
METHODOLOGY Open Access

Implementation and clinical application of
a deformation method for fast simulation
of biological tissue formed by fibers and
fluid
Ana Gabriella de Oliveira Sardinha1, Ceres Nunes de Resende Oyama2, Armando de Mendonça Maroja1 and
Ivan F. Costa1*

Abstract

Background: The aim of this paper is to provide a general discussion, algorithm, and actual working
programs of the deformation method for fast simulation of biological tissue formed by fibers and fluid.
In order to demonstrate the benefit of the clinical applications software, we successfully used our
computational program to deform a 3D breast image acquired from patients, using a 3D scanner, in a
real hospital environment.

Results: The method implements a quasi-static solution for elastic global deformations of objects. Each
pair of vertices of the surface is connected and defines an elastic fiber. The set of all the elastic fibers
defines a mesh of smaller size than the volumetric meshes, allowing for simulation of complex objects
with less computational effort. The behavior similar to the stress tensor is obtained by the volume
conservation equation that mixes the 3D coordinates. Step by step, we show the computational
implementation of this approach.

Conclusions: As an example, a 2D rectangle formed by only 4 vertices is solved and, for this simple geometry, all
intermediate results are shown. On the other hand, actual implementations of these ideas in the form of working
computer routines are provided for general 3D objects, including a clinical application.

Keywords: Image-guided surgery, Computer-assisted intervention, Soft tissue biomechanics,
Real-time interactive simulation, Virtual reality

Background
A realistic and fast soft tissue model must be used ef-
fectively in various medical applications, such as plan-
ning surgery procedures, image-guided surgery, image
registration, diagnosis, biomechanical data refinement,
and for training physicians [1].
There are many deformable physics-based methods

used for surgical simulation. Meier [2] and Badosgan [3]
report on some of the following methods: boundary
element method, tensor-mass model, point-associated
finite-field approach, and the most widely used finite

element method and mass-spring model. They high-
light the advantages and drawbacks of each method
regarding the level of accuracy, computational load,
difficulties and needs during implementation, numer-
ical stability, etc.
The new method presented by Costa [1] runs in real

time and can simulate biological soft tissues formed by
fluid and a dense network of deformable fibers connect-
ing surface vertices. The deformed state of the mesh is
computed equating internal forces, due to fluid pressure
and fiber tension, with external forces acting in an area
associated with each superficial vertex. The fibrous

* Correspondence: ivancosta@unb.br
1Faculdade UnB Planaltina, University of Brasilia, 70919-970 Brasilia, DF, Brazil
Full list of author information is available at the end of the article

© 2016 Sardinha et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7
DOI 10.1186/s13029-016-0054-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-016-0054-x&domain=pdf
mailto:ivancosta@unb.br
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

tissue is similar to mass-spring simulation. However,
unlike mass-spring simulation, point masses are not
necessary. The mass is distributed in the entire object
through fluid density. By enforcing the volume con-
servation, a behavior similar to stress tensor is ob-
tained, reminiscent of the finite element method. As a
result, this method provides some interesting out-
comes. It is suited to anisotropic elasticity and non-
linear stress–strain relationship. The results are accur-
ate independent of mesh discretization. Only a few
material parameters are needed. On the other hand,
an important limitation of this method is that it is
only valid for objects filled with fluids. Another draw-
back is that it has no dynamic behavior. Therefore,
movements such as waves and vibrations on the ob-
ject surface cannot be simulated. However, the quasi-
static approach has the advantage of being numeric-
ally stable.
For problems concerning long-range connections, like

the behavior produced by fibers, this approach defines a
mesh of smaller size than volumetric meshes, allowing
simulation of complex objects with less computational
effort. Moreover, user interaction is minimized by dis-
missing the tedious and time-consuming need for
mesh generation [4] and using a fully automated
node-fiber-node model instead. On the other hand,
volumetric meshes with only local connections can

produce a sparse matrix, in which case the numeric
solution would be asymptotically faster than this
method.
Validation was done by comparing deformation simula-

tion and a real ex vivo bovine liver [1]. A compression was
made using two horizontal compression paddles in a form
similar to the deformation obtained during a mam-
mographic examination. The results of this compari-
son show a high degree of similarities between the
experimental results and the calculated deformations
(Fig. 1). The distance between the simulated and the
real deformed surface has a standard deviation of
about 1 % of the liver length.
The central theme of this paper is to provide a step

by step discussion, algorithmic, and actual implemen-
tations in the form of working computer routines of
the ideas expressed in Costa [1] for fast simulation of
biological tissue. In addition, the software for clinical
applications is shown, for the first time, by using the
program to deform a 3D breast image of a real pa-
tient through the use of a 3D scanner in a hospital
environment.

Methods
Surface geometry definition
The surface geometry of the objects to be simulated
can be derived from data scanned from real data or

Fig. 1 The white mesh represents the un-deformed liver surface. The color code represents the distance between the simulated and the real
deformed surface from two vertical compression paddles. All dimensions are in mm. In the red-yellow region, the real surface data discretization
is too coarse in order to reproduce the folds. Then, in this region, the distance between the surfaces increased mainly due to data acquisition
procedure rather than to the simulation performance

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 2 of 14

from intermediate models. In general, this data is
given as a set of surface points (vertex) positions.

For a deformable object, a vector s
→
i represents the

vertices’ 3D positions, where i enumerates each ver-
tex between 1 and the total number of surface
points N. For the computational code, the x-, y- and

z-components of the vector s
→
i are stored in

(X[i], Y[i], Z[i]) and N is stored in the variable
NVertex.
The deformation for each vertex can be specified by a

displacement vector field u→i and its x-, y- and z-
components are stored in unique column matrix (u[i],
u[i +NVertex], u[i + 2 *NVertex]).
A triangular mesh comprises a set of N′ triangles

(in three dimensions) connected by their common
vertices and defines the surface shape of an object in
3D solid modeling. To describe each triangle we
enumerate three vertices V[1][i], V[2][i], and V[3][i]
which must be connected to form a face, similar to

the definition of the WaveFront Object (.obj) File
Format [5]. In this case, the index i enumerates each
triangle between 1 and the total number of surface
triangular faces N’ which in the computational code
is stored as NFaces. Note that the V[1][i], V[2][i],
and V[3][i] have values between 1 and the total
number of surface points N.

Computer routines for faces and vertex areas
The flat nature of triangles makes it simple to deter-
mine their normal vector, a three-dimensional vector

A
→

i perpendicular to the i-th triangle’s surface. Vector

A
→

i can be obtained by calculating the cross product
between the vectors that form two edges of the tri-

angle divided by two. Thus the modulus of A
→

i is the

area of the triangle. The direction of vector A
→

i can be
chosen to point outside of the object.

Fig. 2 A purple sphere formed by 42 vertices (80 triangles). The blue lines represent the vector area for each triangle neighboring a vertex, for
which a blank line represents its resulting vector area. Upper inset: 41 green lines representing the fibers for one vertex. Bottom inset: all
superposed fibers (green) for the sphere

Table 1 Surface area of objects which the circumscribed sphere (one that touches the polygon at all vertices) has a unitary radius
(R=1). The number of vertices N and the number of triangular faces N’ are also shown

Object N N’ Analytical Equation Analytical Result XN
i¼1

S
→

i

��� ��� XN′

i¼1

A
→

i

��� ���
Octahedron 6 8 4

ffiffiffi
3

p
R2 6.92820 6.92820 6.92820

Icosahedron 12 20 40
ffiffi
3

p
5þ ffiffi

5
p R2 9.57454 9.57454 9.57454

≈ Sphere 642 1280 ≈ 4πR2 12.5664 12.5037 12.5065

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 3 of 14

The routine below calculates the vector A
→

i . The input

variables are vertex vectors s
→
i and the vertices of each

triangular face: V[1][i], V[2][i], and V[3][i]. On output,

the Cartesian components of the vector A
→

i are stored in

variables: PerpendicularFaceX[i], PerpendicularFaceY[i]

and PerpendicularFaceZ[i], the surface area of each face

represented by the modulus A
→

i

��� ��� is stored in variable

PerpendicularFace[i] and faces total area is stored in

variable AreaFacesTotal. The faces total area is given byXN ′

i¼1
A
→

i

��� ���.

In our method, the deformation of 3D objects is per-
formed through the displacement of its vertices. An area
vector is assigned to each vertex, in order to determine
the force acting over its surface. This area is defined
from the area vectors of the triangles (faces) in the vicin-
ity of the vertex.
The following routine calculates the auxiliary

variable Shared[i][kk] that stores the identifiers of kk
triangles (faces) neighbors to a given vertex i. The
number of neighboring faces of each vertex i is
stored on the output variable NFacesSharingVertex[i].
For example, Shared[25][2]=40, it means that the
face 40 has been identified as the second triangle ad-
jacent to the vertex 25 and NFacesSharingVertex[25]=3

2

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 4 of 14

informs that there are three neighboring faces to the ver-
tex 25. The routine has as input variables the vertices
V[1][i],V[2][i], and V[3][i] of each triangular face.

Now we can define an area vector S
→

i for each vertex
as S

→

i≡C
X

k

!
Ak where C is normalization constant, i.e.

the area vector for a vertex is proportional to the sum of
the area vectors of the triangles in the vicinity of the
vertex. k values in the summation for each vertex i are
stored in the variable Shared[i][k], where k varies from 1
to NFacesSharingVertex[i]. Figure 2 illustrates these
vectors for the case of a sphere. The triangles that form
the surface of a sphere are show in purple. Vectors A

→

k

are shown as blue lines and S
→

i are represented by a
white line for one vertex.
The shape of area S

→

i

��� ��� is not a triangle in general. But

the sum of the modulus of areasA
→
i or S

→

i respectively on

all faces or vertices must be equal to the solid surface
area, i.e.

XN ′

i¼1
A
→

i

��� ��� ¼ XN ′

i¼1
S
→

i

��� ��� ¼ surface area of the object ð1Þ

Then the area of the vertex i must be defined as

S
→

i
≡

XN ′

i¼1
A
→

i

����
����

XN

i¼1

X
k
A
→

k

����
����

0
BB@

1
CCA
X

k
A
→

k
ð2Þ

The x-, y- and z-components of the vector S
→

i are
stored in variables PerpendicularVertexX[i], Perpendi-
cularVertexY[i] and PerpendicularVertexZ[i]. The
routine vector_S implements Eqs. 1 and 2. From the

i

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 5 of 14

vector area of faces A
→
i (input) are determined vector

area of each vertex S
→

i and the area of the object,

stored in variable AreaVertexTotal (outputs).

To verify the accuracy of the area calculation and the
computer code, a comparison was made between areas of
various objects (Platonic solids and sphere) calculated by
the equations shown above and by the analytical area

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 6 of 14

calculation. The results are the same for at least four signifi-
cant figures. Some of these results can be seen in Table 1.

Deformation routine
The general result of the Costa deformation method [1] for
fast simulation of biological tissue formed by fibers and
fluid can be written as a set of 3N +1 variables: 3N displace-

ments u→
1
; u→

2
; ⋯; u→

i
;⋯; u→

N
and a variation of internal pres-

sure P (stored in variable u[3 *NVertex + 1]). The approach
implements a quasi-static solution for elastic global defor-
mations of objects filled with fluid and fibers. The static
condition states that the internal force on the surface, due

to all fibers F
→

i
fibers and the force due to the liquid

F
→

i
liquid

¼ PS
→

i ð3Þ
have a corresponding external force of the same magnitude
but in opposite sense at each point of the object surface.
The external forces are due to contact forces F

→
contact or

forces resulting from accelerations. For the most common
situation the acceleration is due to the gravitational field a.
For this case the pressure is given by ρhia where hi is the
vertical component of the distance from the top to the ver-
tex i and ρ is the density of the fluid. The result is three
equations for each vertex given by

F
→

i
fibers

−PS
→

i ¼F
→

i

contact þ ρhiaS
→

i ð4Þ

and one equation for the conservation of volumeXN

i¼1
S
→

i⋅u
→
i ¼ 0 ð5Þ

Note that Eq. 5 couples the dislocations (and hence,
forces) in perpendicular directions (x, y and z). This
coupling creates an effect somewhat similar to the stress
and strain tensors in standard elastic theory.
The force due to one fiber connecting vertex i and j

obeys Hook’s Law and is proportional to the fiber’s area

(Si+Sj)/2 and inverse to its length s
→
i− s

→
j

��� ���, where s
→
i and

s
→
j are the positions of vertices i and j. The force due to

all fibers F
→

i
fibers

is obtained by connecting each vertex i
to other vertices by a set of N-1 elastic fibers. These fi-
bers are shown as green lines in the upper inset of Fig. 2
for a sphere.
The process of connecting a vertex to other vertices is

repeated for each vertex. This meshing strategy for filling
the objects superposes fibers during each connection
(bottom inset of Fig. 2). Then the superposed volume
depends on the mesh discretization. Therefore, a factor
N-1 must be included in the denominator in order to
maintain Yij a constant value, independent of the
discretization, for bulk fibers:

F
→

i
fibers ¼

XN

j≠i

−Y ij Si þ Sj
� �

u
→
i−u

→
j

� �

2 N−1ð Þ s
→
i− s

→
j

��� ��� : ð6Þ

On the other hand, for the surface connections

F
→

i
fibers ¼

X
k

−γik Si þ Skð Þ u→i− u→
k

� 	

2 s
→
i− s

→

k

����
����
2 ð7Þ

where Yij and γik are respectively the force per unit of area
and length, whose value can be chosen to be Young’s
Modulus and superficial tension or their values must be
set in a way to fit an experimental deformation result.
These equations can be written as a problem of type

A.x = B where B is the column vector defined by the

right hand side of Eq. 4 (F
→

i
contact þ ρhiaS

→

i) and one
extra element equal to zero that imposes the conserva-
tion of volume (right hand side of Eq. 5). The left hand
sides of Eqs. 4 and 5 define the square matrix A.
The resulting vector x gives all the displacements and

the pressure variation. An example of matrices x, A and
B can be seen in Eq. 8.

Border conditions
The degenerate first mode, corresponding to the zero
eigenvalue, represents a rigid body translation because,
although moving, each vertex is stationary relative to the
other. Of course, the presence or absence of this degen-
erate mode will not influence the purely deformable
characteristics of the system. This degeneracy can be re-
moved using boundary condition.
For boundary condition some vertices can be considered

fixed to an external support. To achieve this condition,
vertex i must not move, or moves a negligible amount com-
pared to the movement of the others vertices. The resulting
movement xi of the vertex is controlled by the size of elem-
ent Aii, because each element of the product of matrices A
and x is naturally expressed as the sum of N products Aijxj.
In order to impose the border conditions, i.e., make xi<<xj,
the element Aii should be done much bigger than the other
elements Aij in line i of matrix A. An example of this pro-
cedure can be seen in section "An example for a rectangle".

Computer routines for general 3D objects
We need to create a matrix A[1..3N+1] [1..3N+1] as the
input matrix of equation A.x = B. A large number of ele-
ments in matrix A in general vanish. Thus we initialize
by writing zeros in all elements of this matrix.
For a deformable object the triangles’ positions and shapes

change. Therefore, we need to recalculate the perpendicular
of each triangle and vertex at each calculation step.
Finally, we need to implement Eqs. 3, 4, 5, 6 to 7 and the

border conditions. The elastic properties of the object are

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 7 of 14

input data, stored in the variables Yx, Yy and Yz (Young’s

modulus) and gamma (superficial tension). Then, the A

matrix (output) is determined from the quantities

determined in the previous routines (inputs): s→i, S
→

i , Share-
d[i][kk] and the vertices V[1][i], V[2][i], and V[3][i] of
each face.

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 8 of 14

We need to create B[1..3N+1] as the input containing
the right-hand side of equation A.x = B. As the routine
input data has the following constants: the applied force
is stored in the variable Force, the product gravitational
field and the density of the liquid is stored in the vari-
able gd; and the number of the vertex where force is ap-
plied is stored in the variable move. So, we implemented
the right side of Eq. 4, creating the vector B.

Concave objects
Note that all fibers effectively exist for a convex ob-
ject. However for a concave object, some fibers con-
nect pairs of vertices beyond the surface of the
object, so these fibers do not actually exist. In order
to consider this situation, forces due to fibers need
to be removed when they pass through the surface.
Then the number N is equal to the number of
vertices only for the convex object. For concave ob-
ject, N must be equal to the number of effective
connections.
Two tests must be done in order to detect the fi-

bers that pass through the surface of the object. First,
we need to test if the fiber starting at vertex i goes
inside or outside the object. Then, we calculated the
scalar product for all k triangles neighboring the ver-

tex i: A
→

k
⋅ S

→

i−S
→

j

� �
. If there is any negative result, the

fiber connecting the vertices i and j goes outside the
object and the matrix element Aij must be set equal
to zero.

A second test is needed because if a fiber intersects
any triangle, it goes outside the object. Then we used
the fast 3D line segment-triangle intersection test de-
veloped by Chirkov [6]. If a fiber that connects the
vertices i and j intersects any triangle, the matrix
element Aij also must vanish. In this link [7] there is
an executable beta version of our software with this
and other functionalities.

The matrix solution
The routine vector_A, neighborhoods and vector_S must
be calculated only once, before solving the routines
matrix_A and vector_B for each deformation step.
Therefore, the initial routines sequence can be

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 9 of 14

To simulate a non-linear stress–strain relation the
value of Yij can be defined as a function of the dis-

placement u→i−u
→
j in the last step. Shortly after each

increment of deformation, the element geometry and
stiffness value is updated to model the nonlinear be-
havior of the material. The variation of external force
on each interaction should be chosen to obtain the
desired precision or an acceptable calculation time.
Therefore, in this case, matrix A must be recalculated
at each step.

But for situations where the area S
→

i and the distance

of each vertex s
→
i− s

→
j

��� ��� varies in a negligible amount on

the left hand side of Eqs. 4 and 5 and the elasticity is lin-
ear (surface tension γik and Young’s Modulus Yij are
constants independent of the deformation), matrix A is
constant and can be operated once. For example, LU de-
composition from the book Numerical Recipes in C [8]
was used to solve the problem A.x=B. If matrix A is
constant, the routine given in this book allows LU de-
composition result to be left in place for successive calls
with different right-hand sides B to achieve a greatly re-
duced calculation time.

Results and discussions
An example for a rectangle
Let us consider the problem of a rectangle with edges ±

15î ± 20ĵ that defines the four vertices s
→
i (Fig. 3). For this

first example, the units are arbitrary and simplicity sur-
face tension effects are not taken into account. In this
case N=N’=4 and the “areas” Ai in this two-dimensional
case are actually the edges of length 30 and 40. Each vertex
has two neighbors, one in x direction and another in the

direction y. Then using Eq. 1 and 2 we obtain that S
→

i ¼ 7

�4̂i � 3̂j
� �

and S
→

i

��� ��� ¼ 35.

For simplicity, the 2D Young’s Modulus is set to be a
constant Yij=360 and no acceleration effect is taken into
account. The boundary conditions are chosen to be as
least restrictive as possible: the lower left corner is fixed,
the lower right corner is constrained to move only hori-
zontally. In order to obtain these boundary conditions,
we make the matrix elements Aii large, equal to 109, for
these vertices in these directions.
Forces of equal magnitude Fi

contact=1680 are applied to
the upper corners vertically upward. Using Eq. 4 and 5
for this rectangle, we can write the problem A.x = B as:

Fig. 3 Un-deformed rectangle is shown in solid line. The lower left
corner is fixed, the lower right corner is constrained to move only
horizontally. The dashed line shows the new shape after forces
(numeric of 1680) are applied to the upper corners vertically upward

Fig. 4 A sphere formed by 320 faces is deformed by the gravitational field and by a vertex pulled in the up right direction

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 10 of 14

329 −105 −84 −140 0 0 0 0 28
−105 329 −140 −84 0 0 0 0 28
−84 −140 109 −105 0 0 0 0 −28
−140 −84 −105 329 0 0 0 0 −28
0 0 0 0 329 −105 −84 −140 21
0 0 0 0 −105 109 −140 −84 −21
0 0 0 0 −84 −140 109 −105 −21
0 0 0 0 −140 −84 −105 329 21
28 28 −28 −28 21 −21 −21 21 0

2
6666666666664

3
7777777777775

u1x
u2x
u3x
u4x
u1y
u2y
u3y
u4y
P

2
666666666664

3
777777777775

¼

0
0
0
0

1680
0
0

1680
0

2
666666666664

3
777777777775

ð8Þ
Solving this matrix equation for u we obtain the dislo-

cations that should be added to the vertices position to
get the new deformed shape. The result for the position
of the right corners is sx=11 and for the upper corners
sy=25, as shown in Fig. 3. Other examples for 3D objects
are shown above.

An example for a sphere
Let us now consider that a sphere with a radius of one
meter. The border conditions impose that all upper ver-
tices, defining a spherical cap of height 0.2, cannot
move. The parameters are defined as: the surface tension
γik and Young’s Modulus Yij are adjusted to be equal to
3 with units in kNewtons and meters; the acceleration
due to gravity is acting down and increases at each iter-
ation 1 m/s2 in a total of ten steps until the final value

g=10 m/s2 is reached; the matrix A is constant; the num-
ber of vertices is N=162; and the density of the fluid is ρ
= 1000 kg/m3. To show the effect of contact forces

F
→
contact , at the final step a force F

→¼ −300 î þ ĵ þ k̂
� �

is applied to the vertex number 1.
Inside the link [9], we provide a complete source code

for a deformable 3D sphere. The result of this code can
be seen in Fig. 4.
The ideas given by Wright [10] were used to draw the

objects and shadows. In addition, the routine to make
spheres was taken from Shreiner [11].

An example for a real in vivo breast
In order to show the benefit of our software for clinical
applications, we used our computer program to deform
3D breasts images, acquired from a set of four patients
in a real hospital environment. The 3D geometries of the
breasts’ surfaces were obtained using a non-contact 3D
Digitizer Konica Minolta Vivid 910, as shown in Fig. 5.
Reconstruction was made by merging different views

of the patients in a standing position taken from differ-
ent angles. Several reference points were located on each
patient, in order for an accurate merge. These images
were mapped and the final reconstruction can be seen in
Fig. 6. These surfaces were exported in obj format and
run through our simulator.
The tissues were simulated as isotropic and linear,

allowing us to do LU decomposition of the matrix A
only once before the first iteration. Thus, for each inter-
action the right hand of Eq. 4 (vector B) are updated and

new values for hi; a and S
→

i must be incorporated at the

Fig. 5 The experimental arrangement in real hospital environment showing the 3D scanner: (a) from the patient’s point of view and (b) from the
3D scanner operator’s point of view

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 11 of 14

next calculation step. We choose this procedure because,
according to Costa [1], the resultant deformation in this
case is similar to the deformation of the slower procedure
that repeats LU decomposition at each interaction (updat-

ing S
→

i and r
→
i− r

→
j

��� ���).
Nevertheless, for nonlinear approaches the matrix

A changes for each step and it must be recalculated
for each iteration, imposing the necessity of the

slower method. An example of a nonlinear elasticity
is shown in Costa [1].
Best accuracy is expected if small steps are used (great

number of interactions), since in this case the variation

of hi; a and S
→

i is smaller and the outcome get closer to
the continuous (analytical) result.
We chose the surface tension γik = 48 MN/m, the

Young’s Modulus Yij = 48 kPa and the density of the
fluid ρ = 1000 kg/m3. The boundary conditions in the

Fig. 7 The breast surface with 402 triangles (purple) and the simulated fibers set (green) for patient number four

Fig. 6 Geometry reconstruction for four real patients breast surfaces

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 12 of 14

case of breast deformation are the chest region that re-
strains the tissue movement in any direction.
Figure 7 shows the result for patient number four. The

surface of the breast is formed by 402 faces and the sim-
ulated fibers are also shown.
A compression, perpendicular to the chest plane, was

set to the simulated breasts due to the increase of the
gravitational field (10 m/s2). The number of steps n to
achieve the final gravitational field value could vary. The
uncompressed (a) and compressed breast shape for the
number of steps n equal to one (b) and 100 (c) are
shown in Fig. 8 for patient number four.
Finally, we decompressed the breast by decreasing

the acceleration applied to the deformed breast until
the acceleration vanished. The same number of steps
used during the compression procedure was used for
the decompression. Then the mean difference in the

initial (uncompressed) and final (decompressed) nodes
position was calculated as:

XN

i¼1
u
→
i

��� ���
N

ffi
smax
x −smin

x

� �2 þ smax
y −smin

y

� �2
þ smax

z −smin
z

� �2r ð9Þ

where sx
max and sx

min are the maximum and minimum
values of sx (the same for the directions y and z).
For a continuous (analytical) approach, no difference

on uncompressed and decompressed position are ex-
pected, and the result of Eq. 9 must be zero. For a nu-
merical (discrete) approach differences on the initial and
final position are expected due to errors introduced in
the calculation of matrix B in each step. However, in our
algorithm the results of Eq. 9 are small; numerically 3 %
for 1 interaction and decreased to about 0.3% and
0.03 % for 10 and 100 interactions, respectively. And the
method evaluation results were similar for all four pa-
tients. These results demonstrate a good algorithmic be-
havior for the complete compression and decompression
process of the breasts.

Conclusions
This work presents the implementation of a new general
approach for modeling soft tissue compression process.
The method was successfully applied to compress a 3D
breast model from real patients.
The fast simulation of deformation of biomaterial

using this algorithm could provide more realistic images
that could serve for educational, clinical application, and
research purposes. The latter include investigations of
different breast imaging techniques involving com-
pressed and uncompressed breasts.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AGOS and CNRO carried out the clinical breast scanner procedures and
managed the ethical committee documentation and its approval. AGOS also
performed the breast image reconstruction merging different scanned views.
AM participated in the design of the study, organized the figures and helped
to draft the manuscript. IFC drafted the manuscript, conceived of the study,
participated in its design and coordination. All authors read and approved
the final manuscript.

Acknowledgments
The authors gratefully acknowledge the University of Brasilia and the
financial support from the Brazilian science agency (CNPq) through research
project 474831/2012-4.

Author details
1Faculdade UnB Planaltina, University of Brasilia, 70919-970 Brasilia, DF, Brazil.
2Medicine Department, University of Brasilia, 70919-970 Brasilia, DF, Brazil.

Received: 10 December 2014 Accepted: 31 March 2016
Fig. 8 Uncompressed (a) and compressed breast using one step
(b) and 100 steps (c) to achieve the total compression field

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 13 of 14

References
1. Costa IF. A novel deformation method for fast simulation of biological

tissue formed by fibers and fluid. Med Image Anal. 2012;16:1038–46.
2. Meier U, López O, Monserrat C, Juan MC, Alcañiz M. Real-time deformable

models for surgery simulation: a survey. Comput Methods Prog Biomed.
2005;77:183–97.

3. Basdogan C, Sedef M, Harders M, Wesarg S. VR-based simulators for training
in minimally invasive surgery. IEEE Comput Graph Appl. 2007;27:54–66.

4. Filho PJ, Sousa EAC. Reconstruction and mesh generation in three-
dimensional biomechanical structures for finite elements analysis. Braz J
Biom Eng. 2009;25(1):15–20.

5. McHenry K, Peter B. An overview of 3d data content, file formats and
viewers, National Center for Supercomputing Applications. 2008. p. 1205.

6. Chirkov N. Fast 3D Line Segment—Triangle Intersection Test. J Graph Tool.
2005;10(3):13–8.

7. Costa IF. Authors’ own website. https://www.sites.google.com/site/unbivan/
download. Accessed 12 April 2016.

8. Press WH, et al. Numerical Recipes in C: the art scientific computing, 2th
edn. Cambridge: Cambridge University Press; 1992. (Chapter 2.3 - LU
Decomposition and Its Applications)

9. Costa IF. Authors’ own website. https://sites.google.com/site/unbivan/FFM.
cpp. Accessed 12 April 2016.

10. Wright R, Sweet M. OpenGL SuperBible. 2nd ed. Essex: Pearson Education;
1999 (Chapter 9 – Lighting and Lamps).

11. Shreiner D. OpenGL programming guide: the official guide to learning
OpenGL, versions 3.0 and 3.1. 7th ed. Boston: Addison-Wesley; 2009.
Chapter 2 - State Management and Drawing Geometric Objects.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Sardinha et al. Source Code for Biology and Medicine (2016) 11:7 Page 14 of 14

https://www.sites.google.com/site/unbivan/download
https://www.sites.google.com/site/unbivan/download
https://sites.google.com/site/unbivan/FFM.cpp
https://sites.google.com/site/unbivan/FFM.cpp

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Surface geometry definition
	Computer routines for faces and vertex areas
	Deformation routine
	Border conditions
	Computer routines for general 3D objects
	Concave objects
	The matrix solution

	Results and discussions
	An example for a rectangle
	An example for a sphere
	An example for a real in vivo breast

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

