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Abstract

Background: Eelgrass is a cosmopolitan seagrass species that provides important ecological services in coastal and
near-shore environments. Despite its relevance, loss of eelgrass habitats is noted worldwide. Restoration by replanting
plays an important role, and accurate measurements of the standing crop and productivity of transplants are important
for evaluating restoration of the ecological functions of natural populations. Traditional assessments are destructive,
and although they do not harm natural populations, in transplants the destruction of shoots might cause undesirable
alterations. Non-destructive assessments of the aforementioned variables are obtained through allometric proxies
expressed in terms of measurements of the lengths or areas of leaves. Digital imagery could produce measurements of
leaf attributes without the removal of shoots, but sediment attachments, damage infringed by drag forces or humidity
contents induce noise-effects, reducing precision. Available techniques for dealing with noise caused by humidity
contents on leaves use the concepts of adjacency, vicinity, connectivity and tolerance of similarity between
pixels. Selection of an interval of tolerance of similarity for efficient measurements requires extended computational
routines with tied statistical inferences making concomitant tasks complicated and time consuming. The present
approach proposes a simplified and cost-effective alternative, and also a general tool aimed to deal with any
sort of noise modifying eelgrass leaves images. Moreover, this selection criterion relies only on a single statistics; the
calculation of the maximum value of the Concordance Correlation Coefficient for reproducibility of observed areas of
leaves through proxies obtained from digital images.

Results: Available data reveals that the present method delivers simplified, consistent estimations of areas of eelgrass
leaves taken from noisy digital images. Moreover, the proposed procedure is robust because both the optimal interval
of tolerance of similarity and the reproducibility of observed leaf areas through digital image surrogates were
independent of sample size.

Conclusion: The present method provides simplified, unbiased and non-destructive measurements of eelgrass leaf
area. These measurements, in conjunction with allometric methods, can predict the dynamics of eelgrass biomass and
leaf growth through indirect techniques, reducing the destructive effect of sampling, fundamental to the evaluation of
eelgrass restoration projects thereby contributing to the conservation of this important seagrass species.
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Background

Seagrass meadows are highly productive plant communi-
ties that grant valuable ecological services in estuaries and
near-shore environments worldwide. Seagrasses provide
food and shelter for a myriad of economically and eco-
logically valued marine organisms [1-3], play an important
role in nutrient cycling [4,5], favor the stabilization of the
shoreline as roots and rhizomes compact the substrate,
preventing erosion [6,7], participate in the foundation of
the detrital food web [8], and play also, a fundamental role
in carbon sequestration [9]. Eelgrass (Zostera marina L.)
is particularly relevant not only because it is the dominant
seagrass species along the coasts of both the North Pacific
and North Atlantic [10], but also, because eelgrass com-
munities have been traditionally recognized as among the
richest and most varied in the abundance of sea life [11].
Indeed, this cosmopolitan macrophyte was found to pro-
duce up to 64% of the total primary production of an estu-
arine system [12].

The forcing of Zostera marina dynamics by environ-
mental variables is well documented in the literature
[13-18]. Light availability, temperature, and dissolved nu-
trients are the most important variables for explaining
the observed variability [18,19]. But even when light and
nutrients are not limiting, temperatures ranging above
the upper limit tolerated by eelgrass can provoke severe
negative effects on its growth [20]. Indeed, the onset of
warm ENSO events has been shown to dramatically di-
minish eelgrass growth [20]. Therefore, the productivity of
Zostera marina populations could be diminished by global
climate change, which is expected to result in warming
and rising seas, thereby reducing the availability of both
light and nutrients underwater [21]. Another concern for
the health of eelgrass populations pertains to increasing
deleterious anthropogenic influences. The loss of eelgrass
habitat has been noted worldwide, with major losses in
the past few decades [22-25]. Within restoration strat-
egies, replanting plays an important role [26-28]. The
monitoring of these efforts is fundamental for the evalu-
ation of the effectiveness of restoration of functions and
values of natural populations. Accurate measurements of
the standing crop and productivity of transplanted popula-
tions at a given time constitute an important input for
evaluating the restoration of the ecological functions and
values of natural populations. Although traditional assess-
ment methods do not cause damage to natural popula-
tions, their invasive nature could significantly alter the
development of transplanted populations. Echavarria-
Heras et al. [29] and Echavarria-Heras et al. [30] propose
allometric methods that reduce eelgrass biomass and leaf
growth rate estimations to measurements of leaf length or
area. Besides, the use of digital imagery could provide leaf
area estimations which avoid invasive effects. But in
some cases noise effects could lead to misidentification of
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pixels placed on the peripheral contour of leaves images
(see Figure 1). This could spread uncertainty on leaf area
estimations that ultimately could render imprecise allo-
metric projections of biomass and leaf growth rates.
Therefore, for accurateness we must rely on an image se-
lection method that produces an unambiguous identifica-
tion of the sequence of pixels that form the peripheral
contours of digitalized eelgrass leaves. In order to achieve
this task, there are techniques developed on the basis of
the concepts of adjacency, vicinity, connectivity and toler-
ance of similarity between pixels (see Appendix). Using
this framework Leal-Ramirez and Echavarria-Heras [31]
introduced a direct comparison method aimed to discrim-
inate the interval of tolerance of similarity that produces
the most accurate estimations of length, width or area of
eelgrass leaves from digital images with noise induced by
humidity contents. For a given interval of tolerance of
similarity, the process initially identifies the peripheral
contour of the images of leaves and then measures the
concomitant lengths widths and areas. Next, individual
deviations between leaf area measurements taken from
images and those obtained directly from leaves are used to
produce statistics aimed to obtain the proportions of
leaves for which image assessments underestimate or
overestimate observed values. The ratio of these propor-
tions defines a selection index whose smallest value pro-
vides criterion for choosing the interval of tolerance of
similarity that yields the most accurate image related mea-
surements. The implementation of the direct comparison
method uses lengthy computational stages that include
various statistical inferences on deviations between ob-
served an image obtained leaf areas. In this contribution,
we present an alternative criterion for the selection of the
named interval of tolerance of similarity. The present pro-
cedure called the concordance correlation method; is sim-
pler to implement than the direct comparison method. It
only requires calculating the values of the Concordance
Correlation Coefficient (CCC) for the reproducibility of
observed leaf areas through proxies obtained from corre-
sponding images. The present criterion proposes the use
of the interval of tolerance of similarity that yields the
maximum value of the aforementioned CCC for consist-
ent digital image estimations of eelgrass leaves areas. Our
results show that on spite of its simplicity the present se-
lection criterion yields highly reliable levels of accuracy.

In section two, we present a brief review of the direct
comparison method. Section three formally explains the
present concordance correlation method. Section four de-
scribes the results of this study and discusses the advan-
tages and possible drawbacks of the present approach.

The Direct Comparison Method (DCM)
In this section we briefly describe the steps of the direct
comparison method as conceived by Leal-Ramirez and
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a)

b)

Figure 1 A digital image of a Zostera marina leaf. a) An image of a Zostera marina leaf exhibiting the typical belted shape. Related area is
commonly approximated by the product of length and average width. b) The display of the image of the leaf using a darker tonality reveals
pixels placed beyond the peripheral contours, which do not belong to the image and whose presence is explained by humidity- noise-related
effects. Improper identification of the peripheral contour of the leaf image due to spurious entries can lead to miscalculation of related area.

Echavarria-Heras [31]. Initially, the DCM chooses a
positive integer # and uses it to fix a tolerance level g =
(Lnax/n), being [, the maximum observed leaf length.
This yields a covering for the range [0, /,,...] by a collec-
tion of n disjoint intervals of the form I = [g(k - 1), gk),
with 1 <k < n. Subsequently, for each value of the index
k the procedure identifies the group Gi(/) of ny leaves
whose lengths are contained in ;. An index j such that
Hy;
denote respectively the straight length, width

1<j < ny labels leaves in Gi(/) while the symbols *

k
oj
and area of the jth leaf in Gg(l). Particularly, estimations

a/;j of the leaf areas in G,(/) can be obtained by using the

oj’

and a

length times width proxy [32]. Digital images of leaves in
the Gx(l) groups are processed by a specified color format
with a number C,,,, of colors and via intervals of toler-
ance of similarity ST(r)=[0,7], being r, 0<r<C,u— 1,
the number of different tonalities used for pixel identifica-
tion. By keeping ST(r) fixed, a routine selects a starting
point within the image of the jth leaf in Gi(/) and detects
all adjacent pixels falling within the selected interval of
tolerance of similarity ST(r). This task which is achieved
using equations (A1), (A2) and (A3) identifies the periph-
eral contour of the leaf image, and allows the measure-
ments of the concomitant proxies for the length lf,/(r) ,
width hsj(r) and area a’;j(r) of the leaf. Afterwards
the method obtains the deviations for leaf length eg(r),
width eh]( r) and area ek( ), given by: el]( r) = lk,— lléj( ),

eh1 = hk -n, ;(r),and eu/( r) = a’;] adl( r). This produces re-
spectlve average deviation values taken over groups Gy(/).
These are denoted by means of & f(r), Si(r), Sl;(r), their
corresponding averages taken over the whole collection of
groups Gi(l) by means of §;(r), 8,(r), 6,(r) and the asso-
ciated standard deviations through og,(r), gs,(r) and o,,(r)

respectively. Then, for each range of similarity ST(r), the
technique identifies the leaves satisfying the conditions
ou(r)=0, (1)

81(7) 20, (2)

8.(r)-051(r)<8) (r)<8,(r) + 051 (r),

On(r)-osn(r)<8,(r)<84(r) + asu(r)
and
e';j(r)ZO

and use their area values afﬁ(r) to calculate A,(r), which
stands for the proportion of images of leaves for which
a, produces consistent estimations of observed leaf
areas do. This proportion is calculated according to
the formula,

Zk 12 “d; r) | leaves in Gi(I) that comply

with conditions (1)through(5) |

D

Aa(r) =

(6)

Then the method obtains the proportion f,(r) of im-
ages of leaves for which a, estimations overestimates
observed leaf areas a, which is calculated through f,
(r)=1- A,(r), and use A,(r) and S,(r) to calculate the
value of the image selection index IS(r), formally de-
fined by

I8(r) = Ba(r)/ Aa(r) (7)

Finally, the DCM proposes the use of the ST(r) inter-
val producing the smallest value of IS(r) for reliable esti-
mation of the areas of leaves of eelgrass using images
whose peripheral contour is distorted by noise induced
by humidity contents.

The Concordance Correlation Method (CCM)

The Concordance Correlation Coefficient symbolized by
mean of p [33,34] is used to determine reproducibility,
as it measures the agreement between the variables x
and y by appraising the extent to which they fall on the
45° line through the origin. Its numerical value is repre-
sented in terms of the ratio of the expected orthogonal
squared distance from the diagonal y = x to the expected
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orthogonal squared distance from the diagonal y=x as-
suming independency. The value of p, is commonly used
to assess how well a new set of observations y reproduce
an original set x. When p is computed on a m-length data
set (i.e., two vectors (x1, %5, -*+,%,,) and (y1, ¥, ***,¥,) the
resulting statistics is denoted by means of p and calculated
through

. 28y
= B 8
e +24+ (& +7) B
being
I
X=X (9)
=
» _ LI -
s = ;Z (%-%) (10)
=1
and

Sy = %Z(’C/—’?) (yj—j’) (11)
=1

In the present work the value of p will provide a criter-
ion for the incumbent digital image selection process.
The linked CCM does not require the sorting of ob-
served leaf lengths into the Gy(/) groups of the DCM. As
it is done in the DCM, in the present CCM, the digital
images of sampled leaves are primarily processed by a
specified color format with a number C,,,, of colors and
using intervals of tolerance of similarity ST (r) = [0, 7]
with 0<r<C,,,,— 1. Again by keeping ST(r) fixed and
within the jth leaf image, a routine selects a starting
point, and using Eqs. (A1), (A2) and (A3) detects all ad-
jacent pixels connected within the realm of the desig-
nated interval of tolerance of similarity ST(r). This
device identifies the peripheral contour of the leaf image
allowing associated measurements of length /(r) and
width /14(r) whose product for 1 < <m, yields image es-
timated leaf areas a,(r). Instead of performing the statis-
tical steps required to calculate IS(r), simply for r fixed
in equations (9), (10) and (11) we make x; stand for ob-
served leaf area measurements (ag1, dgs, **, o) and let
y match digital image produced estimations (a;0(r), a1
(r), -+, agm(r)). Then equation (8) yields the resulting
value of the Concordance Correlation Coefficient. In the
present settings this will be denoted through by means
of the symbol p(r) to emphasize its dependence on r,
that is, changing ST(r) produces different pairs of ob-
served and image calculated leaf areas (aq; ,aq(r)), 1<
j<m, as well as different values of the associated p(r).
After all values of r in the chosen color format are
exhausted, we select the tolerance of similarity interval
ST(r) that produces the highest value for p(r) for
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efficient estimation of eelgrass leaves area from digital im-
ages with noise related to environmental factors.

Results and discussion

For the purposes of the present study, we used a data set
obtained by randomly sampling 5 shoots biweekly from
January through December 2009 in a Zostera marina
field at Punta Banda estuary, a shallow coastal lagoon
located near Ensenada, Baja California, Mexico (31°
43-46 N and 116° 37-40 W). For each sampled leaf,
a millimeter ruler was used to obtain leaf length mea-
surements /, to the nearest 1/10 mm taken as the dis-
tance from the top of the sheath to the leaf tip.
Meanwhile, observed leaf width %, was measured at a
point halfway between the top of the sheath and the tip
[32]. Observed leaf area estimations a, were calculated by
means of length times width proxy a, =1, - h,.

We obtained /,,,, =460 mm. For the data grouping
required by the DCM we choose n=46 so we ac-
quired ¢=10 mm, and for the interval [0,/,,,] we
formed a partition P;® of disjoint intervals I; of the
form Ip= {I | q(k-1)<l<qk}, with 1<k<46. Hence,
for each value of the index k, we formed a group Gy
(/) containing leaves with sizes varying in the interval
I. Longer and older leaves displayed darker tonalities
than younger and shorter ones, but leaves with lengths
varying on a given partition interval /; displayed a similar
color distribution. For some of the partition intervals there
was at most one leaf with length placed in the linked vari-
ation range. Therefore, these groups are not taken into ac-
count because they do not provide information for the
statistical analysis.

According to the DCM, for each leaf belonging to the
group G(l) we obtained its digital image. For dealing
out with all these individual images we selected an RGB
color format with a number C,,,, of 256 colors. For pro-
cessing each one of the available leaves images, we choose
different tolerance of similarity levels ST(r) = [0, 7] with
the upper bound r satisfying 0 <r<C,,,, — 1. Then for a
given ST(r) range, we selected a starting point inside the
considered leaf image, and identified using equations (A1),
(A2) and (A3) all adjacent pixels falling within the named
similarity range ST(r). This recognizes the outer contour
of the digital blade, and produce concomitant leaf width,
length and area estimations. The next step in the DCM
concerns the calculation of the selection index IS(r) which
depends on the value of the 1,(r) statistics. But according
to equation (6) obtaining the value of 1,(r) requires count-
ing the number of leaves in each group G(/), that comply
with conditions (1) through (5) and these numbers depend
on the chosen value of r. Moreover, for small values of
r the number of different tonalities included in ST(r)
is limited so identification of pixels within an image
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can be expected to be imprecise. This is handily clarified
by Figure 2, produced using r =10 and that shows a sys-

. - <k
tematic tendency for average length deviations &, (r) de-
pending on group index k. As a result we can observe a

large number of Sf(r) values lying above the &;(r) + o
(r) and beyond the &;(r)-og(r) thresholds in inequality
(3). The bigger the value of r, the greater the number of
color tonalities included in the interval ST(r) and precision
in image contour identification improves. This is observed
in Figure 3, produced using r =128 and which does not
display the above quoted systematic tendency, but a re-
duced number of groups of leaves with average length de-

viations (_Sf(r) lying outside the interval bounded by
8,(r) + as(r) and &,(r)-os/(r). Consequently, for small
values of r we can expect reduced values of 1,(r) and as a
result according to equation (7) large values of IS(r). Add-
itionally, when the interval of tolerance of similarity be-
comes wider, smaller values of IS(r) can be expected. In
fact, as shown in Figure 4, the DCM captures this effect in
a consistent way, with small values of r leading to large
values for the selection index IS(r). Moreover, through the
interval 1<r<128, IS(r), decreases reaching a minimum
value of 0.91, attained at = 128. Meanwhile, for r> 128,
the values of the selection index IS(r) steadily increased
towards a value of 1.84, attained at r = 255. Therefore, ac-
cording to the DCM selection criterion S7(128) must be
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chosen for efficient estimation of areas of eelgrass leaves
using images with noise induced by humidity contents.

Now for the CCM, since a small value of r fails to
recognize some pixels in the digital image, we might ex-
pect a low reproducibility of directly obtained measure-
ments (ao1, 4o, ***, dom) by means of digitally obtained
proxies (ago(r), aqi(r), -+, agm(r)). This is indeed shown
in Figure 5. Moreover , the larger the value of r the
greater the number of color tonalities included in the
interval ST(r), as a result exactness in image contour
identification increases, and reproducibility improves,
this explaining why Figure 5 shows increasing values of
p(r) through the interval 1 <r < 128. Moreover, through
the domain 128 < r < 178 the values of p(r) are maintained
within a plateau of slight variation around p(128) = 0.90,
but for 178 < r < 255, p(r) decreases dropping to a value of
0.8464, attained at r = 255. Thenceforth, intervals of toler-
ance of similarity, wider than S7(128) do not improve re-
producibility of observed values of leaves areas by means
of their image obtained surrogates. Thus, for the sake of
accuracy and simplicity, ST(128) should be used for image
selection when noise due to environmental factors is
present and efficient estimations of eelgrass leaf area taken
from these images are required.

In order to assess robustness of the CCM, we per-
formed a resampling experiment. We chose a sample
size index p = 1,2, ..., 8 then for each value of p a set s(p)
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Figure 2 The effect of similarity index r =10 on average deviations ST(r). For r=10 a regular tendency of 87(0 depending on group index k

is shown. This yields a large proportion of groups with S/k(r) lying outside the interval bounded by &,(r) + 05(r) and 6,(r)~0s(r) (cf. inequality 3).
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of samples of size 100p each were uniformly drawn from
the (ao1, ags, -+, ao,n) population. Next, we selected one
of the s(p) samples, for each value of r through the
interval 1<r<255, we designated the matching areas
obtained from digital images and calculated the concomi-
tant Concordance Correlation Coefficient values p(r). We
recorded the value of r at which the maximum for p(r)
was attained for the selected sample. We repeated this
procedure for all the samples in the set s(p) and then aver-
aged the obtained r values for maximum p(r). Figure 6
displays the obtained averages for the different values of
the sample size index p. The maximum values of p(r) per
sample were also averaged over the s(p) sets. These last
average values are shown in Figure 6. The results of this
study show that the optimal interval of tolerance of simi-
larity, as well as, the reproducibility of observed leaf areas
by means of their digital image surrogates can be consid-
ered independent of sample size. Therefore, the CCM can
be regarded as a robust procedure.

According to our results, both methods sustain the
same conclusion regarding the choosing of ST(128) on
behalf of accuracy. However, in comparison to the com-
plicated multi-stage procedures of the DCM, using p(r)
values provide a direct and simpler criterion for choos-
ing an interval of tolerance of similarity ST(r) for reliable
digital image related assessments of eelgrass leaf area
under the specified noise effects. But the main advantage

of the CCM resides on the fact that it allows a straightfor-
ward interpretation of the addressed digital image selec-
tion procedures in terms of a measure of reproducibility.
Indeed the plateau in p(r) values linked to the domain
128 < r <178, and the subsequent decreasing mode associ-
ated to r > 178 shown in Figure 5 indicate that intervals of
tolerance of similarity wider than ST( 128) will fail to im-
prove reproducibility of observed values of leaf area by
means of their image produced proxies. In other words
for r>128, ST(r) includes more tonalities than those
contained within the real image, thereby favoring the
incorporation of spurious entries appearing beyond its
peripheral contour and within the framing of the image.
Thus including more color tonalities than necessary in the
image processing task could not grant a gain in accuracy,
but instead, depending on the severity of the noise effects
(Figure 1), and on the size of the framing enclosing the
peripheral contour of the image (Figure 1), more spurious
pixels could be taken in to account by the image process-
ing devise, which could lead to increased miscalculation of
leaf area obtained from images. Meanwhile, our analysis
confirms that when noise induced into images by the hu-
midity contents of the leaves reduces the accuracy of esti-
mations of the associated areas we could use a RGB color
format, an ST( 128) interval of tolerance of similarity and
equations (Al), (A2) and (A3) to identify the peripheral
contour of leaves images for optimal reproducibility.
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Figure 4 The behavior of the IS(r) selection index through the interval 1 <r < 255. For small values of r the interval of tolerance of similarity
ST(r) does not include the necessary tonalities that the image identification procedure requires. Therefore identification of pixels within an image
can be expected to be imprecise. Consequently reduced values of A4(r), will be expected, which lead to large values of the IS(r) selection index.
For r2 25, values of IS(r) decrease until its minimum value is attained at r=128. According to the DCM selection criterion for the present data,
both an RGB color format and ST(128) interval of tolerance of similarity can be used for efficient estimation of areas of eelgrass leaves using
images with noise induced by humidity contents.

Conclusions

The results of the present digital image selection proced-
ure provide simple, unbiased and non-destructive mea-
surements of eelgrass leaf area. These measurements in
conjunction with allometric methods [35] can predict
the dynamics of biomass and leaf growth through indir-
ect techniques, reducing the destructive effect of sam-
pling and simplifying time consuming methods in the
laboratory [36]. Nevertheless, it is worth to emphasize,
that leaves removed from a shoot readily begin to lose
water and degrade, so changes in shape may occur [37].
Therefore, even though humidity contents could cer-
tainly induce noise effects, an efficient digitalizing of a
Zostera marina blade requires the maintenance of an
optimal humidity for increased image fidelity. By taking
this into account we can assert that the apparent similar-
ity of values of p(r) linked to the interval 128 <r<178
could not be exhibited as a weakness of the CCM, that
is, the plateau shown in Figure 5 does not associate

to vagueness in the imbedded selection criteria. In-
deed in this study both the preparation of lives before
digitalization procedures and the framing used to bound
the area surrounding the peripheral contour of the digital
leaves was effective (1) for reducing inconsistencies attrib-
utable to a biased mapping of leaf shape into images, (2)
by lessening bias due to the inclusion of spurious entries
linked to noise into images and (3) because the framing
size used in the present identification procedure further
limited the participation of spurious entries in image pro-
cessing tasks. Therefore, r=128 (that is, the entrance
threshold for the plateau of maximum p(r) values in
Figure 5) includes the required number of different tonal-
ities for the processing of the present set of images and we
choose it for a consistent estimation of the pertinent leaf
area. Although, in the present settings the aforementioned
bias reduction practices explain why values of r beyond
r=128 sustain the same selection criterion, using r> 128
could lead to extended time consuming computational
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Figure 5 The behavior of the concordance correlation coefficient p (r), through the interval 1 <r< 255. Increasing values of p(r) through
the interval 1 <r< 128 are displayed. This means that the wider the interval of similarity ST(r) the greater the reproducibility of observed leaf
areas by image proxies becomes. Interestingly through the domain 128 <r< 178 values of p(r) are maintained within a plateau of slight
variation around p(128 ) = 0.90. Afterwards, for 178 < r < 255 values of p(r) decrease slightly until o(r) drops to a value of 0.8464 attained at r = 255.
Then for values of r larger than r= 128 reproducibility is not improved and coinciding with the criterion in the DCM for the present data, both an RGB
color format and the ST7(128) interval of tolerance of similarity could be used for image selection when noise due to humidity contents is present and
efficient estimations of eelgrass leaf area taken from these images is required.

procedures, because more than necessary tonalities will be
included in the identification undertaking. It is also worth
to highlight that in further applications, before the CCM
could provide consistent results, care should be taken in
order to ensure that the handling of samples be performed

in an efficient way for reducing bias in the overall image
selection procedures. Indeed we could anticipate that
in settings where points (1) through (3) above are disre-
garded, the inherent bias could seriously reduce reprodu-
cibility. Nevertheless, this could not be exhibited as a
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Figure 6 Dependence of both the value of r for maximum p (r) and the maximum value of p (r) itself on sample size. For each value of

areas. For each one of the samples in a set s(p), we iterated values of r through the interval 1 <r <255, and for each one of these r values we
obtained the concomitant concordance correlation coefficient values p(r
averaged the r values at which p(r) attained its maximum value, the obtained averages for the different values of the sample size index p are
shown in a). The maximum values that p(r) obtained in a sample were also averaged over the s(p) sets. These average values depending on

100p each were uniformly drawn from the population of observed leaf

). We repeated this procedure for all the samples in the set s(p) and

sample size are correspondingly shown in b). The results of this study shows that neither the optimal interval of tolerance of similarity ST(r) or the
reproducibility of observed leaf areas by means of their digital image surrogates depend on sample size, therefore the CCM can be considered as,
a robust procedure.
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weakness of the present CCM, since the DCM itself as
well as any other image selection procedure is subject to
the same bias effects. In summary, the CCM, not only
provides a simplified and robust image processing device,
besides, (a) this criterion offers a conceptual substanti-
ation for the DCM itself by linking the minimum values
of the selection index IS(x), to the maximum values of the
Concordance Correlation Coefficient p(r), and (b) even
though here we applied the CCM to account solely for the
effects of noise linked to humidity contents, it is worth to
mention that since the core of the CCM criterion is the
evaluation of reproducibility, its scope directly embraces
the treatment of any kind of noise effects that can reduce
the accurateness of digital image proxies of areas of eel-
grass leaves.

Studies of seagrass communities such as those com-
posed of Zostera marina show that these systems are
among the most productive marine systems [38]. The
characterization of the dynamics of such ecosystems is im-
portant from both a scientific and conservation perspec-
tive. Moreover, the methods sustained by the present
research may be fundamental to the evaluation of eelgrass
restoration projects and could thereby contribute to the
conservation of this important seagrass species.

Appendix

We describe here the conceptual and formal framework
for digital image processing. Two pixels are adjacent if,
and only if, they share one of their borders, or at least
one of their corners. Two pixels are neighbors if they
fulfill the definition of adjacency. Formally, the vicinity
V,(x,y) of the point P(x,y) is defined through

_ ( +17 )7(_17 )7(7 +1)7(7_1)7
Vi) = { 1y L1 ) 1) e |

(A1)

Without loss of generality, we explain the notion of
tolerance of similarity, by referring to the Reed, Green
and Blue (RGB) color space. This allows quantifying ton-
ality in terms of the intensities of the constituting pri-
mary colors: red, green, and blue. To indicate at which
amount each one of these colors is mixed, to produce a
given tonality a value is assigned to each prime color, for
example, the value 0 means that a given primary color
does not appear in the mix, but if a chief color compo-
nent is non-vanishing it means that it contributes to the
mix in a given intensity. We introduce C,,,, which iden-
tifies the number of colors to be used through the whole
image processing task. For an RGB color space we have
Cnax = 256. Usually, the intensity of each of the primary
colors appearing in a mix is measured on a scale ranging
from O to C,,.. — 1. The set of all color intensities can be
represented in the form of a cube in the Cartesian
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coordinate system, where each color is a point on the
surface or in its interior. Given points P = (p1, po, ..., Pr)
and Q= (g1, g2, ..., q,,) in an RGB color space, we will de-
fine the distance dg(P, Q) between them through,

dE(Pa Q) =

Moreover, given a point P in an RGB color space, a
second one Q with the greatest similarity to P is the one
placed at the smallest distance dx(B Q). Furthermore, let
ST(r) = [0, r] be a color tonality range, being r the num-
ber of different colors included. Then, we must have 1 <
7 < Chax — 1 and we will say that two pixels P and Q are
similar to a tolerance limit ST(r) if the inequality

dE(P, Q)Sr

is satisfied. The range ST(r) is called “interval of toler-
ance of similarity” and the upper bound r can be inter-
preted as the maximum distance that two points located
within the extent of an object can attain in a RGB color
space in order to be considered similar. Connectivity be-
tween pixels is used to identify the limits in objects and
regions in an image. We will say that two pixels P and Q
are connected with tolerance of similarity ST(r) if they
fulfill the definition of adjacency and also if inequality
(A3) holds.
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