Fronczuk et al. Source Code for Biology and Medicine (2015) 10:11
DOI 10.1186/513029-015-0043-5

SOURCE CODE FOR
BIOLOGY AND MEDICINE

RESEARCH Open Access

CyNetworkBMA: a Cytoscape app for

@ CrossMark

inferring gene regulatory networks

Maciej Fronczuk!, Adrian E. Raftery? and Ka Yee Yeung'”

Abstract

cytoscape.org/apps/cynetworkbma.

Background: Inference of gene networks from expression data is an important problem in computational biology.
Many algorithms have been proposed for solving the problem efficiently. However, many of the available
implementations are programming libraries that require users to write code, which limits their accessibility.

Results: We have developed a tool called CyNetworkBMA for inferring gene networks from expression data that
integrates with Cytoscape. Our application offers a graphical user interface for networkBMA, an efficient
implementation of Bayesian Model Averaging methods for network construction. The client-server architecture of
CyNetworkBMA makes it possible to distribute or centralize computation depending on user needs.

Conclusions: CyNetworkBMA is an easy-to-use tool that makes network inference accessible to non-programmers
through seamless integration with Cytoscape. CyNetworkBMA is available on the Cytoscape App Store at http://apps.

Background

Networks in the form of directed and undirected graphs
are commonly used to model complex interactions
between biological entities in a living organism. The
construction of gene regulatory networks from omics
data is a fundamental problem in computational biology
[1]. Recent advances in high-throughput methods have
enabled us to rapidly quantify expression levels of large
numbers of genes at low cost. This new abundance of big
data sources highlights unique challenges in turning such
data into useful information on regulatory relationships.
The high dimensionality of expression data has spurred
the search for robust and computationally efficient net-
work inference algorithms.

Network inference is a computationally intensive pro-
cess and different approaches have been shown to work
well with different types of data sets [2, 3]. Bayesian net-
works [4] have been used to construct gene networks
using gene expression data [5, 6]. Algorithms based on
Bayesian networks that integrate multiple data sources
have also been developed. For example, Zhu et al. inte-
grated gene expression, DNA variation, DNA protein
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binding, protein metabolite interaction, and protein pro-
tein interaction data using Bayesian networks [7, 8]. Other
methods rank edges based on correlation or mutual infor-
mation [9, 10]. Regression-based algorithms formulate
network inference as a variable selection problem with
the goal to search for candidate regulators (i.e., parent
nodes) for each target gene, for example [11-13]. In par-
ticular, we previously showed the effectiveness of Bayesian
Model Averaging (BMA) regression methods using time
series data, in which snapshots of expression levels are
taken at a few regular intervals after exposure to a drug
perturbation [14]. Later work highlighted the ability of
BMA to integrate external biological knowledge in the
network building process to improve prediction accuracy
[15]. Most recently, we have introduced the ScanBMA
method for searching the model space, which signifi-
cantly improves prediction accuracy and computational
efficiency [16]. These BMA network inference methods
are implemented in the networkBMA package [17] as part
of Bioconductor [18].

Many implementations of network inference algorithms
are only available as libraries or packages that require
knowledge of a programming language. This limits the
number of potential users in the biomedical community.
For instance, users need to be familar with the R pro-
gramming language to use the software implementations
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of network inference methods in Bioconductor such as
minet [19], Genenet [20], predictionet [21], TDARACNE
[22], networkBMA [17]. Relatively few options exist for
researchers looking for easy-to-use network generation
tools that do not require writing code. One notable exam-
ple is GRN2SBML [23] which provides both a R package
and a graphical user interface. GRN2SBML represents
networks using the XML-based systems biology markup
language (SBML) [24] and can be used in conjunction with
three network inference algorithms including NetGenera-
tor [25], TILAR [26] and ExTILAR [27].

As another example, Cyni Toolbox (http://www.
proteomics.fr/Sysbio/CyniProject) is a Cytoscape app
that offers several network inference algorithms based on
correlation, mutual information, and other approaches.
Cyni Toolbox leverages rich functionality offered by
Cytoscape, a platform for visualizing complex networks
[28]. Cytoscape allows users to load various types of
interaction data sets for modeling and analysis and inte-
grate them with additional metadata using a graphical
interface. One of the most powerful features of Cytoscape
is its extensibility. Dozens of apps provide extra function-
ality in areas such as network generation, data import,
network analysis, and many more [29].

Our contributions

In this paper, we present CyNetworkBMA, a Cytoscape
app that brings the powerful features of networkBMA to
a wider biomedical community. CyNetworkBMA offers
an alternative, GUI-based way of running BMA network
inference, without the need to write even a single line of
code. To construct a network from expression data, the
user simply needs to load input files into Cytoscape and
select a few options from a dialog window. The appli-
cation provides default values for parameters required
by networkBMA, but users can override them using the
advanced options dialog. The input data can represent
static expression levels as well as time series. CyNet-
workBMA can also provide an assessment of the gen-
erated network if reference regulator-target gene pairs
are available from the literature or other data sources.
CyNetworkBMA can generate a large number of com-
mon assessment statistics, such as sensitivity, specificity,
precision and recall. It can also plot ROC and precision-
recall curves for the inferred network model and export
assessment results to a file.

Figure 1 presents the overall application flow. A detailed
user guide containing screen shots and step-by-step
instructions for installing and using CyNetworkBMA is
available as Additional file 1.

Methods
CyNetworkBMA is implemented in Java as an OSGi
bundle app compatible with Cytoscape 3.1.0 and later.
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It uses Rserve to integrate with R over a binary pro-
tocol on top of TCP/IP [30]. This means Cytoscape
and R run in separate processes, potentially on differ-
ent machines and platforms. CyNetworkBMA requires
certain packages to be installed on the R instance: net-
workBMA for network inference and assessment, igraph
[31] for algorithms used in removing potential cycles
from networks, and Rserve for exposing R services over
TCP/IP.

For large networks, the inference algorithm can run
for a long time and it would be impractical to block
Cytoscape until the execution finishes. Therefore, CyNet-
workBMA runs each network inference job in a dedicated
background thread. The user can use Cytoscape normally
while a job is running. The app will display a notification
when the job finishes or encounters an error. Multiple jobs
can run in parallel at any given time. However, an R server
running on Windows can handle only one connection at a
time because of a limitation of Rserve implementation for
that platform.

Results and discussion

Loading input data

We will demonstrate the functionality of CyNetworkBMA
by using one of the data sets from DREAM4 In Silico Net-
work Challenge [32-34], specifically, the time series file
for the first network of size 100. This sample input file
is available as Additional file 2. CyNetworkBMA requires
input data sets to be in the form of unassigned Cytoscape
tables, so the first step is loading the input file into a
table. Each row in a Cytoscape table has to have a unique
key. If an input data file does not have a key column, we
must add it before the file can be imported. Keys can
be of any data type as long as each value is unique. A
simple sequence number is sufficient. CyNetworkBMA
assumes that input data contain gene expression mea-
surements only. If a file contains additional columns (e.g.,
time points), the user has the option to exclude these
columns at the time of import or in the network inference
step.

Network inference

Once the file is loaded, we select the network inference
option from the main menu. This produces a dialog win-
dow that allows us to choose the data source and specify
the input format (see Fig. 2). At this time, the user also
has the option to choose columns used in the analysis. In
the DREAM4 example file, columns represent genes and
rows are organized into 10 time series, each with 21 time
points. CyNetworkBMA relies on the order of data points
for implicit time information. We can view and change
parameters controlling the BMA algorithm by going to
the advanced dialog (see Fig. 3). The application provides
default values that give reasonable compromise between
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Fig. 1 Network inference and assessment workflow. A diagram illustrating the full CyNetworkBMA application flow, from gene expression data to a

the breadth of model search and execution time. However,
in some cases, such as a particularly large data set, it may
be beneficial to further restrict the search space.

The advanced dialog also allows the user to provide
external information by specifying prior probabilities
of regulatory relationships as a matrix. In the absence
of prior probabilities of relationships between specific
regulator-gene pairs, the user can specify a constant size
prior, indicating the expected network density.

After we click OK on the main inference dialog, CyNet-
workBMA submits a new job to the server whose address
we specified. When the job is finished, the application will
display the inferred network. In the meantime, we can
use other features in Cytoscape normally. In the DREAM4
example, we run the inference algorithm with default
parameters. The computation takes under 20 s on a
computer with dual-core Intel 2.5 GHz CPU and 4 GB
of memory. The resulting network has 97 nodes and 172
directed edges. CyNetworkBMA calculates the in- and
outdegree of each node and stores them in a node table.
It also provides the posterior probability of each edge in

the network. In our example, we thresholded the esdges at
50 %, so the posterior probabilities of the inferred edges
are between 0.5 and 1.

Network assessment

DREAM4 also provides the underlying true networks
used to generate expression data (“gold standard”). CyNet-
workBMA can leverage such reference information to
assess the quality of a predicted network. To use this
feature, we first generated a new network from the file
we used before, this time setting the posterior prob-
ability threshold in the advanced options dialog to 0.
The resulting network now contained many more edges,
with a majority of them having very low probabilities.
Note that the Occam’s window algorithm used returns
posterior probabilities equal to zero for many edges,
because as an approximation edges with very low poste-
rior probabilities are excluded. Thus a posterior proba-
bility threshold of zero is effectively a very small positive
threshold, determined by the control parameters of the
Occam’s window algorithm.
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We can import the gold standard as a text file into
Cytoscape. The assessment feature in CyNetworkBMA
accounts for incomplete knowledge in which the true
underlying network is not fully known. This is almost
always the case with real data, in which only a subset
of interactions is documented in the literature. How-
ever, in the case of synthetic data such as DREAM4, the
user should make sure that all nonexistent edges in the
reference network are removed before import.

Once the reference network is loaded, we open the
assessment dialog and select the inferred network and
the reference from their respective drop-down lists. Every
edge in our network under assessment has a posterior
probability assigned to it. When a network does not have
such probabilities on the edges, the application assumes
all edges have probabilities equal to 1. After we click
OK, CyNetworkBMA runs the assessment function and
presents a window with three tabs (Fig. 4). The first tab
shows various assessment statistics for a given proba-
bility threshold, the value of which can be changed by
moving a slider. The user can export the underlying data
to a Cytoscape table, from where they can be saved to
a file (see Additional file 3). The other two tabs show
ROC and precision-recall curves, respectively, and their
corresponding area under curve (AUC). The curves can
also be exported to an image file. Our example net-
work has an area under ROC curve of around 0.74. For
networks inferred using the other four 100-gene data
sets from DREAM4, this value ranges from 0.65-0.72.
Table 1 shows other assessment scores for the example
network.

Performance evaluation
We compared the performance of our BMA network
inference methods to other leading methods in the litera-
ture [14—16]. In particular, we evaluated the performance
of our network inference methods, ScanBMA and iBMA,
using both yeast data and simulated data. On a time
series yeast data, we showed that ScanBMA produced the
highest accuracy and area under the ROC curve, while
iBMA produced the highest area under the precision-
recall curves when compared to another multivariate vari-
able selection method (LASSO as implemented in the
R package glmnet [35]), as well as several mutual infor-
mation based methods (CLR, MRNET and ARACNE as
implemented in the Bioconductor package minet [19]).
On the simulated DREAM4 time series data consisting of
10 genes [32—34], we showed that ScanBMA again out-
performed LASSO, CLR, MRNET, ARACNE in addition
to Bayesian networks in terms of the area under the ROC
and precision-recall curves. Please refer to Tables 1, 4, 5 in
Young et al. for details.

Our latest software tool, CyNetworkBMA, implements
the same network inference methods (ScanBMA, iBMA)
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at the back-end, while adding a graphical user interface to
the front-end. CyNetworkBMA allows the user to leverage
the functional capabilities of cytoscape, including visualiz-
ing large complex networks and integrating networks with
annotations.

Conclusions

We have developed CyNetworkBMA to make BMA net-
work inference accessible to a wide user base by integrat-
ing networkBMA with Cytoscape. CyNetworkBMA takes
advantage of Cytoscape’s support for multiple platforms,

Table 1 Selected assessment measures for a network generated
from the example DREAM4 data set

Cutoff 50 % 95 % 99 %
Accuracy 0.9478 0.9504 0.9507
Precision 045 0.5085 0.52
Recall 0.2045 0.1705 0.1477
F1 score 0.2813 0.2553 0.2301

including Microsoft Windows, Linux and Mac OS X. The
BMA algorithm itself can run on a local or remote R
server. Multiple users can therefore submit jobs to a cen-
tral server without having to install R on their machines.
On the other hand, a single user can submit different jobs
to different servers for parallel execution. Our application
addresses both the usability and scalability of inferring
gene networks from omics data.

Availability and requirements

e Project name: CyNetworkBMA

e Project home page: http://webdatascience.github.
io/CyNetworkBMA
Operating system(s): Platform independent
Programming language: Java, R
Other requirements: Cytoscape 3.1.0 or higher, R
3.0 or higher, Java 1.6 or higher, networkBMA
package from Bioconductor, Rserve and igraph
packages from CRAN installed.

e License: GNU GPL v2
Any restrictions to use by non-academics: None
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We tested CyNetworkBMA on the following opera-
tion systems: Mac OS 10.8, 10.9, Windows 8, Windows
10, Ubuntu 12.04 and 14.04. Our latest testing includes
Cytoscape 3.2.1, Java 1.8, R 3.2.1.

Additional files

Additinal file 1: User Manual. This document provides screen shots and
step-by-step guide for installing and using CyNetworkBMA. (PDF 157 kb)

Additinal file 2: Sample input data file. This is a text file containing the
dataset “insilico_size100_1_timeseries.txt" was derived from DREAM 4
Challenge 2 [32, 33], and is publicly available from our project home page
(http://webdatascience.github.io/CyNetworkBMA). (TXT 204 kb)

Additinal file 3: Generated edge list. The CyNetworkBMA output
consisting of a list of edges and their probabilities that represent a gene
network generated from the example DREAM4 input data set (available as
Additional file 2). This output file corresponding to Additional file 3 is a text
file consisting of three columns: parent, child, posterior probabilities. Each
line represents a directed edge from parent node to child node with the
posterior probability in the third column. We provide this file so that the
user can verify the examples shown in this manuscript. (CSV 345 kb)
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