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Abstract

Background: Genomic deletions, inversions, and other rearrangements known collectively as structural variations
(SVs) are implicated in many human disorders. Technologies for sequencing DNA provide a potentially rich source
of information in which to detect breakpoints of structural variations at base-pair resolution. However, accurate
prediction of SVs remains challenging, and existing informatics tools predict rearrangements with significant rates
of false positives or negatives.

Results: To address this challenge, we developed ‘Structural Variation detection by STAck and Tail’ (SV-STAT)
which implements a novel scoring metric. The software uses this statistic to quantify evidence for structural
variation in genomic regions suspected of harboring rearrangements. To demonstrate SV-STAT, we used
targeted and genome-wide approaches. First, we applied a custom capture array followed by Roche/454
and SV-STAT to three pediatric B-lineage acute lymphoblastic leukemias, identifying five structural variations
joining known and novel breakpoint regions. Next, we detected SVs genome-wide in paired-end Illumina
data collected from additional tumor samples. SV-STAT showed predictive accuracy as high as or higher than
leading alternatives. The software is freely available under the terms of the GNU General Public License version
3 at https://gitorious.org/svstat/svstat.

Conclusions: SV-STAT works across multiple sequencing chemistries, paired and single-end technologies,
targeted or whole-genome strategies, and it complements existing SV-detection software. The method is
a significant advance towards accurate detection and genotyping of genomic rearrangements from DNA
sequencing data.
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Background
Structural variants (SVs) such as deletions, duplica-
tions, inversions, and translocations are implicated in a
wide range of human diseases and are used as diagnos-
tic and prognostic markers in lymphomas, leukemias,
and sarcomas. For example, detection of interchromo-
somal translocations routinely guides the choice of

treatment in pediatric patients with B-lineage acute
lymphoblastic leukemia (B-ALL). Traditionally, these
translocations [t(4;11), t(12;21), t(1;19), and t(9;22)] are
detected with low-resolution methods such as fluores-
cence in situ hybridization, leaving them uncharacterized
at the base-pair level, and limiting our understanding of
their biological impact. Targeted deep-sequencing tech-
nologies provide a potentially rich source of informa-
tion with which to detect breakpoints of clinically
relevant genomic rearrangements [1–4], but accurate
prediction of SVs with existing informatics tools re-
mains challenging [5–7].
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The most widely available deep-sequencing instru-
ments provide the sequences of nucleotides (reads)
along both (paired) ends of size-selected fragments of
sheared DNA. Some leading algorithms (e.g. BreakDancer)
use prior knowledge of this size distribution plus the
mapped locations and orientations of the read pairs in the
reference genome to detect SVs. This is called the “paired-
end” method (PE). Other leading algorithms (e.g. CREST)
discard paired information. Given an unpaired read,
these algorithms typically search for non-overlapping
sub-sequences mapping uniquely to different locations
(breakpoint regions) in the reference genome [8–11].
This approach is commonly known as the “split-read”
method (SR). Given the limited accuracies of PE and
SR and the computational challenges of de novo assem-
bly (DN), we explored methods for quantifying support
for nucleotide-resolved breakpoints of SVs without PE,
SR, or DN and applied our approach to recover SVs
from target-enriched deep-sequencing data. Next, we
appended our approach to PE for analysis of whole-
genome sequencing data.

Implementation
Generate library of candidate SVs
Figure 1 illustrates how in addition to split reads (*), other
chimeric reads that map to only one genomic location can
provide corroborative evidence for a SV connecting the
breakpoint regions A (green) and B (blue) in the test sam-
ple (box 1a). In the first step of our approach, all reads are
aligned to the reference genome. Reads with repetitive

sequence (orange), DNA sequencing errors (black), or
support for SVs (green & blue) align partially to the
reference genome. Recurrent alignment stop or start
coordinates indicate candidate breakpoints (box 1b).
Bases aligned to the reference comprise the “stacks”
while the remaining unaligned (soft-clipped) bases
make up the “tails.” Next, candidate breakpoint regions
are paired with each other to form a sequence “library”
of candidate junctions (box 1c).

Measure support for each candidate SV
Stack reads are then aligned to the library of candidate
SVs, and evidence for each candidate junction (C) is cal-
culated based on 1) the number of bases in the tails
aligned to the partner region, and 2) the quality scores
of the alignments. Specifically, the support (S) for each
C is the summation of the product of these two values
in all the stacked reads aligned to C according to the fol-
lowing equation:

S ¼
Xn

i¼1

Qi minflA;i; lB;ig

where Qi is the quality score and min{lA,i,lB,i} is the
lesser of the number of bases aligned to the i-th read (i
= 1,2,…,n) in A or B.
Based on this strategy, we developed a software tool

for Structural Variation detection by STAck and Tail
(SV-STAT). The tool predicts the presence of structural
variations in test samples relative to a reference gen-
ome. SV-STAT quantifies the amount of evidence for

Fig. 1 Use of chimeric and split reads to detect structural variation. Structural variation in the sample is depicted in box 1a as a fusion between
genomic regions A (green) and B (blue). Sequence differences in the sample come from structural variation, repetitive sequence (orange), and
base substitutions due to sequencing errors and SNPs (black). In box 1b, each group of partially aligned reads, or “stack,” corresponds to a
candidate breakpoint located at shared end (left: orange, black, and blue; right: green, yellow, and black). Pairwise combinations of breakpoints
form a library of candidate junctions (box 1c). All stacked reads are aligned to the library and are used to assess their support for the candidate
junctions. A read aligned to a candidate provides support equal to the product of the length of the “tail” and total alignment quality. The total
support for each candidate junction (box 1d) is the sum of supports from the stacked reads aligned to it
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junctions of SVs at base-pair resolution and predicts
SVs scoring above a user-defined threshold of support
(box 1d).

Results and Discussion
Evaluation on targeted deep-sequencing data
We applied SV-STAT to Roche/454 sequencing data
acquired from a custom hybridization array spanning 8
genomic regions recurrently rearranged in B-ALL (total of
1.3 Mb; see Additional file 1 for details). This array was
applied to diagnostic samples of three patients with B-
ALL (4, 65C, and 96C). Given only the sequence aligned
to the reference genome, and the canonical orders and
orientations of the breakpoint regions in the transloca-
tions (in Additional file 1: Figure S1), SV-STAT identified
base-pair resolved breakpoints of reciprocal t(1;19) and
t(4;11) translocations in samples 65C and 4, respectively.
This result agreed with the cytogenetic analysis; however,
no translocation was identified by SV-STAT in sample
96C, which was diagnosed with t(4;11)(q21;q23). We
adjusted the input to SV-STAT to consider candidate
inversions within the q arm of chromosome 11, which
revealed a 1 Mb inversion connecting lysine-specific
methyltransferase 2A (MLL) and ubiquitin specific
peptidase 2 (USP2), a novel fusion partner for MLL.
Overall, our analysis showed a total of five SVs, all of
which were confirmed by amplification of genomic
DNA across the junctions with polymerase chain reac-
tion (PCR; in Additional file 1: Figure S9).
To compare SV-STAT against the leading algorithms for

mapping assembly of SVs, we first tried to detect SVs in
the same dataset with CREST, which uses local de novo
assembly of reads from candidate breakpoint regions
followed by split-read mapping to match partnering break-
points [10]. CREST identified four of the five SVs identi-
fied by SV-STAT, and no additional SVs. Derivative
chromosome 11 from the t(4;11) reciprocal translocation
in sample 4 was not detected by CREST. R453Plus1Tool-
box, a split-read mapping assembler trained to detect
balanced translocations in target-enriched unpaired 454
deep-sequencing data [11], identified the same set of SVs
as SV-STAT.
We used simulated target-enriched deep-sequencing

data to evaluate further the predictive accuracies of each
algorithm. These data were generated (see Supplemental
methods in Additional file 1) based on translocations pre-
viously detected in B-ALL cases by conventional methods
(e.g. Sanger sequencing). First, we divided the simulated
data into a training set (4 samples; 7 translocations) and a
test set (23 samples; 31 translocations). We used the train-
ing set to define the threshold, above which SV-STAT
would predict SVs. This threshold (2.985045) was the
average between the support scores of the lowest-scoring
true positive (3.02119) and the false positive immediately

below it (2.9489) (in Additional file 1: Table S3). We
also trained SV-STAT to collapse similar predictions
into a single SV (see “SV-STAT post-processing” in
Additional file 1). Given the same training data, input
parameters for CREST were also chosen for highest
predictive accuracy. R453Plus1Toolbox did not accept
any optional parameters.
Next, we used the algorithms to predict which of the

four possible types of translocations (t(1;19), t(4;11),
t(9;22), or t(12;21)) was present in 23 additional test
samples. None of the algorithms produced a false posi-
tive. SV-STAT successfully predicted the translocation
type correctly for all 23 samples, which was significantly
more accurate than the predictions of both R453Plus1-
Toolbox (19/23 (83 %); p < 0.05), and CREST (18/23
(78 %); p < 0.005).
At the level of the individual translocations, there were

31 translocated and 153 normal chromosomes (23 sam-
ples and 8 chromosomes per sample). SV-STAT achieved
a sensitivity and positive predictive value (PPV) of 29/31
(93.5 %; Fig. 2). If the user chooses a threshold of 100 %
PPV in SV-STAT, sensitivity would be 90.3 %. Transloca-
tions 52 and 65 in samples 52-3 and 65-6 were not pre-
dicted by SV-STAT because the corresponding junction-
spanning reads aligned to candidate junctions with only
one correct breakpoint region. However, both of these
translocations occurred in samples with two reciprocal
rearrangements, and in each case SV-STAT correctly
predicted the second SV. Moreover, using BLAST
instead of BWA to align stacked reads to libraries in
samples 52-3 and 65-6 produced the correct alignments
for translocations 52 and 65. Predictions of incorrect
translocation types in samples 49 and 56 were accom-
panied with higher-scoring predictions of correct types
of translocations (in Additional file 1: Table S4). In
comparison, CREST’s sensitivity and specificity were
20/31 (64.5 %) and 20/20 (100 %), respectively, while
R453Plus1Toolbox also achieved 100 % PPV with a
sensitivity of 26/31 (83.9 %).

Application to Illumina paired-end whole-genome
sequencing data
While SV-STAT predicted SVs in Roche/454 data more
accurately than CREST within the B-ALL breakpoint
regions, the relative performances when applied to Illu-
mina paired-end sequencing data genome-wide remained
unknown. To perform the comparison between SV-STAT
and CREST (R453Plus1Toolbox did not accept Illumina
data), first we collected and aligned whole genome se-
quencing data [12] from a set of 6 childhood cancer pa-
tients enrolled in an ongoing familial cancer study [13]. In
order to complete a whole-genome analysis by SV-STAT,
we 1) limited the combinatorial space to pairs of candidate
breakpoints identified by BreakDancer, 2) obtained the
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orders and orientations of the flanking regions as sug-
gested by pairs of discordant reads within 1 Kb, 3) used a
linear function to adjust SV-STAT’s score for variable
coverage, and 4) excluded highly repetitive regions with
excessive coverage. Otherwise, SV-STAT proceeded with-
out significant modification.
SVs predicted by SV-STAT and CREST calls were

compared using a window of 500 bp on either side of
the SV event. Custom filters were applied to the raw
outputs of CREST (see Additional file 1). The average
number of calls per tumor sample was roughly similar
(SV-STAT: 673+/-91, CREST: 750+/-170), as was the
average intersection of SV events (SV-STAT: 85 %+/-2 %,
CREST: 86 %+/-3 %). Of the SV events called solely by
SV-STAT (n = 606), the deletions (n = 414) and insertions
(n = 104) were spread evenly across all chromosomes
(fraction of SVs/fraction of genome: 1.0+/-0.3). We used
Integrated Genome Viewer [14] to randomly inspect
events called uniquely by each algorithm, and found con-
sistent patterns. Specifically, CREST did not consider
paired-end information; therefore it tended to miss events
with the bulk of the soft-clipping at only one of the break-
points. Similarly, SV-STAT suffered from false negatives
within repetitive regions where the majority of the reads
aligned with single-nucleotide mismatches instead of soft-
clipping.
While the accuracy demonstrated by SV-STAT is

compelling, we have not addressed the detection of
novel insertions longer than or approaching the lengths
of the analyzed reads. Furthermore, the time complex-
ity of SV-STAT’s underlying algorithm is polynomial, as

opposed to the linear time complexities of split-read and
paired-end methods. However, the algorithm is readily
appended to paired-end analysis, and, in on-going studies,
we routinely deploy it for concurrent analysis of larger
numbers (>100) of whole-genomes. Furthermore, we built
SV-STAT with usability and extensibility in mind. The
code is freely available with unit tests, and the software
performs checks for its minimal dependencies when
launched without parameters.
With further development, we expect to generalize

SV-STAT for routine genotyping and discovery of clinic-
ally relevant SVs across a wider range of human diseases.
In particular, we will extend the software for capability
to distinguish germline from somatic SVs. Complex SVs
such as those generated by replication-fork stalling [15]
where multiple breakpoints occur in close proximity
could also be detected with recursive application of SV-
STAT when additional soft-clipping remains following
alignment of the stacked reads to the SV. Lastly, as a
timesaving measure for this study, we used BreakDancer
for the initial pairs of candidate breakpoints, but we will
remove this dependency in the future, relying instead
on the discordant read pairs obtained directly from
the alignments.

Conclusions
Similar approaches to measure support for candidate
junctions in unpaired deep-sequencing data were re-
ported [16–18]. SV-STAT extends these methods by
adjusting a chimeric read’s support of an SV by 1) the
number of its soft-clipped bases and 2) the quality of its

Fig. 2 SV-STAT is more accurate than alternative methods for determining base-pair resolved breakpoints of translocations given unpaired Roche/
454 sequencing data simulated from DNA fusions previously reported in pre-B ALL cases. Samples are arrayed in rows colored for translocations
t(4;11) (green), t(1;19) (purple), t(9;22) (orange), and t(12;21) (blue). The first three columns are predictions of SVs from R453Plus1Toolbox [15], CREST
[14], and SV-STAT. Grey indicates a false negative, or non-predicted translocation. A color with an “X” through it indicates a false positive, or
wrongly-predicted translocation. Columns of boxplots indicate support (log10(S)) for candidate junctions, one column per type of SV. Black vertical
dashes indicate median, rectangles indicate the interquartile (25–75 %) range, and upper and lower whiskers represent the boundaries of the 90 %
and 10 % percentiles, respectively. Shaded regions indicate sufficient support for SV-STAT to predict SVs
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alignment to the junction. Our results demonstrate the
current version of SV-STAT is valuable in conjunction
with DNA sequencing and existing tools for accurate
genotyping and discovery of recurrent and novel SVs,
respectively. In particular, SV-STAT’s scoring metric is
applicable to alignments of test reads given any collection
of suspected SVs, regardless of the method of assembly.
Furthermore, detecting the inversion in 454/Roche data
and the insertions and deletions genome-wide in Illumina
data illustrates the capability of SV-STAT to interrogate a
wide range of target sizes and to predict a diversity of
candidate junction types across multiple platforms.

Availability and requirements

� Project name: SV-STAT
� Project home page: https://gitorious.org/svstat/svstat
� Operating system(s): Unix-based
� Programming language: Perl, Python, and bash
� Other requirements: cdbfasta, bwa, picard, samtools,

bioperl, and bedtools
� License: GPLv3

Additional file

Additional file 1: Supplemental implementation, methods, figures, and
tables. (DOCX 1382 kb)
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