILLUMINA.bwa.GBR.low_coverage.2012

0522.bam. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
HG00125/alignment/HG00125.mapped.ILLUMINA.bwa.GBR.
low_coverage.20120522.bam. Accessed 11 Aug 2016.

15. Danial A. Count Lines of Code, Version: 1.64, Released 2015-06-27. https://
github.com/AlDanial/cloc. Accessed 11 Aug 2016.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://github.com/chrovis/cljam
http://www.htslib.org/
http://broadinstitute.github.io/picard/
https://github.com/pysam-developers/pysam
https://github.com/chrovis/bgzf4j
http://samtools.github.io/hts-specs/SAMv1.pdf
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00125/alignment/HG00125.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00125/alignment/HG00125.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/HG00125/alignment/HG00125.mapped.ILLUMINA.bwa.GBR.low_coverage.20120522.bam
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

	Abstract
	Background
	Results
	Conclusions
	Keywords
	Abbreviations

	Background
	Implementation
	The Clojure programming language
	cljam

	Results and discussion
	Using cljam: a brief tutorial
	Installation
	Reading a SAM/BAM file
	Sorting a SAM/BAM file
	Indexing a BAM file
	Getting pileup information
	Command line interface

	Performance of indexing and pileup
	Code metrics

	Conclusions
	Availability and requirements
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

