
Macdonald and Boutros Source Code for Biology andMedicine (2016) 11:9
DOI 10.1186/s13029-016-0055-9

SOFTWARE Open Access

Log::ProgramInfo: A Perl module to collect
and log data for bioinformatics pipelines
John M. Macdonald1*† and Paul C. Boutros1,2

Abstract

Background: To reproduce and report a bioinformatics analysis, it is important to be able to determine the
environment in which a program was run. It can also be valuable when trying to debug why different executions are
giving unexpectedly different results.

Results: Log::ProgramInfo is a Perl module that writes a log file at the termination of execution of the enclosing
program, to document useful execution characteristics. This log file can be used to re-create the environment in order
to reproduce an earlier execution. It can also be used to compare the environments of two executions to determine
whether there were any differences that might affect (or explain) their operation.

Availability: The source is available on CPAN (Macdonald and Boutros, Log-ProgramInfo. http://search.cpan.org/~
boutroslb/Log-ProgramInfo/).

Conclusion: Using Log::ProgramInfo in programs creating result data for publishable research, and including the
Log::ProgramInfo output log as part of the publication of that research is a valuable method to assist others to
duplicate the programming environment as a precursor to validating and/or extending that research.

Keywords: Reproducibility, Log, Environment

Background
Reproducibility is a major concern in science as a whole,
and computational biology in particular. For reproducibil-
ity, it is not sufficient to provide access to the raw data—it
is ever more critical to also provide access to the pro-
gram code used to analyse those data [2]. But the program
code is a dynamic mixture of program text, command
line arguments, libraries, and various other environmental
aspects—all of which may need to be exactly reproduced
to achieve the same results. So, simply providing access to
the code used is not a complete solution. It is necessary,
but not sufficient.
The need for reproducibility is growing because our

pipelines are getting increasingly complex: a typical
sequencing pipeline might involve a chain of a dozen
unique tools [3]. But reproducing these pipelines is
fundamentally very difficult, in part because it requires

*Correspondence: john.macdonald@oicr.on.ca
cc Bug Reports To: BoutrosLabSoftware@oicr.on.ca
†Equal contributors
1Informatics and Biocomputing Program, Ontario Institute for Cancer
Research, Suite 510, MaRS Centre, 661 University Ave, Toronto, Ontario, Canada
Full list of author information is available at the end of the article

duplicating the versions of all dependent tools and
libraries used in an analysis. Given the rapid rate of release
of updates to common tools (e.g. BWA had 7 updates
during the course of 2014 [4], this can be a significant
challenge.
Among the best practices for scientific computing (e.g.

[5]) is listed the need to collect and publish:

• Unique identifiers and version numbers for programs
and libraries;

• The values of parameters used to generate any given
output; and

• The names and version numbers of programs
(however small) used to generate those outputs.

A large fraction of pipelines for bioinformatics are writ-
ten in the Perl programming language (e.g. BioPerl [6]).
However, for logging the precise state of a program at
run-time, and capturing all the dependency versions and
other key information, there are no automated choices
available.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-016-0055-9-x&domain=pdf
http://search.cpan.org/~boutroslb/Log-ProgramInfo/
http://search.cpan.org/~boutroslb/Log-ProgramInfo/
mailto: john.macdonald@oicr.on.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Macdonald and Boutros Source Code for Biology andMedicine (2016) 11:9 Page 2 of 5

To resolve this issue, we introduce here the module
Log::ProgramInfo to facilitate run-time logging of Perl-
based pipelines, thereby directly improving the repro-
ducibility of modern bioinformatic analyses.
A further advantage to such tracking information is the

ability to test an analsis using later versions of the com-
ponent tools to determine whether they provide different
results (possibly more accurate if the later releases provide
better resolution; possibly identifying erroneous results in
the original analysis if the tools have been updated with
critical fixes to their operation).

Related work
A search found some programs for related processes but
nothing that served the same purposes.
There are some programs available to collect and doc-

ument the computing process - by recording the steps
invoved, including command lines and arguments during
the actual data processing. Such a program could work
well together with the described module but addresses
a different aspect of the reproducibility issue. In our
lab, when the workflow of the data analysis was suf-
ficiently complex to require such a description, we
instead write a program to encapsulate that process,
so there is no long list of manual processing steps to
document.
In particular, the program (ReproZip) [7] was capable

of discovering and bundling together all of the programs
used during the execution of a process. That seems to have
different trade-offs. Such a bundle is only useful on sim-
ilar hardware and it provides no possibility for assisting
with script library version info, or in allowing a later run to
use selected variations on the programming environment
(such as allowing updated versions of programs that still
have the same function but have had security problems
fixed).

Implementation
The Log::ProgramInfo module Macdonald and Boutros,
Log-ProgramInfo. http://search.cpan.org/~boutroslb/Log
-ProgramInfo/ is available as open source, and has been
distributed on CPAN (the Comprehansive Perl Archive
Network - used as the standard distribution mechanism
for the vast majority of open source Perl modules, and
described in the Perl documentation with the command
“perldoc perlmodinstall”).
Log::ProgramInfo is enabled simply by being included

with a Perl use statement. Since its effect is global to
the program, it should be enabled directly from the main
program, or from a utility module that contains global
configuration settings for a suite of programs.
Any desired setting of non-default values for the options

can be provided either through environment variables, or
as “import” list options.

When the module is used for the first time, the load-
ing process carries out a number of actions for its
operation:

• - An END block is created. It will be executed when
the program terminates, to write out the log
information.

• - Signal handlers are installed for catcheable signals -
if one of them occurs, the log information will be
printed out before the program terminates.

• - options are set to their default values
• - any env variables to control options are saved
• - a copy is made of the original command line

arguments for eventual logging
• - the start time is recorded for eventual logging
• - ... (numerous other system attributes are saved for

eventual logging)

Every time the Log::ProgramInfo module is used, the
import list is processed and any values in it are used to
update the option values. (The first time it is used, this
processing happens after the initialization steps described
above.)
That permits a common group of option settings be

processed first, and then specific exceptions to that list
over-ridden.
Any option settings provided in environent variables

will over-ride the corresponding setting (whether a default
or specified by the program import lists). This allows
changing the option settings for individual runs so that the
log can be suppressed, enabled, or redirected for a single
run of the program.
The code that prints the log information ensures that

it only executes once (in case multiple signals, or a signal
during program termination, would cause it to be called
additional times).
If the main body of the program changes a signal han-

dler after Log::ProgramInfo has set it up, that will usually
not interfere with Log::ProgramInfo. Usually, the program
will catch signals and handle them in a way that allows
it continue to operate, or to terminate with an excep-
tion. It is only if the program resets a signal handler to
its default (abort without normal termination processing)
that Log::ProgramInfo’s log will not be written. That is not
a problem for publication - if the program is being killed
by some signal then it is not yet running successfully, and
thus not yet ready for publication. However, it does mean
that the log might not be available as a diagnostic aid in
such situations.
For most cases, that is the only interaction between the

program and Log::ProgramInfo.
The one additional interaction that might occur is if

there is information unique to the program that is desired
to be logged. The function

http://search.cpan.org/$~$boutroslb/Log-ProgramInfo/
http://search.cpan.org/$~$boutroslb/Log-ProgramInfo/

Macdonald and Boutros Source Code for Biology andMedicine (2016) 11:9 Page 3 of 5

Log::ProgramInfo::add_extra_logger can be called by
the program to specify a callable function that will write
additional information to the log. (See the program docu-
mentation for precise details.)

Results and discussion
Parameters are available to control the logging process:
whether (and if so, where) a log is to be written. Choos-
ing the location where the log is written allows collect-
ing and managing this important information in a way
that co-ordinates with the entire set of computational
activity carried out for a research project (or an entire
organisation’s collection of research projects). The default
name used for the log file includes the name of the
program that is being reported upon as well as a time-
stamp to distinguish separate runs—you might choose
to override the name or directory path to provide more
complete organisation of logged results. Suppressing log
output can be useful for runs that are not intended to
generate reproducible results, such as while the soft-
ware is being developed. However, even in such cases,
it might turn out to be useful to have this log output
to assist diagnosing problems with system configuration
changes—to confirm that the environment being used is
the one that was intended and that updates have actually
occurred, etc.
There is an additional parameter that permits the logged

information to be sent to a separate logging mechanism,
such as a Log4Perl log. This would allow the information
to be collected with the other logged information from the
program. The output to such logs is mixed with the other
logged output from the program, and is also usually refor-
matted to some extent. Such logs cannot be processed by
the Log::ProgramInfo parser provided with the package;
hence the normal action for Log::ProgramInfo is to still
write its own log file as well.

Log output
The output created by Log::ProgramInfo contains the fol-
lowing information:

• MODULE – Name, version, file location, and
checksum for each perl library module used by the
program.

• INC – The search path used to find modules.
• UNAME – Operating system information.
• PROCn – Specific information for each processor

(memory, cores, etc.)
• PERL – The perl interpretor pathname.
• PERLVer – The perl interpretor version.
• PERLSum – Checksum of the perl interpretor binary.
• libc – The version of libc used by the perl interpretor.
• libcSUM – Checksum of the libc library used by the

perl interpretor.

• User – The user ID (and real user ID, if different)
running the program.

• Group – The group IDs (and real group IDs, if
different) running the program.

• ProgDir – The directory containing the program.
• Program – The program name.
• Version – The program’s version.
• ProgSUM – Checksum of the program file.
• Args – The number and values of the command line

arguments provided to the program.
• Start – The time the program started running.
• End – The time the program stopped running.
• Elapsed – The elapsed time while the program was

running.
• EndStat – The program’s exit status.
• program-specified – Any additional info provided by

program-specified callback functions.

The format of the log file is designed to be easily parsed.
A parsing subroutine is provided in the package. You could
call that subroutine from a program that analyses logs
according to your needs. See the program documenta-
tion for details. If you have written the log info using a
logging module such as Log4Perl, you will have to sepa-
rately extract the bare ProgramInfo log information out of
that log, separating it from any other logging by the pro-
gram, and removing any line decorations added by the log
module.

Example
Here is an example of using Log::ProgramInfo. Assume a
simple program, called simple.pl.

Listing 1 A simple program
use Log : : ProgramInfo ;
p r i n t ‘ ‘ This i s a ve ry sma l l program \n ’ ’ ;

When you run it, you get two lines of output.

Listing 2 Running the program
$ p e r l s imple . p l
This i s a ve ry sma l l program
Appending log i n f o to ./20160205− s imple . p l . programinfo

The first line is the expected output from the program,
the second line comes from Log::ProgramInfo to tell you
that a log file was created, and where.
Now, take a look at the log file:

• lines beginning with a plus sign are wrapped to fit the
page width

• lines wrapped in angle brackets describe text that has
been omitted for brevity

Macdonald and Boutros Source Code for Biology andMedicine (2016) 11:9 Page 4 of 5

Listing 3 Log file contents
$ c a t ./20160205− s imple . p l . programinfo
######## jmacdonald (u s e r s+group1 , group2) : s imple . p l
MODULE : NAME : Carp
MODULE : VERSION : 1 . 38
MODULE : LOC : / o i c r / l o c a l / bou t r o s l a b / sw / N i gh t l yBu i l d s /
+ 2016−02−05/ p e r l / Per l−BL−2016−02−05/ l i b / s i t e _ p e r l / 5 . 1 8 . 2 / Carp .pm
MODULE : SUM : d343a981e86111332a0ba08858356c8afb1dea505631
+ 2211 d0e1bb27805f f60e
MODULE : NAME : C l a s s : : S i n g l e t on
MODULE : VERSION : 1 . 5
MODULE : LOC : / o i c r / l o c a l / bou t r o s l a b / sw / N i gh t l yBu i l d s /
+ 2016−02−05/ p e r l / Per l−BL−2016−02−05/ l i b / s i t e _ p e r l / 5 . 1 8 . 2 /
+ C l a s s / S i n g l e t on .pm
MODULE : SUM : 8383 c345cd0651c6242117f0ba9e283efc4e2017a9e7
+ 3 c0f30628a8078421217

< . . . 4 l i n e s each f o r a l l 54 modules t h a t a re i n t e r n a l to pe r l >
< or inc luded by Log : : ProgramInfo >

INC : / u / jmacdonald /2 l p i / t runk / l i b

< . . . r epea t ed f o r a l l d i r e c t o r i e s on the INClude path >

UNAME : System : Linux
UNAME : Name : blhn
UNAME : OSRel : 3 .14 .27 − o i c r 2 . 0
UNAME : OSVer : #5 SMP F r i Dec 19 08 : 0 3 : 1 1 EST 2014
UNAME : Machine : x86_64
PROC0 : vendor_ id : Genu ine In t e l
PROC0 : cpu f am i l y : 6
PROC0 : model : 2
PROC0 : model name : QEMU V i r t u a l CPU ve r s i on 1 . 7 . 0
PROC0 : s t epp ing : 3
PROC0 : microcode : 0x1
PROC0 : cpu MHz : 2800 .014
PROC0 : cache s i z e : 4096 KB
PROC0 : p h y s i c a l i d : 0
PROC0 : s i b l i n g s : 1
PROC0 : core id : 0
PROC0 : cpu core s : 1
PROC0 : a p i c i d : 0
PROC0 : i n i t i a l a p i c i d : 0
PROC0 : fpu : ye s
PROC0 : fpu_excep t i on : ye s
PROC0 : cpuid l e v e l : 4
PROC0 : wp : ye s
PROC0 : f l a g s : fpu de pse t s c msr pae mce cx8 ap i c sep mtrr
+ pge mca cmov pse36 c l f l u s h mmx f x s r s s e s s e2 s y s c a l l nx lm
+ rep_good nopl pni cx16 popcnt h yp e r v i s o r l ah f _ lm
PROC0 : bogomips : 5600 .02
PROC0 : c l f l u s h s i z e : 64
PROC0 : cache_a l i gnment : 64
PROC0 : addre s s s i z e s : 40 b i t s phy s i c a l , 48 b i t s v i r t u a l

< . . . r epea t ed f o r PROC1 . . PROC7>
< most ly d u p l i c a t e s but can be d i f f e r e n t >

PROCs : 8
PERL : / o i c r / x86_64 / bou t ro s l a b / sw / N i gh t l yBu i l d s /
+ 2016−02−05/ p e r l / Per l−BL−2016−02−05/ b in / p e r l
PERLVer : 5 .018002
PERLSUM : 46 e08c7 fde fab2 f7c17a6c128ce0d49198 f86b f643040610e2
+ 21201 b60418667
l i b c : / l i b / l i b c −2 . 1 1 . 3 . so
libcSUM : ab52156dd790803205cafd95ee068641c29902f8729f4e5552
+ 3 c9acb756a4f08
User : jmacdonald
Group : u s e r s+ a n a l y s i s , bou t ro s l ab , cpcgene , blsw , bladmin
ProgDir : / u / jmacdonald / svn / Manuscr ipts /2015/ Log−ProgramInfo
Program : s imple . p l
Vers ion : (No VERSION)
ProgSUM : d0ba49e93c75af6a223642fd17aa10b3ed1bc08e55452c8273
+ b164dc8bc f507 f
Args : 0
S t a r t : 2016−02−05T23 : 2 6 : 2 8 . 3 0 2
End : 2016−02−05T23 : 2 6 : 2 8 . 3 0 6
E lapsed : 0 . 003
EndStat : 0

Now that you have a log file, you still have to make use of
it. Typically, you would treat this log file as one of the out-
put files of your processing activities. So, if you normally
discard the output files (e.g. for a test run while devel-
oping the pipeline), you will likely also discard the log.
On the other hand, for significant runs, you would col-
lect the log file along with the other output files, labelling
and storing them as appropriate for reference. The log file
would be available as a synopsis of how the output data
was created, ready to be used for publication, or repro-
ducing the process (either to validate the results, or to
apply the same process to additional data for subsequent
research).

Limitations
The C environment is not well built for program intro-
spection activities such as determining which static
and/or dynamic libraries have been linked into the pro-
gram’s executable image. This module lists the version of
libc that was build into the perl binary - but that informa-
tion can be out of date. A future release may try to get info
about other libraries beyond libc.
Another major problem is that even if a perl module

is downloaded from CPAN (which would be one way of
ensuring that other people could get the same version),
the install process that puts it into the library path for perl
programs can be done in may ways, and often is not even
done on the same computer as the one that is running the
perl program. So, it is not easy to do any sort of detailed
validation - the downloaded package bundle is not acces-
sible in any determinable way (and possibly not at all) to
the program itself (and thus to Log::ProgramInfo). While
it would be possible to compute checksums for every
library module that has been loaded, that would take a
significant amount of time and is not currently being
done. It may be added as an option that could request it
explicitly.

Conclusion
Module Log::ProgramInfo provides a convenient way of
logging information about the way a program is run.
Adding it to existing programs is as easy as adding one
line to the program or any module the program already
includes.
Log::ProgramInfo’s output file can be easily included

in the published results along with the actual source
code (or references to where it can be found). With this
log output, other researchers have information neces-
sary to any meaningful attempt to reproduce the original
research, either in the process of validating or extending
that research.
Log::ProgramInfo is a good candidate for inclusion in

modules intended tomandate standards, andmay find use
well beyond the field of bioinformatics.

Macdonald and Boutros Source Code for Biology andMedicine (2016) 11:9 Page 5 of 5

Availability and requirements
• Project name: LogProgramInfo
• Project Home Page: http://search.cpan.org/search?

query=Log%3A%3AProgramInfo&mode=all
• Operating System(s): Linux, Unix, Mac OS X

(untested), Windows (untested)
• Programming Language: Perl 5
• Other Requirements: none
• License: Perl 5 License (Artistic 1 & GPL 1)

Acknowledgements
Special thanks to Julie Livingstone and Renasha Small-O‘Connor for editorial
assistance.

Funding
This study was conducted with the support of the Ontario Institute for Cancer
Research to PCB through funding provided by the Government of Ontario.
This work was supported by Prostate Cancer Canada and is proudly funded by
the Movember Foundation – Grant #RS2014-01. Dr. Boutros was supported by
a Terry Fox Research Institute New Investigator Award and a CIHR New
Investigator Award. This project was supported by Genome Canada through a
Large-Scale Applied Project contract to PCB, Dr. Sohrab Shah and Dr. Ryan
Morin.

Authors’ contributions
The module was written by the authors. Both authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Informatics and Biocomputing Program, Ontario Institute for Cancer
Research, Suite 510, MaRS Centre, 661 University Ave, Toronto, Ontario,
Canada. 2Departments of Medical Biophysics and Pharmacology & Toxicology,
University of Toronto, Toronto, Ontario, Canada.

Received: 26 November 2015 Accepted: 1 June 2016

References
1. Macdonald J, Boutros P. Log-ProgramInfo. module available from CPAN.

http://search.cpan.org/~boutroslb/Log-ProgramInfo/.
2. Nature-editorial. Code share. Nature. 2014;514. doi:10.1038/514536a.
3. Ewing A, Houlahan K, Hu Y, Ellrott K, Caloian C, Yamaguchi T, Bare J,

P’ng C, Waggott D, Sabelnykova V, ICGC-TCGA DREAM Somatic Mutation
Calling Challenge participants, Kellen M, Norman T, Haussler D, Friend S,
Stolovitzky G, Margolin A, Stuart J, Boutros P. Combining accurate tumour
genome simulation with crowd-sourcing to benchmark somatic single
nucleotide variant detection. Nat Methods. 2015;514:623–30.
doi:10.1038/nmeth.3407.

4. sourceforge-BWA-files. Sourceforge File Listing for BWA on 30 Apr 2015.
hand counted from web page. http://sourceforge.net/projects/bio-bwa/
files/.

5. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, Haddock
SHD, Huff KD, Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson P.
Best practices for scientific computing. PLoS Biol. 2014;12(1).
doi:10.1371/journal.pbio.1001745.

6. Stajich J, Block D, Boulez K, Brenner SE, Dagdigian C, Fuellen G, Gilbert
JGR, Korf I, Lapp H, Lehväslaiho H, Matsalla C, Mungall CJ, Osborne BI,
Popock MR, Schattner P, Senger M, Stein L, Stupka E, Wilkinson MD,
Birney E. The bioperl toolkit: Perl modules for the life sciences. Genome
Res. 2002;12(10):1611–8. doi:10.1101/gr.361602.

7. Chirigati F, Shasha D, Freire J. Reprozip: Using provenance to support
computational reproducibility. In: Presented as Part of the 5th USENIX
Workshop on the Theory and Practice of Provenance. Berkeley: USENIX;
2013. https://www.usenix.org/conference/tapp13/technical-sessions/
presentation/chirigati. Accessed 16 June 2016.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://search.cpan.org/search?query=Log%3A%3AProgramInfo&mode=all
http://search.cpan.org/search?query=Log%3A%3AProgramInfo&mode=all
http://search.cpan.org/~boutroslb/Log-ProgramInfo/
http://dx.doi.org/doi:{10.1038/514536a}
http://dx.doi.org/10.1038/nmeth.3407
http://sourceforge.net/projects/bio-bwa/files/
http://sourceforge.net/projects/bio-bwa/files/
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1101/gr.361602
https://www.usenix.org/conference/tapp13/technical-sessions/presentation/chirigati
https://www.usenix.org/conference/tapp13/technical-sessions/presentation/chirigati

	Abstract
	Background
	Results
	Availability
	Conclusion
	Keywords

	Background
	Related work
	Implementation
	Log::ProgramInfo::add_extra_logger

	Results and discussion
	Log output
	Example
	Limitations
	Conclusion
	Availability and requirements
	Acknowledgements
	Funding
	Authors' contributions
	Competing interests
	Author details
	References

