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Molecular-docking study of malaria drug
target enzyme transketolase in Plasmodium
falciparum 3D7 portends the novel
approach to its treatment
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Abstract

Background: Malaria has been a major life threatening mosquito borne disease from long since. Unavailability of
any effective vaccine and recent emergence of multi drug resistant strains of malaria pathogen Plasmodium
falciparum continues to cause persistent deaths in the tropical and sub-tropical region. As a result, demands for
new targets for more effective anti-malarial drugs are escalating. Transketolase is an enzyme of the pentose
phosphate pathway; a novel pathway which is involved in energy generation and nucleic acid synthesis. Moreover,
significant difference in homology between Plasmodium falciparum transketolase (Pftk) and human (Homo sapiens)
transketolase makes it a suitable candidate for drug therapy. Our present study is aimed to predict the 3D structure of
Plasmodium falciparum transketolase and design an inhibitor against it.

Results: The primary and secondary structural features of the protein is calculated by ProtParam and SOPMA
respectively which revealed the protein is composed of 43.3 % alpha helix and 33.04 % random coils along with
15.62 % extended strands, 8.04 % beta turns. The three dimensional structure of the transketolase is constructed
using homology modeling tool MODELLAR utilizing several available transketolase structures as templates. The
structure is then subjected to deep optimization and validated by structure validation tools PROCHECK, VERIFY
3D, ERRAT, QMEAN. The predicted model scored 0.74 for global model reliability in PROCHECK analysis, which
ensures the quality of the model. According to VERIFY 3D the predicted model scored 0.77 which determines
good environmental profile along with ERRAT score of 78.313 which is below 95 % rejection limit. Protein-protein
and residue–residue interaction networks are generated by STRING and RING server respectively. CASTp server
was used to analyze active sites and His 109, Asn 108 and His 515 are found to be more positive site to dock the
substrate, in addition molecular docking simulation with Autodock vina determined the estimated free energy of
molecular binding was of −6.6 kcal/mol for most favorable binding of 6′-Methyl-Thiamin Diphosphate.

Conclusion: This predicted structure of Pftk will serve first hand in the future development of effective Pftk
inhibitors with potential anti-malarial activity. However, this is a preliminary study of designing an inhibitor
against Plasmodium falciparum 3D7; the results await justification by in vitro and in vivo experimentations.
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Background
The genus Plasmodium is responsible pathogen for malarial
infection in human and other mammalian species [1]. This
disease exists in most of the tropical and subtropical
regions including Asia, America and Sub-Saharan Africa.
Though there are four species (Plasmodium falciparum,
Plasmodium vivax, Plasmodium ovale, and Plasmodium
malariae) have been detected from the Plasmodium genus
for causing the disease, the most responsible and virulent
among them is Plasmodium falciparum [2–5]. It has a wide
host range and is responsible for causing the severe form of
malaria. Malaria is transmitted in humans by the Anopheles
mosquito. The infected Anopheles mosquito acts as a
vector and harbors the Plasmodium [6]. Infected indi-
vidual may suffer from fever, neurological symptoms,
opisthotonous, seizures and even can progress to coma
or death. According to World Health Organization
(WHO) about 1.2 million people were killed in 2010
due to malaria and another 219 million cases of this
disease were documented [7].
Recent rise in the death rate due to malaria is con-

cerning alarmingly as traditional treatment is becoming
obsolete. High price and problems related with distri-
bution of drug to malaria affected poor communities
(endemic areas) especially in Sub-Saharan Africa made
the situation worse. Considering the scientific ground
eradication of malaria is supposed to be a complex one.
Cases of anti-malarial drug resistance have been growing
expotentially as well as more cases are being recorded with
P. falciparum strain’s drug-resistance that is accounted for
about 60 percent of death [8–11]. Another challenge with
malarial extermination is that a single-cell parasite is good
enough for causing it as, it has the ability to escape human
immune system. Even if a patient recovers and contracts
from malaria, there is no guarantee that he or she will not
be infected by malaria in future. These complications make
it difficult to establish a proven vaccine for malaria. In case
of other viral disease like measles, vaccine that carries a
weakened strain of the virus has been injected into the
blood stream which allows the body to create immunity to
that virus in future infection. With malaria parasite, human
body cannot develop this type of immunity as the malaria
parasite go thorough modifications continuously [12]. Con-
sidering all these reasons, it is crucial to find out a new tool
that would allow the scientist community to stay one step
ahead of more affordable drugs and practical formulations.
With the completion of the genome sequencing of P.

falciparum, it has been revealed that working with spe-
cific metabolic pathway of the parasite could pave a way
for new mode of action against it. In P. falciparum one
of the most fundamental metabolic pathways is the pen-
tose phosphate pathway (PPP) which has been reported
to play active role in P. falciparum infected erythrocytes
[13, 14]. It can generate reducing equivalents in the form
of NADPH. This pathway has an oxidative and a non-
oxidative arm where the non-oxidative arm is operated
by an enzyme, named transketolase. Transketolase serves
different roles in malarial parasite including pentose sugar
supply for nucleotide synthesis, helps in replication and
survival of the parasite etc. Moreover, the biochemical
analysis of Plasmodium falciparum transketolase (PfTk)
shows least homology with its human host [15]. All these
make it a potential target for treating malaria.
The preliminary aim of the non-oxidative arm of the PPP

is to generate ribose-5-phosphate (R5P). But when two
carbon groups are transferred from xylulose-5-phosphate
to ribose-5-phosphate it generates glyceraldehyde-3-
phosphate (G3P), fructose-3-phosphate (F6P) and
sedoheptulose-7-phosphate. This transfer reaction is
catalyzed by transketolase and as a co-factor it requires
thiamine diphosphate (ThDP). Transketolase is also re-
sponsible for the production of erythrose-4-phosphate
from F6P and G3P in the absence transaldolase which
is another enzyme of the non-oxidative arm [16]. The
R5P is used for the synthesis of nucleotides and nucleic
acids. Therefore, the non-oxidative part of PPP is dir-
ectly or indirectly responsible for generating more than
80 % of the parasite nucleic acid [17]. Moreover,
Erythrose-4-phosphate is required as a key metabolite
in the shikimate pathway. It produces chorismate which
is an aromatic precursor. This can be further metabolized
into other aromatic compounds such as folate. As shi-
kimate pathway is present in Plasmodium falciparum
and is absent in mammals, the enzymes of the pathway
can be strongly considered as an effective drug target
against malaria [18–21].
In the current study Plasmodium falciparum transketo-

lase was subjected to extensive computational study to
determine its chemical and structural properties along
with its protein -protein interaction network. The study
also predicted good quality model of Pftk using homology
modeling techniques and subsequent computer aided
active site prediction and docking simulation studies for
the development of an effective drug against Plasmodium
falciparum 3D7.

Materials and methods
Sequence retrieval
The amino acid sequences of transketolase [Accession
XP_966097.1] of P. falciparum 3D7 were retrieved from
the protein database of National Center for Biotechnology
Information (NCBI). The protein is 672 amino acids long
and used for further analysis in the current study.

Primary structure prediction
ExPasy’s ProtParam tool [22] was utilized to calculate the
physico-chemical characteristics of the protein. Theoretical
isoelectric point (pI), molecular weight, total number of



Table 1 Different physico-chemical properties of transketolase
(Plasmodium falciparum 3D7)

Parameter Value

Molecular weight 75815.2

Extinction coefficients 82460

Abs 0.1 % (=1 g/l) 1.088, assuming all pairs of Cys
residues form cystines

Ext. coefficient 81710

Abs 0.1 % (=1 g/l) 1.078, assuming all Cys residues are reduced

Theoretical pI 6.50

Total number of negatively charged residues (Asp + Glu): 76

Total number of positively charged residues (Arg + Lys): 70

Instability index 38

Grand average of hydropathicity (GRAVY) -0.402

Aliphatic index 82.89

Table 2 Secondary structure analysis through SOPMA of
transketolase (Plasmodium falciparum 3D7)

Secondary Structure Percentage

Alpha helix (Hh) 43.30 %

Extended strand (Ee) : 15.62 %

Beta turn (Tt) : 8.04 %

Random coil (Cc) : 33.04 %

310 Helix 0.00 %

π helix 0.00 %

Isolated β-bridge 0.00 %

Bend 0.00 %
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positive and negative residues, extinction coefficient [23],
instability index [24], aliphatic index [25] and grand average
hydropathicity (GRAVY) of the protein were calculated
using the default parameters.

Secondary structure analysis
Secondary structure was predicted by using the self-
optimized prediction method with alignment (SOPMA).
Protein’s secondary structural properties are including α
helix, 310 helix, Pi helix, Beta Bridge, Extended strand,
Bend region, Beta turns, Random coil, Ambiguous states
and other states [26].

Disease causing region prediction
GlobPlot 2.3 was used to find out the disease causing
regions of the protein. This web service looks for
order/globularity or disorder tendency in the query
protein based on a running sum of the propensity for
an amino acid to be in ordered or disordered state by
searching domain databases and known disorders in
proteins [27].

Template selection
To find out suitable template for the protein PSI
(Position Specific Iterative) BLAST is performed against
PDB database considering the default parameters except
PSI-BLAST threshold to 0.0001. Total three iterations of
PSI-BLAST were considered as the BLAST search re-
sults converged after three iterations [28]. The PDB
structures of 1ITZ_A, 1AY0, 1TKA, 1TRK were selected
as template structure.

Template sequence alignment
Query sequence and the best template sequence according
to identity parameter were aligned by Clustal Omega, the
latest of Clustal family. Clustal omega algorithm takes in-
put of an amino acid sequence then produces a pairwise
alignment using k-tuple method followed by sequence
clustering through mBed method and k-means clustering
method. Final output of multiple sequence alignment is
done by HHalign package, which aligns two profile hidden
Markov models [29].

Homology modeling
The model was generated using a comparative modeling
program MODELLER9v13 [30] which generates a refined
three dimensional homology model of a protein sequence
based on a given sequence alignment and selected template.
Homology modeling is able to produce high quality models
provided that the query and template molecule are closely
related. But model quality can decrease if sequence identity
of target and template sequence falls below 20 % though it’s
proven that protein structures are more conserved than
their sequences [31]. The MODELLER generated five
structures with 1ITZ_A, 1AY0, 1TKA, 1TRK as template
structures from which the best one is selected on the basis
of lowest discrete optimized protein energy (DOPE) score
and highest GA341 score [32].

Structure refinement
Modrefiner [33] is an algorithm for atomic-level, high-
resolution protein structure refinement, which can start
from C-alpha trace, main-chain model or full-atomic
model. Modrefiner refine protein structures from Cα traces
based on a two-step atomic-level energy minimization.
The main-chain structures are first constructed from
initial Cα traces and the side-chain rotamers are then
refined together with the backbone atoms with the
use of a composite physics and knowledge-based force
field.

Verification and validation of the structure
The accuracy and stereo chemical feature of the predicted
model was calculated with PROCHECK [34] by Rama-
chandran Plot analysis [35] which was done through



Fig. 1 Globplot result shows the disease causing regions of transketolase

Fig. 2 Sequence alignment of the template protein and the query protein sequences
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Fig. 3 Refined model of Transketolase
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“Protein structure and model assessment tools” of
SWISS-MODEL workspace. The best model was se-
lected based on overall G-factor, number of residues
in core, allowed, generously allowed and disallowed
regions. Verify3D [36], ERRAT [37] and QMEAN [38]
were used for additional analysis of the selected
model. Finally, the protein was visualized by Swiss-
PDB Viewer [39].
Table 3 Ramachandran plot of transketolase from Plasmodium
falciparum 3D7

Ramachandran plot statistics Transketolase
Network interaction
STRING [40] was used to identify protein-protein
interaction. STRING is a biological database which is
used to construct Protein-protein interaction network
for different known and predicted protein interactions.
At present, string database covers up to 5,214,234 proteins
from 1133 organisms [41]. RING (Residue Interaction
Network Generator) was used to analyze residue-residue
interaction of transketolase and generated network was
visualized by Cytoscape 3.1.0 [42].
Residue %

Residues in the most favored regions [A,B,L] 547 92.7

Residues in the additional allowed regions [a,b,l,p] 40 6.8

Residues in the generously allowed regions [a,b,l,p] 3 0.5

Residues in the disallowed regions [xx] 0 0.0

Number of non-glycine and non-proline residues 590 100.0

Number of end residues (excl. Gly and Pro) 2

Number of glycine residues 49

Number of proline residues 31

Total number of residues 672
Active site analysis
After modeling the three dimensional structure of
transketolase, the probable binding sites of the protein
was searched based on the structural association of
template and the model construct with Computed Atlas
of Surface Topography of proteins (CASTp) [43] server.
CASTp was used to recognize and determine the bind-
ing sites, surface structural pockets, active sites, area,
shape and volume of every pocket and internal cavities
of proteins. It could be also used to calculate the
number, boundary of mouth openings of every pocket,
molecular reachable surface and area [44]. Active site
analysis provides a significant insight of the docking
simulation study.

Docking simulation study
In silico docking simulation study, was carried out to
recognize the inhibiting potential against Transketolase
enzyme. Docking study was performed by Autodock
vina [45]. Before starting the docking stimulation study,
transketolase was modified by adding polar hydrogen.
A grid box (Box size: 76 × 76 × 76 Å and box center:
11 × 90.5 × 57.5 for x, y, and z, respectively) was
designed in which nine binding modes were generated
for the most favorable bindings. The overall combined



Fig. 4 Ramachandran plot analysis of transketolase. Here, red region indicates favored region, yellow region for allowed and light yellow shows
generously allowed region and white for disallowed region. Phi and Psi angels determine torsion angels

Hasan et al. Source Code for Biology and Medicine  (2015) 10:7 Page 6 of 14
binding with Transketolase and 6′-Methyl-Thiamin Di-
phosphate was obtained by using PyMOL (The PyMOL
Molecular Graphics System, Version 1.5.0.4, Schrödinger,
LLC).
Results
Primary and Secondary structure analysis
ProtParam computes several parameters analysing the
primary structure of the protein sequence. This parame-
ters are the deciding functions of the proteins stability
and function. The primary structure of a protein en-
codes motifs that are of functional importance, structure
Fig. 5 Verify 3D graph of transketolase (P. falciparum 3D7)
and function are correlated for any biological molecule.
Secondary structural features of the protein are predicted
by SOPMA algorithm. Both the results of primary and
secondary structure analysis of the protein are presented
in Table 1 and Table 2 respectively.
Disease causing region prediction
12 disorder regions were identified by GlobPlot. The
result is shown in Fig. 1. The regions are from amino
acid number 1-10, 29-36, 97-125, 258-262, 341-361,
381-388, 428-435, 469-476, 493-499, 504-514, 552-559
and 614-619.



Fig. 6 ERRAT generated result of transketolase where 95 % indicates rejection limit

Fig. 7 Graphical presentation of estimation of absolute quality of
model transketolase (P. falciparum 3D7). Here the dark zone indicates
that the model has a score <1. Models considered good are expected
to position in the dark zone. The red marker shows a generated target
model, which are considered to be a good model according to their
position near or in the dark zone
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Allignment of target sequence
Allignment between the target sequences and selected
sequence was determined by clustal omega (Fig. 2). Clustal
omega algorithm aligns sequences faster and more accur-
ately. A good alignment of template sequences along with
closely related template models are necessary for predict-
ing a better quality model of the query protein through
homology modelling.

Model building
MODELLER 9.13 was used to determine the three dimen-
sional (3D) model of the targeted protein. 3D protein
structures provide valuable insights into the molecular
basis of protein function. MODELLER generated result
shows transketolase contains <90 % residues in favored
region and 0.8 % of amino acids in the disallowed region.

Refinement of the predicted model
MODELLER generated model was considered for further
refinement through Modrefiner to gain a better quality
structure. An increase of about 4 % residue in favored
region is seen and other parameters acquired better
acceptable value. The refined model is depicted in Fig. 3.

Model verification and validation
Ramachandran plot was done by PROCHECK to measure
the accuracy of protein model. The results were narrated
in Table 3 and Fig. 4. The profile score above zero in the
Verify3D graph correspond to the acceptable environment
of the model, in Fig. 5. ERRAT; which verifies protein
structure, generated result depicted in Fig. 6. QMEAN ser-
ver was used for the verification of protein model which is
shown in Fig. 7.

Network generation
The protein-protein interacting partners of Transketolase
of Plasmodium falciparum 3D7 was determined by
STRING (Fig. 8). Residue interaction network was
depicted in Fig. 9.
Active site prediction
The active site of transketolase was predicted by using
CASTp server. The calculated result shows that the
amino acid position 46-515 is predicted to be conserved
with the active site. At this point, it is considered that
the experimental binding sites of 6′-Methyl-Thiamin Di-
phosphate include some of the residues as stated above.
Therefore in our study His 109, Asn 108 and His 515
are chosen as the more positive sites to dock the sub-
strate. The number of pockets, their area and volume
are graphically represented (Fig. 10).

Docking results analysis
The exploration for the top ways is to fit ligand mole-
cules into transketolase structure, using Autodock Vina



Fig. 8 Protein-Protein Interaction network of transketolase (Plasmodium falciparum 3D7) detected through STRING

Fig. 9 Residue interaction network generated by RING was visualized by Cytoscape. Here, nodes represent amino acids and edges represent interaction
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Fig. 10 a The table of the area and the volume for different active sites of transketolase. b The Three Dimensional structure of the best active
site. c Active site analysis by CASTp server. Green color illustrates the active site position from 46 to 515 with the beta-sheet in connecting them
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resulted in docking files that included complete records
of docking. The obtained log file is given in Table 4.
The resemblance of docked structures was computed
by calculating the root mean square deviation (RMSD)
between the coordinates of the atoms and forming the
clusters of the conformations based on the RMSD
values. The lowest binding energy conformation in all
cluster were considered as the most favorable docking
pose. Binding energies that are reported signify the sum
Table 4 Binding energies (kcal/mol) of the compounds along with
Vina tool

Compound 1 2 3

6′-Methyl-Thiamin Diphosphate -6.6 -6.4 -6.0

dist from best mode rmsd l.b. 0.000 3.252 2.378

dist from best mode rmsd u.b. 0.000 4.402 5.402
of the total intermolecular energy, total internal energy
and torsional free energy minus the energy of the unbound
system. The top nine ligands conformation were generated
based on the energy value through Autodock Vina.

Discussion
Plasmodium falciparum transketolase (pftk) is an
attractive target site candidate for anti-malarial drug dis-
covery. As the crystal structure of Pftk is unavailable, the
their Root Mean Square Distance value obtained from Autodock

4 5 6 7 8 9

-5.4 -5.4 -5.4 -5.1 -5.1 -5.0

3.123 4.875 2.724 5.149 25.545 26.623

6.050 5.978 4.884 7.100 28.035 28.663



Table 5 Comparative docking study of the ligand to the target

Ligand Protein No. of H
bonds

Interacting residues

6′-Methyl-Thiamin
Diphosphate

Transketolase 5 His 109, Asn 108,
His 515,
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homology modeling technique stands out as an excellent
and powerful alternative to predict a reliable 3-D struc-
ture of the protein.
A physico-chemical analysis of the protein sequence

was done by the Expasy server’s ProtParam tool. It
revealed an instability index of 38.00, which denotes, this
protein will be stable in-vitro because a value over 40 is
considered unstable. The instability index is estimated
from a statistical analysis of 12 unstable and 32 stable
proteins where it was found that occurrence of certain
dipeptides are significantly different among stable and
unstable proteins. This protein was also predicted to
have high aliphatic index; it is the total volume occupied
by aliphatic side chains and higher value is considered a
positive factor for increased thermo stability. Along
with high extinction coefficient and negative GRAVY,
the extents of other parameters imply the stability of
the protein [46].
Results generated by secondary structure prediction

tool SOPMA showed the enzyme is dominated by
43.3 % alpha helix and 33.04 % random coils along with
15.62 % extended strands and 8.04 % beta turns. The
abundance of coiled region indicates higher conservation
and stability of the model [47, 48].
High degree of flexibility in polypeptide chain and

insufficiency of regular secondary structure is considered
as disorder in protein [49]. Disordered regions might
contain functional sites or linear motifs and many pro-
teins are intrinsically found disordered in vivo. In Fig. 1
the blue colored sections on the X-axis are disordered
regions and green colored regions are globular or or-
dered domains. Disordered regions are important be-
cause many intrinsically disordered proteins exist as
unstructured and become structured when bound to
another molecule [50, 51].
The 3D model of the Pftk derived from Modeller v.9

had 89.8 % of all its residues in the favorable region,
9.0 % and 0.3 % in allowed and generously allowed re-
gion. Only 0.8 % of the residues was in the disallowed
region in the Ramachandran plot analysis where the
amino acid residues of a peptide are plotted in favorable,
allowed and disallowed regions according to their torsion
angles phi (φ) and psi (ψ). Though homology modeling
algorithm is one of the most robust modeling tools in bio-
informatics, this often contain significant local distortions,
including steric clashes, unphysical phi/psi angles and
irregular H-hydrogen bonding networks, which make the
structure models less useful for high-resolution functional
analysis. Refining the modeled structures could be a solu-
tion of this problem [52]. Refinement through Modrefiner
has depicted 92.7 % of its entire residue in the most
favored regions, 6.8 % in the additional allowed regions,
0.5 % in the generously allowed regions and 0.0 % in disal-
lowed regions. The statistics of the refined model showed
that majority of the residues fall in the favorable core re-
gion including all non-glycine and non-proline residues, in
the Ramachandran plot, it ensures good stereo-chemical
quality of the model.
From the refined structures the best structure has

been selected using structure validation tools; namely
PROCHECK, Verify 3D and ERRAT. The highest scoring
structure was picked as the final structure. VERIFY 3D uses
the 3D profile of a structure to determine its correctness by
matching it with its own amino acid sequence. A high score
match is expected between the three dimensional profile of
a structure and its own sequence. This compatibility score
of an atomic model (3D) with its sequence (1D) ranges
from -1 (bad) to +1 (good), so, score 0.77 in verify 3D de-
termines good environmental profile of the structure [53].
ERRAT, the structure verification algorithm interpreted the
overall quality of the model with the resulting score 78.313;
this score denotes the percentage of the protein that falls
below the rejection limit of 95 % [37].
The QMEAN scoring function estimates the geometrical

aspects of a protein structure by a composite function of
six different structural descriptors; a torsion angle potential
over three consecutive amino acids to analyze local
geometry, long range interactions assessed by a secondary
structure-specific distance-dependent pairwise residue-
level potential, a solvation potential describing the the
burial status of the residues and two agreement term
determining the agreement of predicted and calculated
secondary structure and solvent accessibility [38, 54].
The Z-scores of the QMEAN terms of the protein
model are -0.37, -0.58, -0.11, -1.90, 1.33, 0.16 for C_β
interaction energy, salvation energy, torsion angle energy,
secondary structure, and solvent accessibility respectively.
These scores indicate that the predicted protein model
can be considered as a good model. Moreover, to estimate
the absolute quality of the model the QMEAN server [55]
relates the query model with a representative set of high
resolution X-ray structures of similar size and the resulting
QMEAN Z-score is an extent of “degree of nativeness” of
the given structure [56]. The average z-score of high reso-
lution models is ‘0’. The QMEAN z-score for the query
model is -0.29, which is lower than the standard deviation
‘1’ from the mean value ‘0’ of good models, so, this result
shows that the predicted model is of comparable quality
to the high resolution models. In addition the range of
predicted global model reliability is 0 to 1 according to
Verify 3D. Hence, Plasmodium falciparum transketolase



Fig. 11 The overall binding between the transketolase and 6′-Methyl-Thiamin Diphosphate. a Biological assembly of transketolase and
6′-Methyl-Thiamin Diphosphate, b Mesh structure of transketolase and 6′-Methyl-Thiamin Diphosphate, c Surface structure of transketolase
and 6′-Methyl-Thiamin Diphosphate, d Cartoon structure of transketolase and 6′-Methyl-Thiamin Diphosphate
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with a global model reliability score 0.74 has all the poten-
tials of a good quality model [57–59].
Protein-protein interaction (PPI) networks generation

have become crucial tool of modern biomedical research
for the understanding of intricate molecular mechanisms
and for the recognition of novel modulators of disease
progressions. To study varieties of human diseases as
well as their signaling pathways, protein interactions give
an immense effect [60–62]. PPI of Transketolase generated
through STRING is presented in (Fig. 8). STRING forecasts
a confidence score, 3D structures of protein and Protein
domains. STRING utilizes references from UniProt
(Universal Protein) resource and predicts functions of
different interacting protein. PPI network demonstrates
Fig. 12 Graphical Representation of docking study between 6′-Methyl-Thia
hydrogen bonds). a Visualization of 6′-Methyl-Thiamin Diphosphate-Transke
that transketolase interacts with twenty other proteins
in a high confidence score among which GAPDH
(Glyceraldehyde 3-phosphate dehydrogenase); an exo-
somal protein that functions in some crucial pathways
like glycolysis/gluconeogenesis and amino acid biosynthesis.
D-ribulose-5-phosphate 3-epimerase, is the enzyme that
converts D-ribulose 5-phosphate into D-xylulose 5-
phosphate in Calvin’s reductive pentose phosphate cycle
[63]. ENO stands for enolase, also known as 2-phospho-D-
glycerate hydro-lyase which is a metalloenzyme responsible
for the catalyting of the conversion of 2-phosphoglycerate
(2-PG) to phosphoenolpyruvate (PEP).
Residue interaction networks (RINs) have been used to

describe the protein three-dimensional structure as a
min Diphosphate and Transketolase (yellow dashed-lines indicate
tolase interaction b Hydrogen Bond detection through PyMOL



Table 6 Description of Ligand molecule

Name 6′-Methyl-Thiamin Diphosphate Chemical structure

Identifiers [2-[3-[(4-amino-2,6-dimethyl-pyrimidin-
5-yl)methyl]-4-methyl-1,3-thiazol-3-ium-
5-yl]ethoxy-hydroxy-phosphoryl] hydrogen
phosphate

Formula C13 H20 N4 O7 P2 S

Molecular Weight 438.33 g/mol

Type non-polymer
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graph where nodes and edges represent residues and
physico-chemical interactions respectively. To analyze
residue-residue interaction, protein stability and folding,
allosteric communication, enzyme catalysis or mutation
effect prediction RING is being used. RING uses standard
programs to create network interaction that is visualized
through Cytoscape [64–67]. Cytoscape is an open source
software package for visualizing, modeling and analyzing
molecular and genetic interaction networks. A higher
bonding interaction indicates higher probability of protein
functioning site [68–70]. Residue-residue interaction net-
work of transketolase indicates the probable active site of
the crucial protein of plasmodium falciparum [71].
The active site of transketolase was predicted by

CASTp server as shown in Fig. 10. In our present study,
we reported the surpass active site area of the enzyme in
addition to the number of amino acids occupied in it.
The preeminent active site is found with 1118.8 areas
and a volume of 1696.9 amino acids.
The complete profile of the studies by AutoDock Vina,

is represented in Table 5. For the most favorable binding
6′-Methyl-Thiamin Diphosphate, estimated free energy
of molecular binding was of −6.6 kcal/mol. The overall
binding energies as well as RMSD (Å) of 6′-Methyl-
Thiamin Diphosphate based on their rank are tabulated in
Table 4. Overall binding of transketolase and 6′-Methyl-
Thiamin Diphosphate is represented in Fig. 11. It has been
found that 6′-Methyl-Thiamin Diphosphate formed 5
Hydrogen bonds with the transketolase (Fig. 12). The
Amino acid residues conscientious for the binding interac-
tions of the 6′-Methyl-Thiamin Diphosphate (Fig. 11b)
with the enzyme are His 109, His 515, Asn 108. The de-
scription of 6′-Methyl-Thiamin Diphosphate is given in
Table 6. After analyzing the results, in case of our selected
ligand it is clearly concluded that this has a crucial role in
ligand binding affinity.

Conclusion
By analyzing different structural and physiological
parameters of P. falciparum 3D7, in this study we
predicted the 3D structure of PfTk. Evidences have
shown that, PfTk (transketolase) can be considered as a
remarkable drug target for its role in the regulation of
non-oxidative arm of the PPP and for the least homology
with its human host. The need of a proper vaccine against
malaria has never been more serious as malaria increas-
ingly claiming life in this 21st century. This study is aimed
to aid the hunt for the proper target site in the quest for a
sole solution to defend malaria. The structural information
of our given model will pave the way for further
laboratory experiments to design potential anti-malarial
drug in near future.
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